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The wide field of view (WFV) imaging system onboard the Chinese GaoFen-1 (GF-1) optical satellite has a 16-m
resolution and four-day revisit cycle for large-scale Earth observation. The advantages of the high temporal-spa-
tial resolution and the wide field of view make the GF-1 WFV imagery very popular. However, cloud cover is an
inevitable problem in GF-1 WFV imagery, which influences its precise application. Accurate cloud and cloud
shadow detection in GF-1 WFV imagery is quite difficult due to the fact that there are only three visible bands
and one near-infrared band. In this paper, an automatic multi-feature combined (MFC) method is proposed for
cloud and cloud shadowdetection inGF-1WFV imagery. TheMFC algorithmfirst implements threshold segmen-
tation based on the spectral features and mask refinement based on guided filtering to generate a preliminary
cloud mask. The geometric features are then used in combination with the texture features to improve the
cloud detection results and produce the final cloud mask. Finally, the cloud shadow mask can be acquired by
means of the cloud and shadow matching and follow-up correction process. The method was validated using
108 globally distributed scenes. The results indicate that MFC performs well under most conditions, and the av-
erage overall accuracy ofMFC cloud detection is as high as 96.8%. In the contrastive analysis with the official pro-
vided cloud fractions, MFC shows a significant improvement in cloud fraction estimation, and achieves a high
accuracy for the cloud and cloud shadow detection in the GF-1WFV imagery with fewer spectral bands. The pro-
posedmethod could be used as a preprocessing step in the future tomonitor land-cover change, and it could also
be easily extended to other optical satellite imagery which has a similar spectral setting. The global validation
dataset and the software tool used in this study have been made available online (http://sendimage.whu.edu.
cn/en/mfc/).

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Clouds and the accompanying shadows are inevitable contaminants
for optical imagery in the range of the visible and infrared spectra. The
global annual mean cloud cover is approximately 66% according to the
estimation of the International Satellite Cloud Climatology Project-Flux
Data (ISCCP-FD) (Zhang et al., 2004). Cloud cover impedes optical satel-
lites from obtaining clear views of the Earth's surface, and thus the exis-
tence of clouds influences the availability of useful satellite data. Cloud
shadows cast by clouds are also a contaminant for imagery, and the
dark effect of cloud shadows results in the spectral information of the
imagery covered by cloud shadows being partly or entirely lost. The
cloud and cloud shadows in the imagery affect the processing of the
ngli@whu.edu.cn (H. Li).
imagery, in applications such as classification, segmentation, feature ex-
traction, etc. A number of cloud removal and image restorationmethods
(Zeng et al., 2013; Cheng et al., 2014; Li et al., 2014; Shen et al., 2014)
can effectively repair cloud-contaminated imagery, but they do not pro-
vide a specific way to automatically extract the clouds. Accurately
extracting clouds and cloud shadows from cloud-contaminated imagery
can help to reduce the negative influences that cloud coverage brings to
the application of the imagery. Furthermore, cloud cover estimation can
be used for imagery availability evaluation. Therefore, cloud and cloud
shadow detection in optical imagery is of great significance.

The GaoFen-1 (“GaoFen”means high resolution in Chinese) satellite
was launched by the China Aerospace Science and Technology Corpora-
tion (CASC) in April 2013. It was the first of a series of satellites in the
civilian High-Definition Earth Observation Satellite (HDEOS) program
to realize a high-resolution andwide-swath optical remote sensingmis-
sion. The wide field of view (WFV) imaging system is one of the key
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Table 1
Spectral range comparison between GF-1 WFV and Landsat ETM+ imagery.

Bandwidth (μm) GF-1 WFV Landsat ETM+

Band 1 (Blue) 0.45–0.52 0.45–0.52
Band 2 (Green) 0.52–0.59 0.52–0.60
Band 3 (Red) 0.63–0.69 0.63–0.69
Band 4 (NIR) 0.77–0.89 0.76–0.90
Band 5 (SWIR-1) – 1.55–1.75
Band 6 (TIR) – 10.4–12.5
Band 7 (SWIR-2) – 2.08–2.35
Band 8 (Pan) – 0.50–0.90
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instruments operating onboard the GF-1 satellite, as shown in Fig. 1. It
includes four integrated cameras with a 16-m spatial resolution and
four-day temporal resolution. Each WFV camera has four multispectral
bands, spanning the visible to the near-infrared spectral regions, and
shares similar band passes to Landsat ETM+ (Table 1). The swath
width of the GF-1 WFV imaging system increases to 800 km when the
four cameras are combined, which significantly improves the capabili-
ties for large-scale surface observation and monitoring. The images of
the four cameras are delivered separately in level-1A and level-2A prod-
ucts. The level-1A data are raw digital products with the process of ho-
mogenized radiation calibration, while the level-2A data are produced
after systematic geometric correction, in which the pixels are all
resampled to a 16-m resolution. The imagery of the GF-1 satellite has
served a wide range of applications covering many topics. The typical
applications include disaster prevention and relief, geographical map-
ping, environment and resource surveying, as well as precision agricul-
ture support (Chen et al., 2015b; Li et al., 2015a,c; Lu & Bai, 2015;Wang
et al., 2015).

Cloud detection in GF-1 WFV imagery is a challenging task because
of the unfixed radiometric calibration parameters and the insufficient
spectral information. The GF-1WFV imaging system also lacks onboard
calibration capabilities (Yang et al., 2015), which makes accurate cali-
bration of GF-1 imagery difficult. In addition, this kind of imagery has
no thermal infrared band or water vapor/CO2 absorption band, which
is critical for cloud identification (Huang et al., 2010). Due to the lack
of sufficient spectral information, it is not easy to separate clouds from
some bright ground objects (such as snow, buildings, and coast lines)
when only using the spectral features. Meanwhile, thin cloud is also
hard to detect in optical satellite imagery because of the different under-
lying surfaces. Moreover, it is usually difficult to capture the complete
cloud shadow location because of shadow screening and cloud shadow
matching errors. In order to acquire better cloud and cloud shadow de-
tection results based on limited spectral bands, more features such as
geometric and texture features should be taken into consideration.

2. Background

In recent years, scholars have undertaken a great deal of research
into cloud and cloud shadow detection for different types of remote
sensing data, such as AVHRR (Di Vittorio & Emery, 2002; Khlopenkov
& Trishchenko, 2007), MODIS (Platnick et al., 2003; Luo et al., 2008),
and Landsat series imagery (Irish et al., 2006; Zhu & Woodcock, 2012;
Goodwin et al., 2013; Harb et al., 2016). Themethods of cloud detection
can be divided into two categories according to the single ormulti-tem-
poral scenes the algorithm uses.

Cloud detection methods based on a single scene are more popular
than multi-temporal methods, due to the reduced requirement for
input data. The automatic cloud cover assessment (ACCA) algorithm
(Irish et al., 2006) was designed for the cloud cover assessment of
Fig. 1. The GF-1 WFV imaging system (sensors
Landsat-7 imagery. The ACCA algorithm is an official method and is in-
cluded in the Landsat-7 Science Data User's Handbook (Irish, 2000). In
order to further capture the thin clouds which cannot be effectively de-
tected by the ACCA algorithm in Landsat imagery, function of mask
(Fmask) (Zhu & Woodcock, 2012; Zhu et al., 2015), which is a robust
cloud detection method, was proposed for routine usage with Landsat
images. Haze optimized transformation (HOT) (Zhang et al., 2002;
Zhang et al., 2014) was also developed for the detection and character-
ization of haze/cloud in Landsat scenes, but it requires prior knowledge
of the image to build a clear line in spectral space to separate haze/cloud
from the clear surfaces. Le Hégarat-Mascle and André (2009) and
Vivone et al. (2014) developed cloud detection algorithms based on
Markov random fields. Fisher (2014) implemented morphological fea-
ture extraction to detect cloud and cloud shadow in high-resolution
SPOT imagery. In addition, methods based on machine learning have
also been applied in automatic cloud detection, including the spatial
procedures for automated removal of cloud and shadow (SPARCS) algo-
rithm (Hughes & Hayes, 2014), which uses a neural network to identify
cloud and cloud shadow in Landsat scenes, and a cloud image detection
method based on support vector machine (Li et al., 2015b).

Compared to the single-image cloud detection methods, multi-tem-
poral cloud detection methods usually achieve a higher cloud detection
accuracy. However, these methods require more scenes over a short
time period to ensure that the land cover in the same place does not
change much. Therefore, multi-temporal cloud detection methods
may be more suitable for relatively permanent land areas in high tem-
poral resolution imagery. Examples of multi-temporal cloud detection
methods include the multi-temporal cloud detection (MTCD) method
(Hagolle et al., 2010), the multi-temporal cloud and snow detection al-
gorithm (Bian et al., 2014) for the HJ-1A/1B CCD imagery of China, the
multi-temporal mask (Tmask) for the automatic masking of cloud,
cloud shadow, and snow for multi-temporal Landsat images (Zhu &
Woodcock, 2014), and the optical satellite imagery cloud detection
method using invariant pixels (Lin et al., 2015).

