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Abstract Total ozone data from the Aura Ozone Monitoring Instrument (OMI) play an important role in the
monitoring of the spatial distribution and temporal change of total ozone. However, since September 2005,
and especially after mid-2006, due to row anomalies in the OMI instrument, one third to one half of the OMI
total ozone data has been missing. In this study, we generate a spatially continuous and daily global total
ozone product (2004-2014) by quantitatively reconstructing the level 3 (gridded) total ozone data via a new
two-step method, which takes full advantage of the temporal and spatial correlation characteristics. First, a
preliminary prediction is made based on an adaptive weighted temporal fitting method. Residual correction
based on an anisotropic kriging method is then proposed to further improve the prediction accuracy. To
assess the efficacy of the proposed method, a comparison of different gap filling algorithms through a series
of simulated experiments was performed. On this basis, we further evaluated the proposed product with
Brewer spectrophotometers’ total ozone columns. The evaluation results suggest that the proposed method
outperforms the other algorithms, and its product is better able to capture total ozone variation than the
MERRA-2 assimilated ozone product. The total ozone product produced in this study can be freely
downloaded from http://sendimage.whu.edu.cn/send-resource-download/.

1. Introduction

Ozone, a trace gas in the Earth’s atmosphere, has a very important influence on the atmospheric environment
and ecological system. First of all, ozone in the stratosphere gathers together to form the ozone layer, which
acts as a natural sunscreen to protect the planet’s surface by absorbing the harmful wavelengths of incoming
solar ultraviolet (UV) radiation [Hartley, 1880]. In the early 1980s, scientists began to realize that the Earth’s
natural sunscreen was thinning dramatically over the Antarctic, which came to be known as the ozone hole
[Herman et al., 1993; Loyola et al., 2009; Staehelin et al., 2001]. Countries across the world woke up and nego-
tiated the 1987 Montreal Protocol, an international treaty to prevent a further thinning of the ozone layer and
lead to a gradual recovery in the next decades [Hadjinicolaou et al., 2005; Kiesewetter et al., 2010]. On the other
hand, when near to the Earth’s surface, relatively high concentrations of ozone are a great threat to human
health [Bell et al., 2006; Jerrett et al., 2009; Lippmann, 1989; White et al., 1994] and ecosystems [Heck et al., 1982;
Reich and Amundson, 1985]. It is especially true that surface ozone and the impact of ozone pollution are pro-
jected to increase in most nations over the next few decades [Jain et al., 2005; Kulkarni et al., 2010; Riahi et al.,
2007]. In addition, ozone plays a very important role in global climate and environmental change
[Ramanathan et al., 1976, 1985] because it is an indispensable component of the atmosphere, and it affects
processes both in the troposphere and stratosphere, such as atmosphere dynamics, thermodynamics, and
radiation-chemical processes. Therefore, research into the spatial distribution and temporal change of ozone
is of great significance.

To monitor the spatial distribution and temporal change of ozone, we need long time series total ozone data
sets with a global spatial distribution. Satellite data can meet these requirements, with a high accuracy and
precision [Loyola et al., 2009]. Since the 1970s, space-based measurement of the ozone column has been per-
formed by the solar backscatter ultraviolet and Total Ozone Mapping Spectrometer (TOMS) series of instru-
ments [Bhartia et al., 2004; Wellemeyer et al., 2004]. More recently, NASA’s Ozone Monitoring Instrument
(OMI) [Levelt et al., 2006] on board the Aura satellite has replaced TOMS. These instruments provide daily
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backscattered solar UV radiation measurements that can be used to retrieve column ozone values and other
geophysical atmospheric parameters. The OMI is the first of a new generation of spaceborne spectrometers
combining a high spatial resolution with a daily global coverage. Monitoring the ozone layer [Chipperfield
et al, 2003] and detecting tropospheric ozone pollution at a regional scale [Fishman et al., 1990] are the
top priorities for the OMI. However, as early as September 2005, and especially after mid-2006, the OMI mea-
surement began to be gradually impacted by “row anomaly” artifacts. On 24 January 2009, the obstruction
suddenly increased and now partially blocks an increased proportion of the field of view for certain Aura
orbits, which has adversely affected between one third to one half of the ozone measurements [Yan et al.,
2012]. Since 5 July 2011, row anomalies now affect all the Aura orbits and can be seen as thick white stripes
of bad data in the OMI total ozone data. More detailed technical information about the “OMI row anomaly”
issue is available at http://www.knmi.nl/omi/research/product/rowanomaly-background.php.

The deterioration in the data quality resulting from the OMI instrument anomalies has become a major obsta-
cle for the monitoring of total ozone data. There is therefore a clear need for an effective methodology to
reconstruct the missing information in the degraded data. Data assimilation is an alternative approach for
the reconstruction of OMI missing information on synoptic time scales. For example, Wargan et al.[2015] per-
formed data assimilation to generate the MERRA-2 assimilated ozone product at a horizontal resolution of
0.5°x 0.625° (latitude x longitude), with a global coverage. Clearly, this assimilated product has a lower spatial
resolution, and an underlying difficulty is that models containing atmospheric chemistry and physical pro-
cesses are complex, and the coupling between them is not easy to operate. Therefore, the data-driven tech-
nologies are probably more suitable for retrieving the degraded OMI total ozone data. A large number of
interesting algorithms [Li et al., 2015, 2014; Shen et al., 2015] have been developed to compensate for dead
or missing pixels. These approaches can be divided into three categories.

One category is the approaches based on the spatial information in the data sets themselves. The most sim-
ple interpolation methods are the nearest-neighbor, bilinear, inverse distance weighting and kriging meth-
ods. It is worth mentioning that kriging interpolation [Goovaerts, 1997; Van der Meer, 2012; Zhang et al.,
2007] is a well-known geostatistical prediction technique used to analyze the spatial construction of valid
data and to provide estimates at missing locations. Furthermore, some inpainting methods [Cheng et al.,
2014; Shen and Zhang, 2009; Siravenha et al., 2011] have also been proposed to remove the dead pixels exist-
ing in remotely sensed images. However, a major drawback of this category of methods is the spatial discon-
tinuity of the filling result that appears in the situation of wide missing areas.

