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In this paper, the development of pansharpening methods from traditional understanding to the current un-
derstanding is comprehensively reviewed. Furthermore, the performance of the different categories of pan-
sharpening methods developed between 2000 and 2016 is evaluated based on the idea of meta-analysis. This is
innovatively performed by making a statistical analysis of the studies ever published. In the proposed scheme,
based on strict selection criteria, 48 representative articles, which were selected from more than 1000 articles,
were applied for the statistical analysis. This paper aims to provide a holistic review of the pansharpening

methods, and highlights the development process from the traditional understanding to the current under-
standing. In addition, the experiments were implemented from a new perspective based on the idea of meta-

analysis.

1. Introduction

With the rapid development of satellite sensors, remote sensing
images have become widely used. However, due to the technical lim-
itations of the sensors and other factors, the existing remote sensing
sensors have to make a fundamental tradeoff between the spatial and
spectral resolutions [1]. Specifically, there are two main limitations
[2-4]. (1) The incoming radiation energy into the sensor. In general,
the high spatial resolution (HR) panchromatic (PAN) image has broader
bandwidth, and the low spatial resolution (LR) multispectral (MS)
image has narrower bandwidth. To collect more photons and ensure the
signal-to-noise ratio (SNR), the size of the MS detector should be larger
(i.e., a larger instantaneous field of view (IFOV), and then a lower
spatial resolution). (2) The data volume collected by the sensor. It
should be noted that the data volume of the HR MS image is sig-
nificantly larger than that of the bundled LR MS and HR PAN images.
Therefore, this can overcome the difficulty of the limited on-board
storage capacity and the data transmission from platform to ground.
Fortunately, PAN/MS image fusion, which is typically referred to as
“pansharpening”, can be used to integrate the geometrical detail of the
HR PAN image and the spectral information of the LR MS image to
obtain an HR MS image [4], and it can overcome the tradeoff between
the spatial and spectral resolutions of satellite sensors.

To the best of our knowledge, pansharpening methods originated in
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the 1980s [5]. Since 1986, the Systéme Pour I’ Observation de la Terre-
1 (SPOT-1) system has provided two LR MS images together with one
HR PAN image, so pansharpening methods have got rapid development
over a period of 30 years. The development of the pansharpening
methods has been motivated by several factors. Firstly, it has been
motivated by the advance in remote sensing sensors. This mainly fo-
cuses on the variation of the number of spectral bands and the differ-
ence of the spectral range between the MS and PAN images. Specifi-
cally, this has varied from the previous MS images with only three
bands and PAN image covering only the visible spectrum (such as
SPOT-1, SPOT-2, etc.); to MS images with four bands and a PAN image
covering the visible and near-infrared (NIR) spectrum (such as IKONOS,
QuickBird, etc.); up to MS images with six or more bands and only part
of them covered by the PAN image (such as Landsat ETM +, OLI,
WorldView-2, etc.). Secondly, the development of the pansharpening
methods has been motivated by the application of the relevant new
emerging theories or other hot-spot mathematical researches. For ex-
ample, the pansharpening methods based on sparse representation
[6,7] have been a hot research topic in recent years. In addition, the
pansharpening methods based on deep learning [8-11] are attracting
more and more attentions. However, it should be noted that whether
some new emerging theories or hot-spot mathematical researches could
better solve the problems for pansharpening should be further fully
tested and verified. Thirdly, the development of the pansharpening


http://www.sciencedirect.com/science/journal/15662535
https://www.elsevier.com/locate/inffus
https://doi.org/10.1016/j.inffus.2018.05.006
https://doi.org/10.1016/j.inffus.2018.05.006
mailto:mengxiangchao@nbu.edu.cn
mailto:shenhf@whu.edu.cn
https://doi.org/10.1016/j.inffus.2018.05.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.inffus.2018.05.006&domain=pdf