Cloud shadow detection is usually undertaken after cloud detection
(Luo et al., 2008; Hughes & Hayes, 2014; Fisher, 2014; Braaten et al.,
2015). Shadows in remote sensing imagery can be approximately
image credit: DFH Satellite Co. Ltd., China).
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divided into two categories, namely, terrain shadow and cloud shadow.
Terrain shadow can be corrected or removed by topographic correction
(Meyer et al., 1993), on the condition that the digital elevation model
(DEM) and solar angle of incidence are provided, while the distribution
of cloud shadow in imagery depends on the cloud location and the sat-
ellite viewing and solar angles. Cloud shadow location can be predicted
by means of geometrical calculation if the location and height of the
clouds and the sun and satellite positions are known. Furthermore,
DEM data can be used to refine cloud and cloud shadow detection re-
sults. Huang et al. (2010) improved the projection of clouds onto the
land surface with DEM data. Braaten et al. (2015) also incorporated
DEM data and cloud projection to better separate cloud shadow from
topographic shading and water.

In this paper, an automaticmulti-feature combined (MFC)method is
proposed for cloud and cloud shadow detection in GF-1 WFV imagery.
TheMFC algorithm implements a local optimization strategywith guid-
ed filtering to refine the cloud and cloud shadow detection results. In
addition, the geometric and texture features are used to decrease the
commission error in cloud and cloud shadowdetection. The experimen-
tal results suggest thatMFC performswell inmost land-cover types, and
it can also accurately detect thin clouds and cloud shadow using only
the four optical bands.

3. The MFC algorithm

The input data for the MFC algorithm are the top of atmosphere
(TOA) reflectance of all four bands in the GF-1 WFV imagery, because
the TOA reflectance includes the surface reflectance of the Earth and at-
mospheric information, and a reduction in between-scene variability
can be achieved by converting the digital number (DN) values to TOA
reflectance values. The MFC algorithm first implements threshold
Fig. 2. Overall framework
segmentation by the use of the spectral features and a local optimization
strategy with guided filtering is used to generate a refined cloud mask.
The geometric features are then used in combination with the texture
features to improve the cloud detection results and produce the final
cloud mask. Finally, the cloud shadow mask can be acquired by means
of cloud and cloud shadowmatching and correction.When a pixel is la-
beled as cloud as well as cloud shadow, a higher priority is set for cloud
than cloud shadow in the integrated mask to generate the final cloud
and cloud shadow mask. Fig. 2 shows the process flow of the MFC
algorithm.

3.1. Cloud detection

There are three steps to implementing cloud detectionwith the pro-
posedmethod. MFC first produces a rough cloud detection result by ap-
plying threshold segmentation based on the spectral features, and the
core cloud regions are captured after this step. A finer result is then gen-
erated after guided filtering and binary image segmentation, and the
thin clouds around the cloud boundaries are included in the refined
cloud mask. Finally, non-cloud bright objects are removed from the re-
fined cloud mask by the use of the geometric and texture features. The
reason whyMFC does not directly acquire a refined cloud detection re-
sult is that it cannot entirely exclude clear-sky pixels while ensuring
that the thin clouds around cloud boundaries are not missed at the
same time.

3.1.1. Initializing a rough cloud mask using the spectral features
The MFC algorithm first produces a rough cloud mask which in-

cludes most of the thick clouds. This is aimed at extracting the core
cloud regions and attempting to make sure that the commission rate
in the rough cloud mask is very low. The HOT index (Zhang et al.,
of the MFC algorithm.
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2002) has been widely used for haze reduction and cloud detection
(Vermote & Saleous, 2007; Zhang et al., 2014; Harb et al., 2016). It is
used to separate cloud from clear-sky pixels, considering the fact that
the spectral response to cloud is different from most land surfaces be-
tween the blue and redwavelengths, and theHOT values of cloud pixels
are usually greater than clear-sky pixels. TheHOT index used inMFC can
be expressed as follows:

HOT ¼ B1−0:5 � B3 ð1Þ

where B1 and B3 denote the blue and red band reflectance.
HOT is an effective cloud and haze extraction method, and a similar

approach is also used in both the LEDAPS internal cloud masking algo-
rithm (Vermote & Saleous, 2007) and Fmask (Zhu & Woodcock,
2012). Since the first step of cloud detection focuses on the extraction
of relatively thick clouds, a greater HOT threshold is used in theMFC al-
gorithm than in Fmask. However, HOT cannot adequately suppress
land-surface information, and it often overestimates haze thickness
over bright surfaces (Chen et al., 2015a). As a result of the bands that
the HOT index relies on, some ground objects with high reflectance in
the visible bands or just the blue band, such as snow and blue buildings,
cannot be excluded in the extracted result because of the high value of
the HOT index. This results in some commission error in the cloud de-
tection results.

Furthermore, the ratio of the minimal and maximal reflectance in
the visible bands can be used to exclude ground objects with other
blue, red, or green colored features. The visible band ratio (VBR) of a
pixel, i.e.,

VBR ¼ min B1;B2;B3ð Þ
max B1;B2;B3ð Þ ð2Þ

is close to one when the pixel is gray. Therefore, VBR can be used to ex-
clude non-cloud pixelswith salient color features from the extracted re-
sults. A pixel can be identified as a potential cloud pixel if the VBR value
of it exceeds 0.7. This is based on the idea that clouds in optical imagery
generally appear white or gray in the RGB color space.

Meanwhile, cloud reflectance in the red band should be greater than
0.07, and a similar test is used in the ACCA algorithm (Irish et al., 2006)
for cloud detection in Landsat imagery. In this case, a threshold is set for
the red band reflectance to make sure that a pixel is more likely to be
white than black. The formula used to set a first and rough cloud mask
(CMR) can be expressed as:

CMR ¼ HOTNt1ð Þand VBRNt2ð Þand B3Nt3ð Þ ð3Þ

where t1, t2, and t3 are the thresholds to initialize the rough cloudmask.
The thresholds used in MFC are all written as t in the following for-

mulas. These parameters were carefully selected by means of experi-
ments, and are discussed in more detail in Section 3.3. By applying
binary segmentation to these spectral features, a pixel is labeled as
“cloud” when the above conditions are met. A rough cloud mask is
then acquired in which the core cloud regions are included. However,
there may still be some bright ground objects in the rough cloud
mask, such as buildings and bright water bodies, which cannot be effec-
tively excluded from the rough cloud mask by the visible and near-in-
frared spectral information alone.

3.1.2. Refining the cloud boundaries using guided filtering
Although MFC can acquire an approximate cloud detection result

through the above spectral tests, thin clouds around the cloud edges
may be missed since the above cloud detection procedure mainly cap-
tures the core cloud regions. In order to further capture the missed
clouds, the statistical features, which combine the spectral information
in the original image and the cloud location information in the rough
cloudmask, are taken into consideration. In this paper, the guided filter
proposed by He et al. (2013) is used to capture the missing clouds
around cloud boundaries by considering the combined statistical fea-
tures, to improve the cloud detection results in the rough cloud mask.
This approach is based on the fact that thin clouds are usually distribut-
ed around the core cloud regions, and there is a transition from the core
cloud regions to thin clouds around the cloud boundaries.

The guided filter is a novel filter with both edge-preserving and
noise-reducing properties, which can be used for image detail enhance-
ment, edge-preserving smoothing, guided feathering, etc. In particular,
it has been applied to refine the cloud boundary detection for RGB
color aerial photographs (Zhang & Xiao, 2014). The guided filter in-
volves a guidance image I, an input image p, and an output image q.
The key assumption of the guided filter is a local linear model between
the guidance image I and the output image q, and q is a linear transform
of I in a square window wk at pixel k:

qi ¼ akIi þ bk ∀i∈wkð Þ ð4Þ

where ak and bk are the constant linear coefficients inwk, and i denotes a
pixel coordinate in the square window wk.

The local linear model ensures that q has an edge only if I has an
edge, since ∇q=a∇ I. To seek a solution that minimizes the difference
between q and p while maintaining the linear model, the two coeffi-
cients ak and bk can be defined by Eqs. 5–6:

ak ¼
1
wj j∑i∈wk

Iipi−μkPk

δ2k þ ε
ð5Þ

bk ¼ Pk−akμk ð6Þ

where μk and δk2 are themean and variance of I inwk, ε is the regulariza-
tion parameter, |w | is the number of pixels inwk, andpk is themean of p
in wk.

As pixel i is involved in all the overlapping windowswk that cover i,
the output value qi should combine all of the overlappingwindows, and
the final output value of pixel i is defined as:

qi ¼ aIi þ b ð7Þ

where a ¼ 1
jwj ∑

k∈wi

ak and b ¼ 1
jwj ∑

k∈wi

bk are the average coefficients of all

the windows overlapping pixel i.
The MFC algorithm uses a guided filter for the guided feathering, in

which the binary cloud mask is refined to appear as a gray mask near
the object boundaries. The guided feathering is a local linear transform
(as shown in Eq. 4), using the guidance image to refine the edge of the
input binary mask. As a result, the output image which is transformed
from the guidance image has more details around object boundaries.
Considering that most clouds have weak edges, we empirically set the
window radius to 60, and the regularization parameter ε in the guided
filtering is set to 10−6 for better refinement of the cloud edges. Here,
the rough cloud mask CMR acquired before is considered as the input
image, and the RGB composite TOA reflectance image is used as the
guidance image because of its better discrimination between clouds
and background. The refined cloud mask CMG can be generated by
segmenting the output gray image acquired by the guided filtering.
Fig. 3 is an example of the results of the guided filter. Due to the spectral
differences of the ground surface under clouds, there are different rules
for cloud refinement in land and water areas.