For the reconstruction of wide missing areas, the second category of methods employing multitemporal aux-
iliary data is much more attractive. Most of these approaches make use of another clean measurement over a
limited time period [Shen et al., 2016]. The Savitzky-Golay filter [Chen et al., 2004; Savitzky and Golay, 1964] and
harmonic analysis [Roerink et al., 2000; Yang et al., 2015] can be used for the reconstruction of missing data
due to cloud contamination. However, to eliminate the brightness of the apparent inconsistencies, most of
the valid values are also changed. Zeng et al. [2013] presented the weighted linear regression (WLR) method
and described how to accurately reconstruct the missing gaps, leaving the valid values unchanged. The WLR
method fills the degraded pixels using the data from multiple scenes as referable information by building a
regression model between the corresponding pixels. It is worth noting that the WLR method is based on the
precondition that the changes in the ground features between scenes are regular, and the restored result
may be unsatisfactory when the scenes change abruptly. In this study, the OMI total ozone product does con-
tain large changes in the time series.

The collection and processing of spatiotemporal data with a finer temporal resolution calls for sophisticated
spatiotemporal interpolation: the third category of methods. Various types of spatiotemporal kriging
(STkriging) [Pebesma and Grdler, 2015] methods are considered to be the state-of-the-art statistical
approaches for spatiotemporal analysis. Some systematic contributions to spatiotemporal geostatistical ana-
lysis can be found in the literature [Cressie and Huang, 1999; Gneiting, 2002; Ma, 2002, 2003; Stein, 2005].
STkriging can potentially provide more accurate predictions than spatial interpolation because observations
taken at other times can be included. However, for the STkriging method, both the computational task and
the spatiotemporal data volume are huge, and a global experiment is unrealistic. Another method known as
the (a penalized least squares approach (PLS) combines the use of the discrete cosine transform (DCT))
method [Garcia, 2010] is recommended as an effective model for gap filling purposes in large spatiotemporal
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data sets. The method is fully three-dimensional and thus explicitly utilizes both the spatial and temporal
information of the data set to derive the statistical model and predict the missing values. The statistical mod-
eling process is completely controlled by a smoothing parameter which is easy to specify, which eliminates
the need for complicated model parameterization. The third category of methods can reveal the significant
spatiotemporal dependencies, while a purely spatial or temporal approach ignores these dependencies.

The objective of this study is to develop a combined spatiotemporal technique, according to the character-
istics of the OMI total ozone data, to generate a spatially continuous and daily global total ozone product. The
proposed technique, which is referred to hereafter as temporal fitting followed by spatial residual correction
(TFFSRQ), takes full advantage of an adaptive weighted temporal fitting (AWTF) method and spatial residual
correction based on anisotropic kriging interpolation technology. That is to say, the proposed method can
achieve full space-time coherence by exploiting the values of the neighboring pixels in space and time, while
taking into account the autocorrelated error. In order to evaluate the precision of the proposed algorithm, a
number of simulated experiments were performed to compare the proposed method with the other effective
gap filling methods, such as the spatial kriging, WLR, STKriging, and DCT-PLS methods mentioned above.
Based on this, Brewer spectrophotometers’ total ozone columns were then employed for the validation of
the TFFSRC product.

The rest of this paper is organized as follows. Section 2 describes the data and study areas. Section 3 gives the
detailed implementation of the proposed algorithm. Section 4 presents the generated total ozone product,
the results of the simulated experiments, and the comparison with ground-based Brewer observations.
Finally, Section 5 provides the conclusion and discussion.

2. Data

The OMI instrument [Levelt et al., 2006] is on board NASA’s Earth Observing System Aura satellite, which was
launched on 15 July 2004. At both visible and UV wavelengths, the OMI instrument detects backscattered
solar radiance to measure daytime total ozone. The OMI ozone data are available as level 2 (orbit/swath)
and level 3 (gridded) data, beginning in late August 2004. The data employed in this study were the L3
OMI total ozone product named OMTO3e, with the spatial resolution of 0.25°x 0.25° (latitude x longitude),
which were obtained from the NASA website (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/
omto3e_v003.shtml). From October 2004 to the present, the OMTO3e product has been provided by NASA
every day, except for a few cases of unavailable data. It is a very important data source for the monitoring
of the spatial distribution and temporal change in total ozone and has a high spatial and temporal resolution
relative to other ozone satellite products.

It has been mentioned before that the OMI instrument anomalies first appeared in September 2005, caused
by physical material which had become dislodged blocking the optical path, resulting in wide missing stripes
gradually appearing in the OMI products. The OMTO3e data from late 2004 to September 2005 are almost
complete, with no gaps, apart from some sporadic and small gaps caused by factors such as cloud contam-
ination. However, from September 2005, narrow stripes of missing data appear, which then increase from
mid-2006. The most serious case is for January 2009, where the missing data account for one third to one half
of the data set. Thus, we chose data from late 2004 to mid-2006 with a better quality to perform the simulated
experiments, and we selected degraded data from 2007 to the present to simulate the wide gaps, whereby
the gaps of the degraded data replaced the values for those same locations in the normal data from 2004 to
2006. The orbital inclination of the Aura satellite is 98.1°, providing latitudinal coverage from 82°N to 82°N.
The wide gaps mostly occur from 60°N to 60°S.

3. Methodology

Based on the special properties of the OMTO3e data, we propose a new method termed TFFSRC to imple-
ment spatially continuous and daily global mapping of total ozone. The missing data are restored in two
steps: a preliminary prediction by an AWTF method, followed by residual correction by a kriging method after
investigating and accounting for the anisotropic effects [Goovaerts, 1997]. The trend information over time is
explained by temporal regression analysis, and the residual representing the spatial structure to account for
the local details is interpolated by linear unbiased estimation via the semivariance function. These two steps
are introduced in detail below.
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Figure 1. Schematic diagram of the reference pixel selection.

3.1. The First Step Prediction by Adaptive Weighted Temporal Fitting (AWTF)

In this paper, the OMTO3e data set with gaps to be restored is defined as the target data, while the other mul-
titemporal data sets selected to fill the target data are regarded as the auxiliary data. A missing pixel in gaps
of the target data is defined as a target pixel, and its location is called the target location.

Figure 1 shows a schematic drawing of three consecutive data sets acquired on t— 1, t, and t+ 1. It can be
seen that the location of the missing areas changes over time, so we can make use of the multitemporal data
whose acquisition date is close to the target data as the auxiliary data, ensuring that there are enough over-
laps of the pixels in the missing regions to essentially “fill in” the gaps. In Figure 1, it can be further found that
the data sets of t — 1 and t+ 1 can completely overlap the gaps of the t data set, but about 90% of the gaps of
the t data set can be overlapped by valid values in common in the t — 1 and t + 1 data sets. Due to the large
changes in the space-time patterns of total ozone, in order to ensure the least difference between the target
and auxiliary data sets, we choose two data sets from different acquisition dates (one day before and after the
target data t data set) as auxiliary data sets, and the remaining 10% are filled by either of the auxiliary data
sets (t— 1 or t+ 1) with a valid value in the target location.

3.1.1. Reference Pixel Selection

The proposed algorithm makes use of the pixel at the target location in the auxiliary data to predict the target
pixel, while the relationship between them is calculated from the local reference pixels. Accordingly, it is
necessary to first determine the reference pixels of the target location in the target and auxiliary data sets.
In our study, the target data from the OMI instrument have a lower spatial resolution and wider gaps.
Furthermore, due to the synoptic-scale weather patterns, large changes appear in both the space and time
scales for the total ozone data, especially at middle and high latitudes in both the Northern and Southern
Hemispheres. However, these changes are slight over a short time period and a local space. Thus, it is reason-
able to assume that neighboring pixels in close proximity to the missing pixel will share similar characteristics
and temporal patterns of variation of total ozone data. To guarantee smaller spatial differences, we select the
pixels closest to the target pixel as reference pixels, where valid values exist in both the target and auxiliary
data sets. In this study, only pixels with valid values in the unfilled data are used as reference pixels, and they
share similar relationships with the target pixels located within the gaps.

For each target pixel, relationships are established by the reference pixels from the target data and the aux-
iliary data. An adaptive window is used for the reference pixel selection, and the window size is first set to an
initial value. The number of selected reference pixels is set as N. If the number of selected reference pixels
cannot meet N, the window size is enlarged by two pixels. A maximum window size (Wax) should be set,
because too large a window will mean that the reference pixels are far away from the target location and will
lead to a reduction in the accuracy. For the special situation of when the maximum window size (Wy,4,) has
been reached but the number of reference pixels is not enough, the target pixel is identified as an outlier. It is
worth mentioning that a smaller value of N will increase the unreliability of the result. This is because for a
regression algorithm, fewer sample points will make the estimation less stable. However, a larger value of
N will increase the selection window size, leading to the reference pixels being farther away from the target
pixel. Moreover, a large value of N greatly decreases the computational efficiency. Optimized through a series
of comparative experiments, in this study, the number of reference pixels (N) is set to 50, and the initial (W)
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and maximum window sizes (W) are set to 7 and 61. In Figure 1, the gray pixels marked by the blue trian-
gle represent the reference pixels.

3.1.2. The Weighted Least Squares Fitting

For every single missing pixel, there are two auxiliary data sets, and each auxiliary data set can offer one
prediction through one linear relationship:

/;—1()(,}’) = a1 Xl (X, y) + be_s (1)
/;+1 (*,¥) = a1 <1 (X, y) 4 beia (2)

where the subscripts t — 1 and t + 1 represent the acquisition dates of the auxiliary data sets and l'H (x,y)and
l',+1 (x,y) are the predictions fitted separately from the different linear relationships built by each auxiliary
data set (acquired at the dates of t — 1 or t+ 1) and the target data set. Iy _ 1(x,y) and I, 1(x, y) are the pixels
at the target location in the auxiliary data, and a; _ 4, by _ 1, a; + 1, and b, , 1 are regression coefficients corre-
sponding to the linear relationships calculated from local neighboring reference pixels of the target and
auxiliary data. (x,y) represents the location of the target location, and all the reference pixels of the target
pixel are expressed as

X = [xF X8, X xB] 3)
T
yi=[yE.v8.vE vR] )

where x® and y® represent the coordinate vectors of the x and y axes of the reference pixels. We assume that
the target and reference pixels share the same regression relationship, and then a series of equations can be
established by substituting the coordinates of the reference pixels into equations (1) and (2). The regression
coefficients can be obtained by the use of weighted least squares fitting. For the auxiliary data seton t — 1, for
example, the regression coefficients in equation (1) are given as
S T (1 y) = Ty ) (1 O y8) T8y .
ar1 =

N2
E:V:,l Ti>< (I[7‘| (Xf7y5?) - Itf'l (XR7yR))

beq = I(XF,yF) — ar_q xle1 (xR, yF) ©)

where I_1 (xf, y?) is the total ozone value of the ith reference pixel on t — 1 and /;(x, y*) and /;_ (x*, y®) are
the mean values of all the reference pixels of the target data and auxiliary data on t — 1, respectively. The
weights of each selected reference pixel of the auxiliary data on t — 1 are defined as

T, = (1/Diffy) /> (1/Diff;) %
Diff; = [l (xF,¥F) — L1 (x,y) + A|xD; 8)

where the range of weight T; is from 0 to 1 and the sum of all the selected reference pixel weightsis 1. Ais a
small value to prevent Diff; equaling zero. D; describes the chordal distance between the ith corresponding
reference pixel and the target pixel in the target data. It is calculated by the haversine formula [Sinnott, 1984]:

dlon = lon(y) — lon(yf), dlat = lat(x) — lat(xf) 9)

e = (sin(dlat/2))* + cos(lat(x)) cos(lat(x))( sin(dlon/2))? (10)
¢ = 2*atan(sqrt(e)), sqrt(1 —e) an

D; = R*c (12)

where lat(x), lon(y), lat(xf), and lon (yf) represent the latitude degree and longitude degree at locations (x, y)
and (xf,yF), respectively; c is the great circle distance in radians; and R is the average radius of Earth, at
6371 km. In this study, all the spatial distances are calculated following the haversine formula. T; is substituted
into equations (5) and (6) to calculate a; _ ; and b; _ ;. In the same way, a; , ; and b;, ; can be obtained by
using the target and auxiliary data on t + 1.