All pixels can be divided into water and land pixels through water
identification. In the near-infrared band, water has a very low reflec-
tance, but land shows a relatively high reflectance (Xie et al., 2016).
Moreover, the normalized difference vegetation index (NDVI) is a
good indicator to separate water pixels from land pixels, because land
NDVI values are generally higher than water NDVI values (Vermote &
Saleous, 2007; Zhu & Woodcock, 2012). According to the spectral fea-
tures of water, the near-infrared band reflectance and the NDVI are



Fig. 3. Local optimizationwith guidedfiltering. (a) and (d) RGB composite guidance image. (b) and (e) Input binary cloudmask (i.e., the rough cloudmask). (c) and (f) Output binary cloud
mask (i.e., the refined cloud mask). The lower row shows local enlargements of the above images.

Fig. 4. Optimal threshold selection for cloud mask refinement by accuracy analysis. These
accuracies were derived from the tests with the validation data. The segmentation
threshold was increased by 0.01 each time in the range of 0 to 0.4, and the optimal
threshold was picked when the highest overall accuracy was achieved.
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applied to extract water. Here, considering that some turbid or eutro-
phic water pixels may have relatively large near-infrared band reflec-
tance, the thresholds for extracting clear and unclear water bodies are
different. The water pixels in a scene are determined by the following
test:

Water ¼ NDVIbt4 and B4bt5ð Þ or NDVIbt6 and B4bt7ð Þ ð8Þ

where

NDVI ¼ B4−B3ð Þ= B4þ B3ð Þ ð9Þ

Thus, the process of producing the refined cloud mask CMG can be
expressed as follows:

CMG ¼ GuidedFiltering RGB;CMRð ÞNt8 and HOTNt9 or Waterð Þ ð10Þ

Considering that surface features in land areas are more complex
than inwater areas, theHOT index is used again in the land areas to pre-
vent non-cloud impurities around clouds being incorporated into the
refined cloud mask. The threshold for the HOT index in Eq. 10 is set to
0.08 to separate haze and thin clouds from clear surface pixels. As to
the segmentation threshold selection for the output gray image after
the guided filtering, Otsu's thresholding method (Otsu, 1979) is widely
used to find the best threshold from a gray-level histogram to segment
the gray image to a binary image. However, this kind of threshold selec-
tion method sometimes cannot fit complex conditions well (Zhang &
Xiao, 2014; Liu et al., 2015). In this paper, according to the analysis of
the optimal threshold selection in Fig. 4, MFC sets a fixed threshold of
0.12 for segmenting the output gray image to a binary mask, to acquire
a high overall accuracy of cloud segmentation. The refined cloudmask is
then generated, which captures almost all of the clouds, including the
thin clouds around cloud boundaries.
3.1.3. Filtering the non-cloud bright objects using geometric and texture
features

Non-cloud bright objects such as snow/ice, bright water bodies, and
buildings which have similar spectral features to clouds are inevitably
included in the refined cloud mask. These kinds of impurities cannot
be easily separated from the clouds because of theminor spectral differ-
ences in the visible and near-infrared bands. Instead, the geometric and
texture features can be used to exclude the non-cloud bright objects
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from the refined cloud mask. Firstly, cloud pixels in the refined cloud
mask which are connected in eight neighborhoods are merged to be
an object. The geometric and texture features are then computed for
every object. Next, a check procedure considering the geometric and
texture features of the object is implemented on the merged objects
one by one to determine whether an object is a cloud object or not. Fi-
nally, we remove the objects from the refined cloud mask which are
marked as non-cloud objects.

3.1.3.1. Geometric features. There are various geometric metrics in
FRAGSTATS (McGarigal & Marks, 1995), which is a spatial pattern anal-
ysis program for quantifying landscape structure, including area, conti-
guity index, perimeter-area ratio, etc. The perimeter-area ratio is a
simple measure of shape complexity. However, a problem with this
metric as a shape index is that it varies with the size of the object. The
fractal dimension index (FRAC) is a proxy to the complexity of an
object's shape, which overcomes one of the major limitations of the
straight perimeter-area ratio. Furthermore, the length to width ratio
(LWR) reflects the relationship between width and length, and can be
estimated by calculating theminimumenclosing rectangle of the object.
Specifically, the minimum enclosing rectangle of each possible cloud
object can be acquired by calculating the ellipse that has the same nor-
malized second central moments as the object region. The length (in
pixels) and the width of the minimum enclosing rectangle are equal
to the length of the ellipse's major axis and minor axis, respectively.
As a result, area, FRAC, and LWR are considered as the three geometric
metrics of the object in this paper. Here, area is the number of pixels
contained in an object. FRAC and LWR can be expressed as follows:

FRAC ¼ 2 ln perimeter=4ð Þ
ln areað Þ ð11Þ

LWR ¼ max length; widthð Þ
min length; widthð Þ ð12Þ

where perimeter and area refer to each object, and length and width to
the smallest rectangle enclosing it.

The value of FRAC approaches 1 for shapes with very simple perim-
eters, such as squares, and approaches 2 for shapes with highly convo-
luted perimeters. The value range of LWR is greater than or equal to 1,
according to its definition. The FRAC and LWR values of cloud objects
are relatively small because of their low complexity in shape. Therefore,
the above geometric features are considered in theMFCalgorithm to ex-
clude non-cloud bright objects such as coastlines, roads, and buildings,
which usually have higher LWR or FRAC values than cloud objects. Fur-
thermore, the area of an object is considered to ensure that large-area
cloud objects whichmay have high FRAC or LWR values are not exclud-
ed from the cloud mask by mistake.

3.1.3.2. Texture features. Texture features have been successfully
employed in object recognition and texture analysis, and they have
also been used for cloud classification and cloud detection (Tao et al.,
2007; Xia et al., 2010; Hu et al., 2015; Cheng & Yu, 2015). Non-cloud
bright objects, such as snow patches or bright water bodies, do not
have obvious geometric features to enable them to be effectively sepa-
rated from cloud objects, and their shape can be similar to cloud objects.
As a result, texture features are used in combinationwith geometric fea-
tures to further distinguish cloud and non-cloud objects. In this paper,
the local binary pattern (LBP) texture descriptor (Ojala et al. 1994) is
implemented to extract the texture features of cloud and non-cloud ob-
jects due to its advantage of being illumination invariant and its low
computational cost. The LBP operator is a gray-scale texture operator
that describes the spatial structure of the local image texture, and has
been extended to rotation-invariant and uniform LBPs (Ojala et al.,
2002). It labels each pixel in the image by computing the sign of the dif-
ference between the value of that pixel and its neighboring pixels. The
LBP code of each central pixel is a decimal number, and the image can
then be represented by the histogram of these decimal numbers. The
LBP code for the central pixel is computed as follows:

LBPP;R ¼ ∑
P−1

p¼0
s gp−gc
� �

� 2p ð13Þ

where P is the total number of sampling points in the circular neighbor-
hood, R is the radius of the circle which determines the distance be-
tween the neighbors and the central pixel, and gc and gp represent the
gray values of the central pixel and the sample points which are evenly
distributed around the central pixel, respectively. The value of the step
function s(x) equals 1 when x is equal to or above zero, and is 0
otherwise.

Because objects of a certain type might be rotated, in order to make
the LBP code invariant to rotation, the basic LBP code is circularly shifted
to a minimum code number. The rotation-invariant LBP code for the
central pixel is given by:

LBPri
P;R ¼ min ROR LBPP;R; i

� � j i ¼ 0;1;…; P−1
� � ð14Þ

where the function ROR(LBPP ,R, i) performs a circular bit-by-bit right
shift operation on LBPP ,R for i times.

In our implementation, the texture extraction is based on a gray image
which is converted from the mean TOA reflectance of the visible bands,
and there are 36 levels in the LBP8,3

ri histogram. The LBP histogram
templates of typical objects include two classes of cloud objects and two
classes of non-cloud bright objects, which were trained from 84 samples
(100 × 100 pixels in each sample) that were manually selected from the
25 full GF-1 WFV images. These non-cloud samples were selected in the
images where commission error occurred according to visual inspection,
while the cloud samples include clouds with unclear edges and cirrocu-
mulus clouds which have different cloud texture features.

The chi-square distance is an effective indicator to measure the his-
togram differences:

Chi−square¼ ∑level
i¼1

Mi−Nið Þ2
Mi þ Ni

ð15Þ

where Mi and Ni are the two normalized histograms, and level denotes
the histogram levels.

Considering the differences and similarities of the texture patterns
between cloud and non-cloud objects, not only the LBP histogram dis-
tances between the current object and the non-cloud texture templates
are taken into consideration, but also the distances between the current
object and the cloud texture templates. Hence, MFC calculates the chi-
square distance between the current object's LBP histogram and the
LBP histogram templates of the cloud objects (the distance is denoted
asDc) andnon-cloudobjects (thedistance is denoted asDn). The current
object is labeled as a non-cloud object and excluded from the consider-
ation of texture features, only if its LBP histogram distances to the non-
cloud texture templates are closer than the cloud texture templates, or
they both have a similar distance and the distance to the non-cloud tex-
ture templates is extremely small.

In the proposedmethod, thewindow size set for calculating the tex-
ture features is adaptive to the object size. Specifically, it expands ac-
cording to the object size to make sure that there are enough pixels
for the texture extraction. As a result of the object-based geometric fea-
ture extraction and the adaptive window size for the texture feature ex-
traction applied in the proposedmethod, there are no residues of pixels
when a non-cloud object is excluded from the refined cloudmask. Fig. 5
shows examples in which snow and bright water bodies are excluded
from the refined cloudmask. Fig. 6 describes the process flowoffiltering
non-cloud bright objects. In this paper, the step of filtering non-cloud
objects is implemented in a conservative way to ensure that it can ex-
clude non-cloud objects while not mistakenly excluding clouds.



Fig. 5. Filtering non-cloud objects by theuse of geometric and texture features. (a) False-color composite image (Scene ID: E106.0_N26.9_20130616). (b) Refined cloudmask. (c) Removed
non-cloud bright objects (the green and yellow objects are excluded based on the geometric and texture features, respectively). (d) Cloudmask after filtering (objects marked with a red
arrow denote non-cloud bright objects which are not excluded). (e)–(h) Another example of excluding snow from a cloudmask (Scene ID: E102.0_N28.0_20140302), in which the snow
objects connected to clouds are not excluded. Objects less than five pixels are removed in these two examples.
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Although there are still some non-cloud objects left in the cloud masks
after the filtering, this step clearly decreases the commission error for
cloud detection.
Fig. 6. Flow chart of filtering non-cloud objects
Finally, in order to fill the cloud mask holes, each non-cloud pixel is
examined and converted to cloud if at leastfive of its eight neighbors are
cloud pixels. In addition, cloud objects of less than five pixels are
using the geometric and texture features.
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removed from the cloud mask to avoid the influence of small-area
bright impurities. Afterwards, the final cloud mask is generated.

3.2. Cloud shadow detection

Shadows in the land areas of GF-1WFV scenes are extractedwith the
near-infrared band, based on the fact that the dark effect of land shadow
is more obvious in the near-infrared band than in the visible bands. In
contrast, the dark effect is more obvious in the visible bands than in
the near-infrared band for the shadows in water areas (Fig. 7), because
water bodies show stronger absorption in the near-infrared band.
Therefore, all the shadows are located at places with regional minima
due to their relatively darker reflectance in the visible and near-infrared
bands compared to their surroundings. Amorphological transformation
called “fill-hole” (Soille, 2004) (also named “flood-fill” or “fill-minima”)
is applied to extract the local potential shadow areas. The transforma-
tion is defined as the “morphological reconstruction by erosion” of the
input gray image using a marker image which is set to the maximum
value of the input image, except along its borders where the values of
the input image are kept. It brings the intensity values of the dark
areas that are surrounded by lighter areas up to the same intensity
level as the surrounding pixels. The minima regions not connected to
the image border are filled. The holes themselves are then obtained by
subtracting the input gray image from the image whose holes have
been filled. In this case, the areaswhere the intensity difference is great-
er than zero after the transformation are likely to be shadow.

The near-infrared band reflectance and mean visible band reflec-
tance are therefore used as the input of fill-hole to extract shadows in
the land and water areas, respectively. Considering the non-distinctive
reflectance differences between water and shadow in water areas, a
lower threshold is set for the shadow extraction in water areas. Since
pixels are divided into land or water pixels, a rough shadow mask can
be acquired by the following test:

Shadow ¼ fillhole B4ð Þ−B4Nt19 for land areað Þ
fillhole MeanVisð Þ−MeanVisNt20 for water areað Þ

�
ð16Þ

where

MeanVis ¼ B1þ B2þ B3ð Þ=3 ð17Þ
Fig. 7. Comparison of shadows in land and water areas. (a) The RGB composite images (Scene I
land area in a GF-1WFV scene. (f) The RGB composite images (Scene ID: E114.9_N23.5_201410
scene.
Water bodies can be easily detected as shadow, and there is almost
no effective way to separate water from shadow based on their spectral
characteristics (Li et al., 2015d). In order to prevent water bodies from
being wrongly matched as cloud shadow, the geometric features are
used to exclude water objects from the rough shadow mask. For every
object aggregated from the rough shadow mask, the water pixel per-
centage is computed to determine if the object is water or shadow.
FRAC and LWR are also used, considering the fact that somewater bod-
ies such as rivers have higher LWR values. Finally, a shadowmask is ac-
quired in which most of the water bodies are excluded.

Object-based cloud and cloud shadow matching (Zhu & Woodcock,
2012) based on their geometric similarity can be implemented after
the cloud mask and shadow mask are acquired. This technique is
based on the idea that clouds and their shadows have similar geometric
shapes, and the relative direction of cloud shadow can be estimated by
the sun and satellite angles. Firstly, the cloud projection direction on the
ground can be computed from the satellite viewing azimuth and zenith
angles, and the cloud shadow projection direction is related to the solar
azimuth and zenith angles. MFC computes the matching direction from
the cloud to the cloud shadow according to the viewing and solar an-
gles. The cloud height is then set dynamically, based on the statistics,
and is assumed to be from 200 m to 12 km according to the study of
Luo et al. (2008). The cloud height iterates from the minimum to the
maximum to match the cloud object to its shadow, and when the max-
imum similarity is greater than the similarity threshold, the matched
shadow location is labeled as cloud shadow. Finally, considering the
fact that there may be some bias between the matching direction and
the real cloud shadow projection direction, the matched shadow may
not be integral and part of it may be missed, so MFC implements an ob-
ject-based cloud shadow correction process based on the shadow layer
to generate the cloud shadow mask.

The cloud and cloud shadowmatching used in the proposedmethod
is simplified and improved from Fmask (Zhu & Woodcock, 2012), but
the object-based cloud shadow correction is an extra step used for de-
creasing the omission error of the cloud shadow after the cloud and
cloud shadow matching (Fig. 8). It first aggregates the shadow pixels
which are connected in eight neighborhoods to be an object in the
cloud shadow mask and shadow mask, respectively. The overlap areas
in the twomasks for each cloud shadow object are then found. If the ra-
tios of the overlap area to the corresponding shadowobject area and the
current cloud shadow object area are both above the thresholds, then
D: E119.2_N29.3_20130813). (b)–(e) The blue, green, red, and near-infrared bands of the
08). (g)–(j) The blue, green, red, and near-infrared bands of the water area in a GF-1WFV



Fig. 8. Object-based cloud and cloud shadow matching and correction (improved from Fmask).
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the correction condition can be met, and the current cloud shadow ob-
ject location is corrected to the corresponding shadow object location.
The same correction step is repeated for every cloud shadow object.
The original cloud shadow mask and the corrected part of the shadow
layer are then merged to generate the rough cloud shadow mask.

Considering that not all cloud shadows can be matched with their
corresponding clouds because of matching error, cloud shadow refine-
mentwith the guidedfilter is also implemented in the cloud shadowde-
tection, based on the idea that the missed cloud shadows are usually
around the matched cloud shadows. In this case, we apply the guided
filter again to capture the missed cloud shadows after cloud and cloud
shadowmatching and correction. To reduce the inclusion of water bod-
ies or other non-cloud shadow objects in the cloud shadow mask, geo-
metric features are used to check every object in the refined cloud
shadow mask, and to filter the non-cloud shadow objects. More details
are shown in Algorithm 1.Algorithm1Cloud shadow refinement and fil-
tering of non-cloud shadow objects.
Table 2
Recommended parameter settings for the MFC algorithm.

Recommended parameter settings for cloud detection
t1 0.13 t2 0.7 t3 0.07 t4 0.15
t5 0.2 t6 0.2 t7 0.15 t8 0.12
t9 0.08 t10 4E4 t11 1.56 t12 6.3
t13 4E3 t14 5.4 t15 0.02 t16 0.10
t17 0.02 t18 0.03
Recommended parameter settings for cloud shadow detection
t19 0.06 t20 0.01 t21 0.27 t22 1.56
t23 4E4 t24 6.3 t25 400 t26 5.4
Finally, the same strategy is adopted to fill the holes in the cloud
shadow mask. In addition, as previous studies (Braaten et al., 2015;
Harb et al., 2016) have undertaken in the postprocessing step, objects
less than seven pixels generally associated with noise are removed
from the cloud shadow mask, and one pixel dilation is necessary for
the cloud shadow mask to capture the cloud shadows from thin cloud
edges. MFC sets a higher priority for cloud; therefore, a pixel is labeled
as cloud when it is also labeled as cloud shadow.
3.3. Parameter selection analysis

The above parameters in the MFC algorithmwere fixed after a large
number of experiments, and all the experimental results in this paper
were producedwith the same set of parameters. The recommended pa-
rameter settings for theMFC algorithmare provided in Table 2, and they
can be directly applied without adjustment. In comparison, most of the
parameters were also fixed in previous cloud detection methods (Irish
et al., 2006; Zhu & Woodcock, 2012; Braaten et al., 2015) which are
trained by a great deal of data. For instance, there are 32fixed thresholds
and three dynamic thresholds in the ACCA algorithm,which includes 26
specific decisions or filters.