3.1.3. The Adaptive Weighted Averaging

The information in the target location of the two auxiliary data sets is used to predict the value of the target
pixel. However, the contribution of the auxiliary data may vary because reference pixels from one auxiliary
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data set are likely to be more comparable to the target data set than the other. More accurately, for the AWTF
method, every single missing pixel can be predicted by the weighted average of the two predictions:

ir(’ﬂ}’) :Wt—1><l’[71(x7y)+Wt+1><l,t+1(xay) (13)

where [;(x, y) is the predicted value of the pixel at the target location in the target data. w; _ ; and w; . ; are the
weights of the two predictions, respectively, and express the similarity of the reference pixels between the
auxiliary and target data. We use a Gaussian kernel function to express the adaptive weights as

dZ
W1 =1/Cxexp| — 92M (14)

2
> i
Wepr = 1/Cxexp | —=5— (15)
g
where w;_ 1 and w;, 1 meet the conditionsO<w;_ 1,W;,1<1 and w;_1+w;,,=1. Cis the normalized
parameter:

dZ
Zgzt+1 (16)

C=exp|—

a2
92“ + exp| —

d; _, and d; , ; are the difference of the total ozone value between the ith reference pixel in the target and
auxiliary data:
der = [l (FyF) = e (<) || (17)
deir = [l (7)1 () |1
g in equations (14) and (15) is determined by the experimental data. For our study, we use g as

g:2><0- (19)

where ¢ is the standard deviation of all the reference pixels in the target data.

(18)

The remaining 10% of the missing pixels which cannot find valid values simultaneously existing at the tar-
get location in both the auxiliary data sets are recovered by a single data set acquired on t—1 or t+1. A
regression equation needs to be established, such as equation (1) or (2). We search for reference pixels in
the target and auxiliary data, compute the regression coefficients, and then the predicted /,_, (x,y) or [,
(x,y) is the preliminary prediction. If there are no measurements for the target pixel in the days before
and after the target data, the target pixel will also be identified as an outlier. After the other missing pixels
have been filled, the outliers are recovered by performing kriging using pixels in their neighborhood,
where pixels that have already been filled by TFFSRC in previous iterations can be used to establish the
interpolation model.

3.2. The Second Step Residual Correction Using the Kriging Method

After the coefficients in equation (13) have been determined, we can obtain a preliminary predicted value of
the target pixel. There may, however, be considerable errors because of the dynamic changes caused by the
effect of atmospheric circulation. To alleviate this error, the second step of the TFFSRC method is executed:
error correction by kriging [Gundogdu and Guney, 2007; Mandallaz, 2000]. Here we only provide a brief
description of kriging and the anisotropic variogram, as these approaches have been widely used and
described in the geostatistical literature. Therefore, the interested reader is referred to the works of Journel
and Huijbregts [1978] and Cressie [1993] for further details.

3.2.1. Kriging

Kriging is a method based on regionalized variable theory, which can be used to analyze the spatial continu-
ity and distribution of valid data and provide estimations at missing locations. It is based on a linear combi-
nation of observations of the phenomena in the vicinity of the desired location of the estimation, without bias
and with minimization of the variance. The main idea of error correction by kriging is to evaluate the residual
value in the target location by a linear combination of prediction residuals of all the reference pixels in the
target data. Therefore, we should start by computing the prediction residuals of all the reference pixels in
the target data by applying the AWTF method.
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For each reference pixel in the target data, we can obtain its preliminary prediction using the AWTF method.
Similar to equation (13), this can be displayed as

Te (o) = W <ty (R yF) 4w g (F,yF) (20

wherel,_, (xF,yF) and I, (xF, yF) are the regression results computed by equations (1) and (2), respectively,
with the location of (x,’-"’,yf") instead of (x, y). Because of the similar linear relationships shared with the target
pixel and its reference pixels, not all the coefficients in equation (20) are changed. The prediction residual of
the ith reference pixel is computed by subtraction of the true and predicted values:

e yT) = (. yT) =T () (21)
where I; (xf, y®) is the true value of the ith reference pixel in the target data.

The evaluation of the residual value of the target pixel can be obtained by utilizing the kriging method:

ét(x0,Yo) = ZL Jixee (X, y7) (22)

where & (xF,yf) is the prediction residual of the ith reference pixel obtained by equation (21). 4; is the
weight of the ith reference pixel in the target data associated with each prediction residual and is chosen
to make an unbiased estimation with minimum variance [Wackernagel, 2003]. However, the literature
[Stein, 2007] has shown that the intrinsic stationarity assumption, a theoretical premise of the geostatisti-
cal methods, is not always valid, especially for heterogeneous landscapes. Concerning this issue, Chang
et al. [2015] presented a possible solution. In our study, we assume that the prediction residuals satisfy
the intrinsic stationarity assumption, and then the coefficients J; in equation (22) can be solved by vario-
gram y.

3.2.2. Variogram Analysis and Modeling

In the kriging method, the variogram is experimentally calculated. Then, in order to apply the kriging to make
an estimation, a theoretical variogram model needs to be set up. The appropriate model is chosen by match-
ing the shape of the curve of the experimental variogram to the shape of the curve of the mathematical
function. The practice of variogram modeling has been covered in many texts [e.g., Wackernagel, 2003],
and the common method of modeling is weighted least squares fitting. Among the typical variogram models,
a popular model for the prediction residuals is the spherical variogram model.

According to the structural features of spatial variograms, the random fields can be divided into two
categories, i.e., isotropic and anisotropic. Isotropic variogram analysis is direction independent, whereas ani-
sotropic variogram analysis is direction dependent. According to the relevant literature [Stein, 2007], it has
been revealed that the spatial dependence of total ozone varies strongly with latitude. Figure 4 displays
the same phenomenon, in that the global distribution of total ozone exhibits a strongly latitudinal depen-
dence, which means that the variation of total ozone is much stronger across latitudes than across longi-
tudes, especially at high latitudes in both the Northern and Southern Hemispheres. Therefore, the isotropic
model is clearly unsuitable. However, the theoretical variogram models used for kriging are based on the iso-
tropic model, so correction for anisotropy is necessary to make use of kriging methodology. Anisotropy can
be further classified into two types: geometric and zonal anisotropy. Geometric anisotropy occurs when the
range, but not the sill, of the variogram changes in different directions, while zonal anisotropy exists when
both the sill and range of the variogram change with the direction.

For instance, we choose a missing pixel at high latitude in the Northern Hemisphere, and we obtain the pre-
diction residuals of its reference pixels by performing the AWTF method to diagnose their type of anisotropy.
It is a fact that the south-north (S-N) direction and the east-west (E-W) direction are identified as roughly the
directions of the maximum and minimum spatial correlation, respectively. Figure 2 plots the separate experi-
mental and theoretical variograms calculated for the maximum (S-N) and minimum directions (E-W) of all the
prediction residuals. The tolerance of the angle is +-30°, and the variogram model is fitted by a spherical
model. The E-W direction variogram and the S-N direction variogram are given by experimental variograms
(symbols) and fitted models (solid lines) computed from a field of 50 values simulated with a spherical vario-
gram function with zero nugget. As can be seen when comparing the variograms of the two directions,
changes in the S-N direction are more rapid, representing higher variance or sill value, compared with rela-
tively smooth changes in the E-W direction, representing a smaller sill value. These phenomena indicate that
the variation of all the prediction residuals of the reference pixels presents zonal anisotropy.
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Figure 2. Empirical and theoretical semivariograms in the S-N direction and
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where cgw, rangegw, and hgy are, respectively, the sill, range, and the lag distance in the E-W direction and
Csn, fangesy, and hsy are the sill, range, and the lag distance in the S-N direction. K is the anisotropy ratio,
i.e., the ratio of the maximum range to the minimum range.