Due to the progressive refinement scheme conducted in the MFC al-
gorithm for cloud and cloud shadow detection, there are different prin-
ciples for the parameter selection in the different steps of MFC. For
example, the principle of parameter selection in the step of initializing
a rough cloud mask is setting slightly stricter thresholds to make sure
that it can exclude almost all the non-cloud impurities. As a result, the
threshold for the HOT index in this step is a little larger than in Fmask.
Furthermore, since the cloud refinement parameters determine how
well the thin clouds are detected, less strict thresholds are recommend-
ed to better refine cloudboundaries. As to the parameters in thefiltering
of non-cloud and non-shadow objects, the parameter settings must en-
sure that the filtering is both effective and makes as few mistakes as
possible. In the postprocessing step, themorphological operation is nec-
essary to improve the cloud and cloud shadowdetection results, and the
parameter settings in this step need to ensure a finer visual effect and
decrease the possible commission and omission errors.
4. Experimental results

4.1. Validation data

To quantitatively evaluate the performance of the MFC algorithm,
108 GF-1 WFV full scenes were selected as validation images, which
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were evenly distributed in the coverage area of GF-1WFV data. The val-
idation images were acquired from May 2013 to August 2016 in differ-
ent global regions. Considering the radiation differences between the
four cameras in the GF-1 WFV imaging system, scenes of all four cam-
eraswere used as experimental data to ensure the adaptability of the al-
gorithm. In addition, the selected images were all level-2A products
which were produced after relative radiometric correction and system-
atic geometric correction. In order to test the performance ofMFC under
different surface conditions, the validation areas covered different land-
cover types, including forest, barren, ice/snow, water, wetlands, urban
areas, etc. The locations of these globally distributed validation scenes
are shown in Fig. 9.

Since ground observations of cloud and cloud shadow are usually
unavailable, it is difficult to perform an accurate quantitative validation.
Therefore, the reference masks for the accuracy evaluation in this study
were obtained by manually drawing cloud/cloud shadow borders after
visual inspection by experienced users. Similar approaches have been
applied in previous studies of cloud detection (Irish et al., 2006;
Scaramuzza et al., 2012) to acquire the reference masks for accuracy
evaluation. In the process of delineating the cloud and cloud shadow
mask, we first make the green, red, and near-infrared bands of the orig-
inal image into a 24-bit color image. Themagic wand tool and lasso tool
in Adobe Photoshop are then used tomark the locations of the cloud and
cloud shadow in the image. Finally, the reference mask is generated by
setting the DN values of the cloud, cloud shadow, clear-sky, and non-
value pixels to 255, 128, 1, and 0, respectively. Note that a tolerance of
5–30 is set when using the magic wand tool, and the lasso tool is used
to modify the area that cannot be correctly selected by the magic
wand tool. The thin clouds are labeled as cloud if they are visually iden-
tifiable and the underlying surface can't be seen clearly.

According to the comparisons of the delineatedmasks for a subset of
10 images, the mean and mean greatest differences of the cloud frac-
tions of the masks produced by six analysts were 3.78% and 8.17%, re-
spectively, and a largest difference of 25.88% was found in a scene
which was covered by very thin cloud. Manually drawing the reference
Fig. 9. Global distribution of the validation data (base map credit: NASA Visible Earth). The data
Resources Satellite Data and Application (CRESDA) (http://www.cresda.com).
masks for the validation imagery is a time-consuming task. Unavoidable
manual drawing errors and minor differences in defining cloud bound-
aries may lead to a small amount of bias in the accuracy assessment.
However, if enough pixels are involved in the accuracy evaluation, this
source of bias can be reduced. The 108 globally distributed images and
their reference masks used for the method validation in this paper
have been made available online (http://sendimage.whu.edu.cn/en/
mfc-validation-data/).

4.2. Cloud fraction estimation

As an indicator of image quality and availability, the cloud fraction of
a single scene is also important in practical applications. Hence, in addi-
tion to the pixel-scale evaluation, the accuracy of the cloud fraction es-
timation can also be used to evaluate the performance of cloud
detection algorithms. The cloud fraction denotes the cloud cover per-
centage in the imagery as a whole. In the header file of GF-1WFV imag-
ery, there is a parameter which indicates the cloud fraction. In this
section, the cloud fraction in the header file is compared with the
cloud fraction estimated by MFC. The cloud fractions derived from the
header files, the reference masks, and the MFC masks are used for the
comparison. The mean absolute error (MAE) and the mean relative
error (MRE) are used as indicators for the error calculation:

MAE ¼ 1
n
∑
n

i¼1
jPR ið Þ−PM ið Þj ð18Þ

MRE ¼ 1
n
∑
n

i¼1
jPR

ið Þ−PM ið Þj
PR ið Þ ð19Þ

where PR(i) and PM(i) denote the cloud fractions, and n is the number of
images used for the accuracy evaluation.

The method used by the data distributor to provide the cloud cover
percentage information in the header file of GF-1 WFV imagery is re-
ferred to as the “official method” in this paper. However, as the official
coverage information for the GF-1 WFV imagery was obtained from the China Centre for

http://sendimage.whu.edu.cn/en/mfc-validation-data/
http://sendimage.whu.edu.cn/en/mfc-validation-data/
http://www.cresda.com


Fig. 11. Distributions of the MFC cloud overall accuracies.
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method is not public, the proposed method can only be quantitatively
compared to the official method in cloud fraction estimation on the
whole.

The cloud fractions estimated by MFC are more accurate than the
cloud fractions estimated by the official method, according to the accu-
racy evaluation results. The MAE of the cloud fraction estimation in the
validation images is reduced from 0.109 for the official method to 0.027
for MFC, and the MRE also shows a significant decrease from 0.722 to
0.198. In addition, Fig. 10 compares the cloud fractions derived from
the official method and the MFC masks with the reference cloud frac-
tions. The R-square and root mean square error (RMSE) of the linear
fit between the MFC cloud cover and the reference cloud cover are
0.951 and 5.25%, which is a better fit than the official cloud cover and
reference cloud cover, whose R-square and RMSE are 0.648 and
13.08%, which indicates that MFC shows a significant improvement in
cloud fraction estimation over the official method.

Through the comparison with the cloud fractions derived from the
referencemasks, it can be seen that the officialmethodmostly underes-
timates the cloud cover percentage, and the cloud fractions derived
from the MFC masks are in closer agreement with the reference masks.

4.3. Cloud and cloud shadow distribution detection

The accuracy assessment for the cloud and cloud shadow distribu-
tion measures the agreements and differences between the cloud and
cloud shadow in the MFC masks and the reference masks on a per-
pixel basis. For the accuracy evaluation of the cloud detection, cloud
and non-cloud pixels are considered as two classes, as are the cloud
shadow and non-cloud shadow pixels for the cloud shadow accuracy
evaluation.

The average cloud overall accuracy ofMFC is 96.80%, and the average
producer's accuracy and user's accuracy are 88.30% and 92.05%, respec-
tively. It should be noted that a low cloud cover percentage in a scene
may cause an apparent reduction in the producer's accuracy and user's
accuracy, even when there are only a few disagreements between the
MFC mask and the reference mask. Here, if the validation images
whose cloud fractions are lower than 5% are not included in the cloud
accuracy evaluation, the average producer's accuracy and user's accura-
cy are 90.11% and 96.15%, based on 84 images, respectively. Further-
more, according to the histogram of the MFC cloud overall accuracies
which are shown in Fig. 11, over 98% of the validation images have an
overall accuracy of more than 80%. The two images whose cloud overall
accuracies are less than 80% are presented in Fig. 17 and analyzed in
Section 5.2. The false detection of large-area snow and bright water
Fig. 10. Distributions of cloud cover derived from the official method, MFC, and references. (a)
cloud cover between MFC and references.
bodies leads to most of the cloud commission errors, while MFC
achieves a lower cloud producer's accuracy than user's accuracy because
of missing very thin clouds which are far away from the core cloud
regions.

The MFC algorithm performs less accurately in cloud shadow detec-
tion, as the average cloud shadow producer's accuracy and user's accu-
racy are 76.23% and 76.14%, respectively. It should, however, be noted
that the 98.88% overall accuracy of cloud shadow detection may be in-
sufficient to represent all cases because of the low average cloud shad-
ow percentage of 3.53% found in the validation images. Thus, all the
valid pixels in all the images can be combined to calculate the cloud
shadow accuracies, to eliminate the influence of the cloud shadow frac-
tions, which vary across the validation images. The results suggest that
there are 3.56% cloud shadowpixels found in all the valid pixels, and the
overall accuracy, producer's accuracy, and user's accuracy of cloud shad-
ow are 98.80%, 82.62%, and 83.47%, respectively. Fig. 12 compares the
cloud shadow fractions derived from theMFCmasks with the reference
cloud fractions. Although there are agreements between the MFC cloud
shadow cover and the reference cloud shadow cover, due to the low
fractions of cloud shadow compared to cloud in a scene, even a few
cloud shadow commission or omission errors will lead to an apparent
reduction in cloud shadow producer's accuracy or user's accuracy.
Here, if the validation images whose cloud shadow fraction are less
Comparison of cloud cover between official cloud cover and references. (b) Comparison of



Fig. 12. Distributions of the cloud shadow cover obtained by MFC and the references.
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than 2% in the reference masks are not considered in the cloud shadow
accuracy calculation, the average cloud shadowproducer's accuracy and
user's accuracy are 80.33% and 84.95%, based on 71 images, respectively.
Themain errors in the cloud shadowmasks obtained byMFC come from
the false detection of terrain shadows, and themissing of cloud shadows
cast by thin clouds which are not dark enough.

In general, MFC achieves very high accuracies in vegetation regions
such as forest and grasslands, and also performs well in barren, urban,
and water areas, except for a few commission errors with bright land
surfaces and the omission of thin clouds. However, the performance of
MFC in snow/ice covered areas is not satisfactory, because it misclas-
sifies large-area snow objects as clouds. By comparing the results of
MFC with the false-color composite images (Fig. 13) in different global
regions, it is possible to visually appreciate the strong ability of MFC to
detect clouds, and also its deficiency in cloud shadow detection.

Since the MFC algorithm performs well in cloud detection for GF-1
WFV imagery, a contrastive analysis can be undertaken with the cloud
detection results of other sensors. Recently, cloud detection for Landsat
imagery has been widely studied (Irish et al., 2006; Zhu & Woodcock,
2012; Goodwin et al., 2013; Harb et al., 2016). Moreover, the GF-1
WFV sensor and Landsat ETM+ sensor have similar spectral settings
in the first four bands. Hence, we can conduct a contrastive analysis be-
tween cloud detection for GF-1 WFV imagery and cloud detection for
Landsat ETM+ imagery. The state-of-the-art Fmask cloud detection
method (Zhu &Woodcock, 2012) utilizes seven bands in Landsat imag-
ery, and has been reported as achieving a cloud overall accuracy,
producer's accuracy, and user's accuracy of 96.41%, 92.10%, and
89.40%, respectively, which was validated with 142 globally distributed
images. Despite the fact that the MFC algorithm only uses information
from three visible bands and one near-infrared band, it is close to
Fmask in cloud detection accuracy, and is superior in cloud shadow de-
tection. Note that MFC not only uses the spectral features to identify
cloud pixels, but also refines the masks by considering the spatial infor-
mation, and combines geometric features with texture features to im-
prove the results. Although the MFC algorithm only uses four spectral
bands, it is implemented with multiple features and achieves a high ac-
curacy with limited spectral bands.

5. Discussion

5.1. Fast cloud fraction estimation

To meet the different application requirements, “fast-mode” MFC
can be implemented to rapidly estimate the cloud fraction in an
image. This method can very quickly generate a rough cloud mask for
a single GF-1 WFV scene (about 17,000 × 16,000 pixels), while the
“precise-mode” MFC usually needs more time. The main difference be-
tween the two modes is the different ratios of downsampling for the
original scene. Fast-mode MFC downsamples the original scene to a
smaller size than precise-mode MFC. Furthermore, the cloud shadow
detection procedure is discarded in fast mode to save processing time.

An acceleration strategy which downsamples the original image to
save processing time is very common in image processing, and the
scale of the downsampling is the key factor in this strategy. Different
downsampling scales were tested in MFC. A comparison between the
MFC masks obtained with different downsampling scales for the input
scene is shown in Fig. 14. The MAE for the cloud fraction estimation,
the commission and omission rates at a pixel scale, and the costs are
the indicators chosen to measure the effect of the different scales
(Fig. 15). Note that, in order to better compare the results for different
downsampling scales, the images which are covered by large areas of
snow are not included in the test imagery in this section. Moreover, an
appropriate scale can be decided only if it results in an apparent reduc-
tion in computational cost with only a slight accuracy sacrifice. Thus,
considering the comprehensive influence of the acceleration strategy,
the default subsampling ratio is set to 2 for the precise mode instead
of the original size. This leads to an obvious improvement in the pro-
cessing speed and only a slight reduction in the accuracy. Finally, a sub-
sampling ratio of 6 is recommended for the fast mode, because it
maintains a good balance between the processing time and accuracy
for the cloud fraction estimation.

The fast-mode MFC has apparent advantages because of the fast
cloud fraction estimation, and it can provide more accurate results
than the cloud fraction results provided by the official method in the
header file. Precise-mode MFC, instead, aims at providing a pixel-scale
precise cloud and cloud shadow mask which can be used for cloud
and cloud shadow removal, land-cover change detection, and so on.
The computational cost of MFC is low: our experimental program was
coded in C++ language and run in parallel on a laptop with an Intel
Core i5-4210MCPU.MFC takes less than 30 s to estimate the cloud frac-
tion, and 3–5 min to generate a precise cloud and cloud shadow mask
for one GF-1 WFV scene. As a result of this good performance and effi-
ciency, it is expected that MFC will be used for automatic cloud and
cloud shadow detection for more newly produced GF-1 WFV images
in the National Land Resources Monitoring Program of China.
5.2. Limitations

There are still some errors in themasks generated byMFC, due to the
limitations of the algorithm. Specifically, because the object filtering
procedure directly skips the check of large-area objects to prevent seri-
ous omission errors, and some non-cloud bright objects may have only
minor differences with cloud objects in both geometric and texture fea-
tures, there might still be some non-cloud bright objects in the cloud
masks. This is especially true for wide snow-covered areas and bright
water bodies. In addition, thin clouds which are far away from the cap-
tured core cloud regions can be easilymissed byMFC in some cases, due
to the limitation of the window size in the step of cloud mask refine-
ment, in which thin clouds are detected only if they are within the win-
dows of the core cloud regions. According to the accuracy statistics in
different land-cover types (Fig. 16), based on the global MODIS land-
cover product, cloud overall accuracies in snow/ice covered areas are
low and a mean cloud overall accuracy of 65.08% is acquired, due to
the fact that snow/ice objects are not completely separated from clouds,
which leads to the commission errors. The accuracy statistic results also
suggest that MFC generally performs well, except for snow/ice covered
areas, as the mean cloud overall accuracies in areas of vegetation, wet-
lands, urban, barren, andwater are all above 95%. Fig. 17 provides exam-
ples of cloud detection errors in areas covered by snow/ice and
containing thin clouds, in which the two poorest-performing scenes
which have the lowest cloud overall accuracy are shown.



Fig. 13. Example GF-1 WFV scenes and masks produced by the MFC algorithm.
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Fig. 14. Comparison between the MFCmasks acquired with different downsampling scales for the input scene. (a) RGB composite image. (b) The mask acquired without downsampling,
i.e., scale = 1. (c) Scale = 2. (d) Scale = 4. (e) Scale = 8. (f) Scale = 16.
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As for cloud shadow detection, terrain shadow and water bodies
around clouds are easily misclassified as cloud shadows when they
have low reflectance in the near-infrared band. Although a more accu-
rate cloud shadowmask can be acquired after the cloud shadow correc-
tion process most of the time, the correction process may increase the
cloud shadow commission error when the cloud shadows are connect-
ed with terrain shadow or water bodies which are not excluded from
the potential shadow layer.