3.2.3. The Final Prediction

The target residual prediction is in practice a weighted moving average, in which the weights depend on the
variogram and the configuration of the reference pixel residuals within the neighborhood of their targets.
Eventually, the final predicted value of the target pixel located at (x, y) in the gaps is obtained by summing
the predicted trend and the residual:

i(X7y):ff(X7y)+éf(X7y) (24)

fix,y) is the preliminary prediction value fitted by the multitemporal information through the selection of
reference pixels to establish the linear regression relationship.&;(x, y ) represents the target residual predicted
from the interpolation of the residuals of the reference pixels by the kriging method. Figure 3 presents a flow-
chart of the proposed filling method.

4, Results
4.1. The Long-Term Series of the Total Ozone Product

Based on the proposed TFFSRC algorithm, the long-term series of the total ozone product was generated by
reconstructing the missing data of OMTO3e from October 2004 to 2014. The coverage of this product is
almost worldwide, apart from the regions where the sensor cannot work properly due to the lack of UV radia-
tion at high latitudes in different seasons. The loss at high latitudes, where we were unable to find auxiliary
information in another time series, is beyond the scope of our consideration. This total ozone product is
hosted on http://sendimage.whu.edu.cn/send-resource-download/ for free download.

As examples, the OMI OMTO3e data sets with missing data dated 15 January, 14 April, 15 July, and 15 October
in 2013 and their corresponding retrieved product maps are shown in Figure 4. The data sets reasonably
represent the global total ozone characteristics and their time series dynamics. The global distribution of total
ozone exhibits substantial seasonal and latitudinal dependence. The minimum value of total ozone is found
in the tropics, and the maximum value is found near the polar regions. The significant gradients found in mid-
latitude regions and the obvious spatiotemporal changes are mainly caused by stratosphere photochemical
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Figure 3. The flowchart of the TFFSRC algorithm.

processes and the synoptic-scale weather patterns. Indeed, this significant variation of ozone distribution
poses a significant challenge when filling the gaps in ozone maps.

4.2, Evaluation Results

In order to obtain an adequate evaluation, both simulated experiments and validation with ground-based
measurements were implemented.

4.2.1. Simulated Experiments

Simulated masks of missing data were defined by degraded data acquired after 2006 and then applied to the
selected data with a good quality from 2004 to 2006 to obtain the simulated test data. To explain the process
of the simulated tests, an example is shown in Figure 5. The locations of the gaps in Figure 5a were marked as
a simulated mask (Figure 5b), which was applied to the target image (Figure 5c), masked out and considered
as the missing data in Figure 5d, to provide the data for a quantitative validation. Simulated experiments with
global total ozone data sets containing 10 consecutive sets of data in each group were implemented to test
and verify the quantitative accuracy of the different methods. Global data sets of different years, seasons, and
amounts of missing pixels were selected to form three groups of simulated experiments, thereby ensuring a
comprehensive validation of the proposed approach for all the OMTO3e data. Ten consecutive sets of data
acquired from 22 to 31 December 2004 were chosen as the first simulated test group. For these data sets,
simulated gaps were made by the use of 10 consecutive sets of actual OMTO3e data acquired from 22 to
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(a) Actual data set acquired on 15 January 2013. (b) Result of (a) recovered by the TFFSRC method.
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(c) Actual data set acquired on 14 April 2013. (d) Result of (c) recovered by the TFFSRC method.
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(e) Actual data set acquired on 15 July 2013. (f) Result of (e) recovered by the TFFSRC method.
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(g) Actual data set acquired on 15 October 2013. (h) Result of (g) recovered by the TFFSRC method.

Figure 4. Examples of actual data sets and the corresponding total ozone product.
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Figure 5. Simulated mask of the degraded data applied to the good-quality data for the quantitative assessment.

31 December 2010. In winter, the seasonal missing region is in the Northern Hemisphere at high latitudes.
The data size was 576 x 1440, with about 230,000 missing pixels. The second test group of data was acquired
from 20 to 29 July 2005, and the simulated gaps were covered using OMTO3e data acquired from 20 to 29
July 2011. In contrast to the first group, this group of data is from the summer, when the temporal and spatial
variation trend of total ozone is different from that of the winter. The total ozone changes are mostly concen-
trated at middle latitudes in the Southern Hemisphere and are weaker than those in the first group of simu-
lated experiments. The size of the target data was 576 x 1440, with about 180,000 missing pixels. In order to
determine the applicability of the proposed method in different times, we selected the data acquired from 28
January to 6 February 2006, and the 28 January to 6 February 2012 data were used to simulate the gaps in the
third group of simulated experiments. February can be considered as the end of winter and the beginning of
spring. The size of the third simulated data set was 601 x 1440, with about 130,000 missing pixels. These three
groups of simulated experiments were performed to validate the proposed method by comparing it with
three other effective gap filling methods: kriging, WLR, and DCT-PLS.

An example of the first group of simulated experiments is shown in Figure 6 for a visual inspection. The target
simulated data on 27 December 2004 are shown in Figure 6a, where the width of each gap can reach 10°
longitude over about 1000 km. Figure 6b shows the reconstruction result of Figure 6a by the use of
TFFSRC. The actual OMTO3e data shown in Figure 6¢ are used to validate the proposed algorithm by compar-
ing the filled result with the actual data. In order to allow a clear visual inspection, Figure 7 shows an example
from each group of simulated experiments, with two zoomed regions to show the difference between the
actual data and the reconstructed results by the different methods. The first two rows of the panels show
the total ozone distribution in the regions of the South Atlantic Ocean and Mongolia from the first group
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(a) Target data on 26 December 2004 simulated using the gaps
on 26 December 2010.