A further source of uncertainty is that the radiometric calibration
coefficients for GF-1 WFV imagery are not stable over a whole year
(Yang et al., 2015) because the cameras on the WFV imaging system
are not state-of-the-art instruments. Likewise, the radiometric
calibration parameters for GF-1 imagery used in the MFC algorithm
are not absolutely accurate over time. As a result of the radiometric
calibration error, the cloud and water reflectance in different scenes
are not always the same, whichmay lead to errors in water and cloud
detection. Furthermore, due to the large view angle of the WFV
imaging system, it may require different thresholds for different
angles, especially in the process of cloud and cloud shadow
matching, because the estimated relative direction between clouds
and cloud shadows may not always be accurate for the entire
scene. However, these kinds of influences can be decreased since
the cloud shadow correction process is conducted after the cloud
shadow matching. Although the study of Feng et al. (2016) revealed
the uncertainty of the radiometric calibration in GF-1 WFV imagery
acquired by both the close-nadir and off-nadir cameras, the cloud
and cloud shadow accuracy for different camera images taken from
different viewing angles is only slightly different, according to the
accuracy analysis of the validation images. This means that the
recommended thresholds can be well adapted for different WFV
camera images after radiometric calibration.
6. Conclusions

In general, it is hard to obtain satisfactory results for cloud and cloud
shadow detection when using images which only include visible and
near-infrared spectral bands. As a result of the insufficient spectral in-
formation of GF-1 WFV imagery for cloud and cloud shadow detection,
thin clouds are difficult to capture, and non-cloud bright objects are fre-
quently labeled as “cloud” in the cloudmask. In the proposedmethod, a
local optimization strategy with guided filtering is implemented to cap-
ture the thin clouds around cloud boundaries and decrease the cloud
omission error. Moreover, the geometric features are used in combi-
nation with texture features to reduce the commission errors by ex-
cluding non-cloud bright objects from the cloud mask, non-shadow
objects from the shadow mask, and non-cloud shadow objects from
the cloud shadow mask. To some degree, the use of multiple spatial
features, such as geometric and texture features, makes up for the
deficiency of the spectral information for cloud and cloud shadow
detection in GF-1 WFV imagery. In conclusion, the proposed MFC
method is promising, it performs well under most land-cover condi-
tions, especially in vegetation-covered areas, and achieves a high
accuracy with limited spectral bands. In particular, MFC shows a
much better performance in terms of cloud fraction estimation
than the official method. As a result, the proposed method is to be
used as a preprocessing step of producing clear-sky images for
land-cover change monitoring in the National Land Resources
Monitoring Program of China.

Due to the fact that there are only visible and near-infrared bands in-
volved, the framework of cloud and cloud shadow detection proposed
in this papermay also be applicable to other types of optical satellite im-
agery. However, without altering the algorithm's parameters, differ-
ences in the spectral settings and spectral response of a given satellite



Fig. 15. Accuracy loss and computational costs for different downsampling scales. (a) The relationship between the MAE of fast cloud fraction estimation and different downsampling
scales. (b) The commission rate in cloud detection with different downsampling scales. (c) The omission rate in cloud detection with different downsampling scales. (d) The
relationship between the computational costs and different downsampling scales.
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mean that the algorithmmay not be cross-compatible when applied to
imagery acquired by other sensors. Additionally, in order to let re-
searchers benefit from our work, the software tool and GF-1 data used
Fig. 16.Distributions of theMFC cloud overall accuracies across scenes in different land-cover ty
for each land-cover type equals 1.
for the method validation in this paper have been made available on
our website (http://sendimage.whu.edu.cn/en/mfc/). In our future
study, the general framework of cloud and cloud shadow detection
pes. The interval of 5% is set in the accuracy statistics, and the sum of the frequency values

http://sendimage.whu.edu.cn/en/mfc/


Fig. 17. The two images which have the lowest cloud overall accuracy in the accuracy evaluation. (a) False-color composite image (Scene ID: E26.9_S9.4_20130510) and MFC mask, in
which only parts of the small-area snow objects are excluded, while most of the snow objects are misclassified as cloud. (b) False-color composite image (Scene ID:
E77.8_N36.0_20150724) and MFC mask, in which thin clouds far away from the core cloud regions are missed.
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proposed in this paper will be extended to other optical satellite imag-
ery which has a similar spectral setting.
Acknowledgements

This research was supported by the National Natural Science Foun-
dation of China (41422108) and the Cross-disciplinary Collaborative
Teams Program for Science, Technology and Innovation of the Chinese
Academy of Sciences. The GF-1 WFV images used in this paper were
provided by the China Centre for Resources Satellite Data and Applica-
tion (CRESDA) and the China Land Surveying and Planning Institute
(CLSPI). We would also like to gratefully thank the authors of Fmask
for the source code of the Fmask algorithm, which is a good reference
for MFC. Thanks also to the editors and three anonymous reviewers
for providing the valuable comments, which helped to greatly improve
the manuscript.

References

Bian, J., Li, A., Jin, H., Zhao, W., Lei, G., Huang, C., 2014. Multi-temporal cloud and snow de-
tection algorithm for the HJ-1A/B CCD imagery of China. 2014 IEEE International Geo-
science and Remote Sensing Symposium (IGARSS), pp. 501–504.

Braaten, J.D., Cohen, W.B., Yang, Z., 2015. Automated cloud and cloud shadow identifica-
tion in Landsat MSS imagery for temperate ecosystems. Remote Sens. Environ. 169,
128–138.

Chen, N., Li, J., Zhang, X., 2015b. Quantitative evaluation of observation capability of GF-1
wide field of view sensors for soil moisture inversion. J. Appl. Remote. Sens. 9, 97097.

Chen, S., Chen, X., Chen, J., Jia, P., Cao, X., Liu, C., 2015a. An iterative haze optimized trans-
formation for automatic cloud/haze detection of Landsat imagery. IEEE Trans. Geosci.
Remote Sens. 54, 2682–2694.

Cheng, H., Yu, C., 2015. Multi-model solar irradiance prediction based on automatic cloud
classification. Energy 91, 579–587.

Cheng, Q., Shen, H., Zhang, L., Yuan, Q., Zeng, C., 2014. Cloud removal for remotely sensed
images by similar pixel replacement guided with a spatio-temporal MRF model.
ISPRS J. Photogramm. Remote Sens. 92, 54–68.

Di Vittorio, A.V., Emery, W.J., 2002. An automated, dynamic threshold cloud-masking al-
gorithm for daytime AVHRR images over land. IEEE Trans. Geosci. Remote Sens. 40,
1682–1694.

Feng, L., Li, J., Gong, W., Zhao, X., Chen, X., Pang, X., 2016. Radiometric cross-calibration of
Gaofen-1 WFV cameras using Landsat-8 OLI images: a solution for large view angle
associated problems. Remote Sens. Environ. 174, 56–68.
Fisher, A., 2014. Cloud and cloud-shadow detection in SPOT5 HRG imagery with automat-
ed morphological feature extraction. Remote Sens. 6, 776–800.

Goodwin, N.R., Collett, L.J., Denham, R.J., Flood, N., Tindall, D., 2013. Cloud and cloud shad-
ow screening across Queensland, Australia: an automated method for Landsat TM/
ETM+ time series. Remote Sens. Environ. 134, 50–65.

Hagolle, O., Huc, M., Pascual, D.V., Dedieu, G., 2010. A multi-temporal method for cloud
detection, applied to FORMOSAT-2, VENμS, LANDSAT and SENTINEL-2 images. Re-
mote Sens. Environ. 114, 1747–1755.

Harb, M., Gamba, P., Dell Acqua, F., 2016. Automatic delineation of clouds and their
shadows in Landsat and CBERS (HRCC) data. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 9, 1532–1542.

He, K., Sun, J., Tang, X., 2013. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell.
35, 1397–1409.

Hu, X., Wang, Y., Shan, J., 2015. Automatic recognition of cloud images by using visual sa-
liency features. IEEE Geosci. Remote Sens. Lett. 12, 1760–1764.

Huang, C., Thomas, N., Goward, S.N., Masek, J.G., Zhu, Z., Townshend, J.R., Vogelmann, J.E.,
2010. Automatedmasking of cloud and cloud shadow for forest change analysis using
Landsat images. Int. J. Remote Sens. 31, 5449–5464.

Hughes, M., Hayes, D., 2014. Automated detection of cloud and cloud shadow in single-
date Landsat imagery using neural networks and spatial post-processing. Remote
Sens. 6, 4907–4926.

Irish, R.R., 2000. Landsat 7 science data users handbook. National Aeronautics and Space
Administration, Report. 2000, pp. 415–430.

Irish, R.R., Barker, J.L., Goward, S.N., Arvidson, T., 2006. Characterization of the Landsat-7
ETM+ automated cloud-cover assessment (ACCA) algorithm. Photogramm. Eng. Re-
mote. Sens. 72, 1179–1188.

Khlopenkov, K.V., Trishchenko, A.P., 2007. SPARC: new cloud, snow, and cloud shadow
detection scheme for historical 1-km AVHHR data over Canada. J. Atmos. Ocean.
Technol. 24, 322–343.

Le Hégarat-Mascle, S., André, C., 2009. Use of Markov random fields for automatic cloud/
shadow detection on high resolution optical images. ISPRS J. Photogramm. Remote
Sens. 64, 351–366.

Li, J., Chen, X., Tian, L., Huang, J., Feng, L., 2015a. Improved capabilities of the Chinese high-
resolution remote sensing satellite GF-1 for monitoring suspended particulate matter
(SPM) in inlandwaters: radiometric and spatial considerations. ISPRS J. Photogramm.
Remote Sens. 106, 145–156.

Li, P., Dong, L., Xiao, H., Xu, M., 2015b. A cloud image detectionmethod based on SVM vec-
tor machine. Neurocomputing 169, 34–42.

Li, Q., Wang, H., Zhang, H., Du, X., Zhao, L., Li, D., Yu, H., 2015c. Agricultural produc-
tion investigation using GF-1 CCD data in Beijing-Tianjin-Hebei region. 2015
Fourth International Conference on Agro-Geoinformatics (Agro-geoinformatics),
pp. 188–191.

Li, S., Sun, D., Goldberg, M.E., Sjoberg, B., 2015d. Object-based automatic terrain shadow
removal from SNPP/VIIRS flood maps. Int. J. Remote Sens. 36, 5504–5522.

Li, X., Shen, H., Zhang, L., Zhang, H., Yuan, Q., Yang, G., 2014. Recovering quantitative
remote sensing products contaminated by thick clouds and shadows using
multitemporal dictionary learning. IEEE Trans. Geosci. Remote Sens. 52,
7086–7098.

http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0005
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0005
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0005
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0010
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0010
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0010
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0015
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0015
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0020
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0020
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0020
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0025
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0025
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0030
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0030
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0030
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0035
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0035
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0035
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0040
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0040
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0040
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0045
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0045
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0050
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0050
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0050
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0050
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0055
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0055
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0055
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0060
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0060
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0060
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0065
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0065
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0070
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0070
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0075
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0075
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0080
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0080
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0080
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0085
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0085
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0090
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0090
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0090
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0090
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0095
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0095
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0095
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0100
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0100
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0100
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0105
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0105
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0105
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0105
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0110
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0110
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0115
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0115
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0115
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0115
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0120
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0120
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0125
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0125
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0125
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0125


358 Z. Li et al. / Remote Sensing of Environment 191 (2017) 342–358
Lin, C.H., Lin, B.Y., Lee, K.Y., Chen, Y.C., 2015. Radiometric normalization and cloud detec-
tion of optical satellite images using invariant pixels. ISPRS J. Photogramm. Remote
Sens. 106, 107–117.

Liu, S., Zhang, L., Zhang, Z., Wang, C., Xiao, B., 2015. Automatic cloud detection for all-sky
images using superpixel segmentation. IEEE Geosci. Remote Sens. Lett. 12, 354–358.

Lu, C., Bai, Z., 2015. Characteristics and typical applications of GF-1 satellite. 2015 IEEE In-
ternational Geoscience and Remote Sensing Symposium (IGARSS), pp. 1246–1249.

Luo, Y., Trishchenko, A., Khlopenkov, K., 2008. Developing clear-sky, cloud and cloud
shadow mask for producing clear-sky composites at 250-meter spatial resolution
for the seven MODIS land bands over Canada and North America. Remote Sens. Envi-
ron. 112, 4167–4185.

McGarigal, K., Marks, B.J., 1995. FRAGSTATS: spatial pattern analysis program for quanti-
fying landscape structure. Gen. Tech. Rep. PNW-GTR-351. US Department of Agricul-
ture, Forest Service, Pacific Northwest Research Station.

Meyer, P., Itten, K.I., Kellenberger, T., Sandmeier, S., Sandmeier, R., 1993. Radiometric cor-
rections of topographically induced effects on Landsat TM data in an alpine environ-
ment. ISPRS J. Photogramm. Remote Sens. 48, 17–28.

Ojala, T., Pietikäinen, M., Harwood, D., 1994. Performance evaluation of texture measures
with classification based on Kullback discrimination of distributions. Proceedings of
the 12th IAPR International Conference on Pattern Recognition, pp. 582–585.

Ojala, T., Pietikäinen, M., Mäenpää, T., 2002. Multiresolution gray-scale and rotation in-
variant texture classification with local binary patterns. IEEE Trans. Pattern Anal.
Mach. Intell. 24, 971–987.

Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE Trans. Sys.
Man Cybern. 9, 62–66.

Platnick, S., King, M.D., Ackerman, S.A., Menzel, W.P., Baum, B.A., Riedi, J.C., Frey, R.A.,
2003. The MODIS cloud products: algorithms and examples from terra. IEEE Trans.
Geosci. Remote Sens. 41, 459–473.

Scaramuzza, P.L., Bouchard, M., Dwyer, J.L., 2012. Development of the Landsat data conti-
nuity mission cloud-cover assessment algorithms. IEEE Trans. Geosci. Remote Sens.
50, 1140–1154.

Shen, H., Li, H., Qian, Y., Zhang, L., Yuan, Q., 2014. An effective thin cloud removal proce-
dure for visible remote sensing images. ISPRS J. Photogramm. Remote Sens. 96,
224–235.

Soille, P., 2004. Morphological Image Analysis: Principles and Applications. Springer-
Verlag, Berlin, Germany, p. 208.

Tao, D., Li, X., Wu, X., Maybank, S.J., 2007. General tensor discriminant analysis and gabor
features for gait recognition. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1700–1715.

Vermote, E., Saleous, N., 2007. LEDAPS Surface Reflectance Product Description. University
of Maryland Department of Geography, College Park.
Vivone, G., Addesso, P., Conte, R., Longo, M., Restaino, R., 2014. A class of cloud detection
algorithms based on a map-mrf approach in space and time. IEEE Trans. Geosci. Re-
mote Sens. 52, 5100–5115.

Wang, L., Yang, R., Tian, Q., Yang, Y., Zhou, Y., Sun, Y., Mi, X., 2015. Comparative analysis of
GF-1 WFV, ZY-3 MUX, and HJ-1 CCD sensor data for grassland monitoring applica-
tions. Remote Sens. 7, 2089–2108.

Xia, G., Delon, J., Gousseau, Y., 2010. Shape-based invariant texture indexing. Int.
J. Comput. Vis. 88, 382–403.

Xie, H., Luo, X., Xu, X., Pan, H., Tong, X., 2016. Evaluation of Landsat 8 OLI imagery for un-
supervised inland water extraction. Int. J. Remote Sens. 37, 1826–1844.

Yang, A., Zhong, B., Lv, W., Wu, S., Liu, Q., 2015. Cross-calibration of GF-1/WFV over a de-
sert site using Landsat-8/OLI imagery and ZY-3/TLC data. Remote Sens. 7,
10,763–10,787.

Zeng, C., Shen, H., Zhang, L., 2013. Recovering missing pixels for Landsat ETM + SLC-off
imagery using multi-temporal regression analysis and a regularization method. Re-
mote Sens. Environ. 131, 182–194.

Zhang, Q., Xiao, C., 2014. Cloud detection of RGB color aerial photographs by progressive
refinement scheme. IEEE Trans. Geosci. Remote Sens. 11, 7264–7275.

Zhang, Y., Guindon, B., Cihlar, J., 2002. An image transform to characterize and compen-
sate for spatial variations in thin cloud contamination of Landsat images. Remote
Sens. Environ. 82, 173–187.

Zhang, Y., Guindon, B., Li, X., 2014. A robust approach for object-based detection and ra-
diometric characterization of cloud shadow using haze optimized transformation.
IEEE Trans. Geosci. Remote Sens. 52, 5540–5547.

Zhang, Y., Rossow, W.B., Lacis, A.A., Oinas, V., Mishchenko, M.I., 2004. Calculation of radi-
ative fluxes from the surface to top of atmosphere based on ISCCP and other global
data sets: refinements of the radiative transfer model and the input data.
J. Geophys. Res. Atmos. 109.

Zhu, Z., Wang, S., Woodcock, C.E., 2015. Improvement and expansion of the Fmask algo-
rithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2
images. Remote Sens. Environ. 159, 269–277.

Zhu, Z., Woodcock, C.E., 2012. Object-based cloud and cloud shadow detection in Landsat
imagery. Remote Sens. Environ. 118, 83–94.

Zhu, Z., Woodcock, C.E., 2014. Automated cloud, cloud shadow, and snow detection in
multitemporal Landsat data: an algorithm designed specifically for monitoring land
cover change. Remote Sens. Environ. 152, 217–234.

http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0130
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0130
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0130
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0135
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0135
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0140
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0140
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0145
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0145
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0145
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0145
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0150
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0150
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0150
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0155
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0155
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0155
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0160
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0160
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0160
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0165
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0165
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0165
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0170
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0170
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0175
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0175
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0180
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0180
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0180
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0185
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0185
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0185
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0190
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0190
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0195
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0195
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0200
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0200
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0205
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0205
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0205
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0210
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0210
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0210
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0215
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0215
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0220
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0220
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0225
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0225
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0225
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0230
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0230
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0230
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0235
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0235
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0240
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0240
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0240
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0245
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0245
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0245
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0250
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0250
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0250
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0250
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0255
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0255
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0255
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0260
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0260
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0265
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0265
http://refhub.elsevier.com/S0034-4257(17)30038-X/rf0265

	Multi-�feature combined cloud and cloud shadow detection in GaoFen-�1 wide field of view imagery
	1. Introduction
	2. Background
	3. The MFC algorithm
	3.1. Cloud detection
	3.1.1. Initializing a rough cloud mask using the spectral features
	3.1.2. Refining the cloud boundaries using guided filtering
	3.1.3. Filtering the non-cloud bright objects using geometric and texture features
	3.1.3.1. Geometric features
	3.1.3.2. Texture features


	3.2. Cloud shadow detection
	3.3. Parameter selection analysis

	4. Experimental results
	4.1. Validation data
	4.2. Cloud fraction estimation
	4.3. Cloud and cloud shadow distribution detection

	5. Discussion
	5.1. Fast cloud fraction estimation
	5.2. Limitations

	6. Conclusions
	Acknowledgements
	References