30°N

30°S

60°S

90°

Total Ozone [DU]12° w 60°W o 60°E 120°E

0 240 260 280 300 320 340 360 380 400 420 440 460 480 500
(b) Result recovered by the TFFSRC method.
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(c) Actual data set acquired on 26 December 2004.

Figure 6. An example for the simulated experiments and the result recovered by TFFSRC compared with the actual data.
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Figure 7. Comparison of the actual total ozone data and the reconstructed results for six detailed regions.

of simulated experiments dated 27 December 2004. The middle two rows of the panels show the regions of
the South Atlantic Ocean and Indian Ocean from the second group of simulated experiments dated 26 July
2005. The last two rows of the panels show the regions of the North Atlantic Ocean and the North Pacific
Ocean from the third group of simulated experiments dated 3 February 2006. The panels from left to right

PENG ET AL. SPATIALLY CONTINUOUS OZONE PRODUCT 13



@AG U Journal of Geophysical Research: Atmospheres 10.1002/2016JD025013

show the target data, the reconstructed results by the kriging, WLR, DCT-PLS, and TFFSRC methods, and the
actual total ozone data of the corresponding regions. Only using the spatial information cannot lead to an
ideal retrieved result, which can be seen in Figure 7 for the result recovered by kriging. Although the kriging
method is a relatively mature statistical method for spatial interpolation, which can generally obtain good
results, it only uses spatial information, and the weight is mainly determined by the variation function of
the distance. For the excessively wide gaps in this experiment, the effect is poor. Compared to the actual data,
the result is distorted and shows an obvious spatial discontinuity effect. The reconstructed result is also over-
smoothed. For the WLR algorithm, the results also show obvious spatial discontinuity and lots of noise.
Because the different auxiliary data sets make the same contribution in the prediction, the spatial correlation
from the reference pixels of the target data was not taken into consideration. The results for the DTC-PLS
method are mostly well recovered, but an obvious smoothing effect appears. Furthermore, the values of
all the valid original data are changed after performing the DTC-PLS method. Through the six zoomed
regions, it can be clearly seen that the results retrieved by TFFSRC are the closest to the actual data, when
compared to the results of the other methods. In the TFFSRC results, the missing areas are filled more
thoroughly, with great spatial continuity and a convincing visual quality.

Figure 8 shows the scatterplots of the relationships between the actual and the predicted values correspond-
ing to the three exampled simulated experiments. It is worth mentioning that only the values of the simu-
lated missing pixels participate in the calculation. In general, the data points in the scatterplots of the
proposed method are more concentrated around the diagonal than those of the other three methods. For
kriging and WLR, the points in the scatterplots are close to the 1:1 line, with some outliers, while the plots
of the DCT-PLS method show the worst result. It is apparent that the scatterplots in Figures 8i-8l appear to
have a better agreement with the actual data than the other panels, which is probably because the total num-
ber of missing pixels in the third test group is significantly lower than in the other two groups. These plots
fully demonstrate that the TFFSRC method can accurately predict the missing data at the pixel level, which
is consistent with the results of the visual observation. Because of the greater fluidity of ozone in space-time,
the use of only a single piece of information of space or time as a reference will lead to inaccurate results.

The results listed in Table 1 show the quantitative comparisons of these three groups of simulated tests by
the means of the values for the three periods. The AWTF method, the first step of the TFFSRC method we pro-
pose in this research, is also compared with the four methods mentioned above, to confirm whether error
correction by kriging as the second step can improve the accuracy of the prediction process. The root-
mean-square error (RMSE) values of the TFFSRC method are the lowest. It is evident that the precision of
the restored results using TFFSRC is satisfactory, which is consistent with the analyses implemented above.
The AWTF method performs better than WLR and kriging, which provides sufficient proof to show that the
residual correction is an effective process to promote the reconstruction results. Through the contrast
between the three groups of simulated experiments, it can be seen that the second group has the widest
gaps and the largest amount of missing pixels, where the DCT-PLS, WLR, and kriging methods are quite sen-
sitive, producing larger RMSE values, which means greater errors. Meanwhile, TFFSRC is not sensitive to the
range of the missing gaps as it obtains a lower mean value of RMSE in the second group than in the other two
groups of experiments. The RMSEs of the TFFSRC and AWTF methods are the largest in the third group of
experiments, because data in this group were selected in February, and the spatial and temporal liquidity
of the total ozone is considerably higher than for the other months, while the kriging method is not affected.
This indicates that when total ozone data do not have wide missing gaps, the kriging method can obtain a
better effect than the WLR method. It should be mentioned that the DCT-PLS method in this study only used
one data set (the target data) as input data to complete the prediction. The reason for this is that, for OMTO3e
data, one data set as input data can obtain the best prediction result, which is demonstrated in Figure 9.

To further explore the performance of the TFFSRC method, the other famous spatiotemporal method, the
STkriging method [Cressie and Wikle, 20111, was also compared. Taking into consideration the computational
complexity of the matrix inversion, and to speed up the processing, three local regions were selected to per-
form the comparisons. The size of the three regions was 200 x 200, and they respectively comprised the
American mainland ((62°N, 12.25°N), (124.75°W, 75°W)), the South Atlantic Ocean ((0.25°S, 50°S), (39.75°W,
10°E)), and Australia ((1°S, 50.75°S), (108.25°E, 158°E)). To guarantee the rationality and universality of the pro-
posed algorithm, the three local regions of data were chosen from different time periods to implement the
simulated experiments. The method of generation for the simulated experiment data was similar to the
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Figure 8. Scatterplots of the actual and the retrieved values of all the missing pixels for the three exampled simulated experiments: (a—d) the first example, (e-h) the
second example, and (i-I) the last example.

process described in section 4.2.2. Since the OMTO3e data in 2005 are unique data sets with a good quality
over the whole year, data sets from 2011 were used to simulate the missing gaps, which were applied to the
data sets in 2005 for the generation of the simulated data. For the American mainland area, the simulated
data on 27 January were selected as the target data, and the simulated data from one day before and after
the target data were selected as the auxiliary data to perform the TFFSRC method. The simulated data from
21 January to 4 February were selected as the input data to perform the STkriging method. In the same way,
for the South Atlantic Ocean area, the simulated data on 12 October were selected as the target data, and for
Australia, the simulated data on 8 August were selected as the auxiliary data.

Table 1. The Accuracy by the Means of the RMSE Values for the Three Groups of Simulated Experiments, as Restored by
the TFFSRC, DCT-PLS, AWTF, WLR, and Kriging Methods

Date/Method TFFSRC DCT-PLS AWTF WLR Kriging
2004 4.0907 4.6055 4.6697 5.0006 5.1930
2005 4.0811 49134 49125 5.2758 5.4892
2006 4.3945 4.8503 5.1041 5.2450 5.1623
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Figure 9. Comparison of the DTC-PLS method with different numbers of input data sets.

As described in the literature [Chipperfield et al., 2003], atmospheric total ozone presents both a temporal
trend (seasonal cycle) and a nonconstant spatial trend. Therefore, the spatiotemporal random variables for
each local area can be decomposed into a mean component and a residual component [Cressie and Wikle,
2011; De laco and Posa, 2012]. In this study, the deterministic spatiotemporal mean component is further
decomposed into a temporal trend and a spatial trend, as described in Kyriakidis and Journel [1999]. The esti-
mated spatiotemporal mean component is then subtracted from the full simulated data set to yield the spa-
tiotemporal residual component for each local area, which is used in the following analysis. For all three local
areas, the sum-metric model is the most suitable variogram model. Once the best fitting spatiotemporal var-
iogram model is identified, the STkriging interpolation can be executed in universal transverse Mercator pro-
jection to obtain the residual prediction at the missing location. Finally, the prediction at the missing location
is gained by adding the spatiotemporal trend to the residual prediction. The process is implemented in the R
environment for geostatistical modeling and interpolation and uses the “gstat” [Pebesma, 2004] and “stats”
[Team, 2014] packages. For all three local areas, the sum-metric model is the most suitable variogram model.

The performances of the TFFSRC and STkriging methods for the three local areas in terms of RMSE are shown
in Figure 10. In terms of the histogram in Figure 10, the STkriging method shows hardly any benefit when
compared with the pure spatial kriging method. As the number of auxiliary data sets increases in the
STkriging method (STkriging5, STkriging7, STkriging9, STkriging11, and STkriging13, where the number

12r
I TFFSRC
108 Kriging
I STKriging5
5 8 I STKriging7
a I STKriging9
g2 or B STKriging] 1
2 ) I STKriging13
2

America Mainland South Atlantic Ocean Australia

Figure 10. Evaluation of the TFFSRC, STkriging, and spatial kriging methods in the three local areas.
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Table 2. Summary of All the Ground-Based Brewer Instruments Used in This Study

Station Name Latitude Longitude Used Coincidences
STNO018 (Alert, CAN) 82.45°N 62.51°W 1301
STNO021 (Edmonton, CAN) 53.55°N 114.1°W 2933
STNO024 (Resolute, CAN) 74.72°N 94.98°W 1331
STNO35 (Arosa, CHE) 46.78°N 9.68°E 83
STNO65 (Toronto, CAN) 43.78°N 79.47°W 2916
STNO76 (Goose Bay, CAN) 53.31°N 60.36°W 2462
STNO77 (Churchill, CAN) 58.74°N 94.07°W 2330
STN111 (Amundsen-Scott, ATA) 89.99°S 70.24°E 850
STN282 (Kislovodsk, RUS) 43.73°N 42.66°E 2411
STN290 (Saturna Island, CAN) 48.77°N 123.13°W 3065
STN307 (Obninsk, RUS) 55.12°N 36.3°E 1717
STN315 (Eureka, CAN) 79.988°N 85.94°W 1207
STN316 (DeBilt, NLD) 52.10°N 5.18°E 2188
STN338 (Bratts Lake, CAN) 50.21°N 104.71°W 364
STN468 (Cape D’Aguilar, HKG) 22.21°N 114.26°E 501
STN479 (Aosta, ITA) 45.74°N 7.36°E 1759
STN481 (Tomsk, RUS) 56.48°N 85.07°E 1559
STN512 (University of Toronto, CAN) 43.66°N 79.4°W 1163

means the number of data sets involved in the calculation), the value of the RMSE also increases. This effect
can, to a large degree, be explained by the spatiotemporal variograms: a temporal lag of one or a few days
leads to a large variability compared to spatial distances of a few hundred kilometers, implying that the tem-
poral correlation is too weak to significantly improve the overall prediction. It should be noted that when the
number of data sets is less than five, the STkriging method cannot be performed because there is insufficient
information to establish the spatiotemporal variogram. With the lowest value of RMSE, there is no doubt that
the proposed TFFSRC method is the most effective for the gap filling purposes in OMTO3e data.

Through all of the above simulated tests selected from different years and seasons, it can be seen that the
global total ozone values change with time and space, both in summer and winter, and they change most
severely in the middle and high latitudes of the Northern Hemisphere. These great changes result in the
reconstructed results not being ideal; however, all the results, including the visual results of the proposed
method, are closer to the actual values.

4.2.2. Evaluation Using Ground-Based Ozone Observations

Ground-based instruments measuring long-term total ozone provide an excellent reference and were
employed for the validation of the TFFSRC product. The ground-based total ozone observations used in this
paper were obtained from the World Ozone and Ultraviolet Radiation Data Center (WOUDC) archive (http://
www.woudc.org/). The ground-based stations of the WOUDC independently measure overhead total ozone
columns using Dobson, Brewer, and Filter instruments. However, all the Dobson total ozone data should be
applied with a temperature correction [Kerr, 2002]. The random measurement errors (or “noise”) of the Filter
instruments are significantly higher than those of the collocated Brewer or Dobson instruments. Therefore, in
this study, the data from the Brewer network were adopted as the primary reference. To investigate the qual-
ity and the performance of the TFFSRC product, comparisons between the MERRA-2 assimilated product
available online through the Goddard Earth Sciences (GES) Data and Information Services Center (DISC)
(http://disc.sci.gsfc.nasa.gov/mdisc/) and the ground-based Brewer total ozone columns were also per-
formed. First, the ground-based data in the time series that appeared odd (i.e., sudden jumps) were rejected.
The Aura spacecraft has an equatorial crossing time of 13:45 (ascending node), with about 98.8 min per orbit
(14.6 orbits per day on average). The time-averaged total ozone observations for each ground-based station

Table 3. The Results of the Statistical Comparisons of the TFFSRC Product and the MERRA-2 Product With the Brewer
Spectrophotometers’ Total Ozone Column Data Sets

Spatial Resolution (Latitude x Longitude)  RMSE (DU) CcC Bias (DU)  RB (%)

TFFSRC product 0.25°x 0.25° 12.51 0.98 5.13 1.46
MERRA-2 assimilated product 0.5°% 0.625° 13.25 0.97 6.49 1.88
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Figure 11. The absolute values of the error.

were then computed by the extraction of the total ozone data when the local time was between 13:00 to 14:00.
Meanwhile, the TFFSRC product that has the center of its gridded pixel closest to the ground station was
extracted. The UTC time for each station was then obtained and used to extract the corresponding hourly aver-
aged MERRA-2 assimilated data named M2T1NXSLYV, also following the principle of nearest space distance.
Using these criteria for the October 2004 to December 2014 timeframe, we obtained 30140 sonde-TFFSRC-
MERRA-2 assimilation measurement triads. The number of triads considered for the validation was the subset
of the data common to the three data sets, which meant that the data in all three data sets were valid. Table 2
give a summary of the ground-based Brewer instruments used in this study, their location, and the number
of used coincidences, which means the number of coincidences among the Brewer spectrophotometers’ total
ozone columns, the TFFSRC product, and the MERRA-2 assimilated product used in the comparison.

The results of the statistical comparisons of the TFFSRC product and the MERRA-2 assimilated product with
the Brewer spectrophotometers’ total ozone columns are summarized in Table 3 in terms of RMSE, the cor-
responding correlation coefficient (CC), bias, and relative bias (RB). The ozone bias is defined as the mean
value of the ground-based observations minus the TFFSRC product data or the MERRA-2 assimilated pro-
duct data, and RB (%) is computed with respect to the Brewer total ozone data. The TFFSRC product is
biased low by 5.13DU (Dobson unit) (1.46%) with respect to the Brewer total ozone data. The RMSE
and the CC between the TFFSRC product and the Brewer total ozone data are 12.51 DU and 0.98, respec-
tively. However, the four statistical factors listed above between the MERRA-2 assimilated product and the
Brewer total ozone data are 6.19 DU, 1.88%, 13.25 DU, and 0.97, respectively. We can see that the TFFSRC
product measurements show a better correlation with the Brewer total ozone data than the MERRA-2
assimilated product. The RMSE, bias, and RB between the TFFSRC product and the ground-based Brewer
measurements are significantly reduced compared to the MERRA-2 assimilated product. These results
show that the TFFSRC product shows no substantial difference with the ground-based Brewer measure-
ments (WOUDC) and is better able to capture total ozone variation than the MERRA-2 assimilated product.
Furthermore, it should be noted that the spatial resolution of the TFFSRC product is higher than the
MERRA-2 assimilated product.

5. Conclusion and Discussion

Since September 2005, and especially after mid-2006, the OMI instrument row anomalies began to appear,
and about one third of the OMI level-3 (gridded) total ozone product (OMTO3e) is missing. Due to the excel-
lent quality of OMI relative to other ozone sensors, OMTO3e is an important data source for many of the
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applications of total ozone. Therefore, it is appropriate and necessary to develop a more practical technique
for the reconstruction of the wide missing areas in the current OMTO3e product. However, it is challenging to
generate such a spatially continuous mapping of the daily global ozone product, because the original
OMTO3e data have wide gaps and show dynamic variations in the time series. Considering the properties
of the OMTO3e data, this paper has presented a new and effective temporal fitting followed by spatial resi-
dual correction (TFFSRC) method, which takes into account the spatial and temporal correlation of the total
ozone values to generate a total ozone product with continuity, consistency, integrity, and reliability, in both
the spatial and temporal scales. Two temporal auxiliary data sets are employed to provide a preliminary pre-
dicted value, which pays sufficient attention to the continuous changes of total ozone in the time scale. Error
correction by the anisotropic kriging method, which gives consideration to the spatial autocorrelation, is then
employed to correct the error resulting from the preliminary prediction.

When the target pixel cannot find enough reference pixels, or there are no measurements for the target pixel
in the days before and after the target data, the target pixel is identified as an outlier. Outliers are recovered
by performing kriging using pixels in their neighborhood, where pixels that have already been filled by
TFFSRC in previous iterations can be used to establish the interpolation model. Since the outliers are in the
minority, we do not distinguish the unfilled reference and the filled reference pixels. Based on the TFFSRC
method, we generated a spatially continuous and daily global total ozone product from 2004 to 2014.
Meanwhile, we have also provided an additional file for each daily data set, which allows the user to distin-
guish the TFFSRC-filled pixels flagged as 2 from the real measured pixels with valid values flagged as 1 and
the real measured pixels with invalid values flagged as 0. This total ozone product and the flag files are hosted
on http://sendimage.whu.edu.cn/send-resource-download/ for free download.

The application of a mask defined by the gaps of the degraded data on the target data allowed us to under-
take a series of simulated experiments to implement a precision evaluation through the comparison of differ-
ent filling algorithms. Global data of different years, seasons, and amounts of missing pixels were selected to
implement the simulated experiments and to comprehensively confirm the validity and applicability of the
proposed approach. All the simulated experimental results consistently showed that the results recon-
structed by the proposed method were closer to the actual values. The RMSE was less than 5 DU, and the rela-
tive error was within 2%, reflecting an acceptable accuracy. Furthermore, long-term validation of the TFFSRC
product with the Brewer spectrophotometers’ total ozone columns from the WOUDC archive was implemen-
ted. The validation results show that the TFFSRC product shows no substantial difference with the ground-
based Brewer total ozone column data sets and is better able to capture total ozone variation than the
MERRA-2 assimilated product.

It should be noted that the above discussion is based on the global average error. Because of the influence of
atmospheric circulation, the total ozone changes at middle and high latitudes are greater than at the equator.
When examining the absolute values of the errors obtained by the TFFSRC method in the simulated experi-
ment dated 26 December 2004, as shown in Figure 11, we can see that the absolute values of the errors at
middle and high latitudes are greater than for the equator. Second, for the same area, the temporal variability
of the total ozone is greater, and the precision is lower. As shown in Table 1, the third group of simulated
experiments used data from February, and the fluidity of the total ozone in the time series was greater than
for the other two groups of experiments; as a result, the RMSE values were the highest. Third, the proposed
algorithm is not sensitive to the range of the missing areas when the ratio of the missing area to the whole
global area is within 50%. However, with the OMTO3e product, when the continuous missing range is more
than 50% (which mostly occurs when the OMI jumps to another measuring mode once a month with much
smaller ground pixels and a narrow swath), the proposed TFFSRC method cannot satisfy the precision
requirement, and the original OMTO3e data cannot be reconstructed.
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