X. Meng et al.

methods has been motivated by the demands of practical engineering
and remote sensing applications. For example, effective pansharpening
methods to obtain HR MS images for thematic mapping [12,13], visual
interpretation [14], and change detection [15,16], etc., are highly de-
sirable. In addition, it is noteworthy that, in fact, different applications
may have different requirements for more spectral fidelity or more
spatial enhancement. Therefore, the development of the application-
oriented pansharpening methods is attracting ever-increasing atten-
tions. On the whole, the development of the pansharpening methods
has been characterized by a gradual process from the previous unitarily
(few methods and categories) [5,17-21] to multiplicity [22,23]; from
the very simple linear operators (such as the Brovey method, the tra-
ditional intensity-hue-saturation (IHS) methods, etc.) [5,17-21,24,25]
to the consideration of nonlinear features [10,26]; and from in-
dependent development [14,20,24 25 27,28] to general fusion frame-
works [29-34].

To date, a large number of pansharpening methods have been
proposed [20,22,35], and these methods have been classified in several
different ways. Baronti et al. [36] classified the existing pansharpening
methods into two major categories, i.e., the component substitution
(CS)-based methods and the multiresolution analysis (MRA)-based
methods. Li et al. [37] classified the existing pansharpening methods
into the CS-based methods, the MRA-based methods, and the regular-
ized-based methods. In addition, Zhang et al. [29] classified them into
the CS-based methods, the MRA-based methods, and the Bayesian-
based methods, and Shen et al. [1] classified them into the CS-based
methods, the MRA-based methods, the model-based optimization
(MBO)-based methods, and the sparse reconstruction (SR)-based
methods. It should be noted that the major fusion process of the reg-
ularized-based methods, the Bayesian-based methods, the MBO-based
methods, and the SR-based methods are based on or converted to the
optimization of a variational model, they can be hence generalized into
the variational optimization (VO)-based methods. Besides, Kwan et al.
[38,39] classified the existing pansharpening methods based on whe-
ther or not the point spread function (PSF) is used. However, hardly few
papers have provided the comprehensive review of the CS-based
methods, the MRA-based methods, and the VO-based methods, espe-
cially the review of the VO-based methods. Excitingly, Garzelli [40]
firstly performed a comprehensive review of the VO-based methods
based on super-resolution concept.

In this paper, based on the above categories, three major categories
of pansharpening methods are classified. They are (1) the component
substitution (CS)-based methods; (2) the multiresolution analysis
(MRA)-based methods; and (3) the variational optimization (VO)-based
methods. In addition, the deep learning (DL)-based pansharpening
methods [8,10,41] have been proposed in recent years, which can be
regarded as a new generation of pansharpening methods. The perfor-
mance of the different categories of pansharpening methods has been
reviewed in many papers [2,3,14,20,22,23,26,30,42-49], which have
made a great contribution to the development of the pansharpening
methods. However, the performance of different categories of pan-
sharpening methods has resulted in controversy. For example, some
papers [50-52] hold the viewpoint that the CS-based methods have
poor spectral information preservation. However, many CS-based
pansharpening methods [48,53,54] developed in recent years refute
this viewpoint. To the best of our knowledge, there are two main rea-
sons for this. On the one hand, much of the understanding on the
performance of the different categories of pansharpening methods is
based on the traditional pansharpening methods or a particular part of
the popular pansharpening algorithms. However, pansharpening algo-
rithms have been improved, and a number of state-of-the-art methods
have been proposed in recent years. Therefore, the understanding may
be inaccurate. On the other hand, the experimental verification of the
algorithms in most of the existing studies has only been implemented
on a few datasets [30,31,34]. In addition, the experimental datasets
applied in some studies may be from specific regions or with specific
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surface features. Therefore, this cannot comprehensively verify the
performance of the methods, which leads to controversy. However, in a
single study, it seems to be impossible to implement all the algorithms,
and it is also difficult to verify the performance of the algorithms
through a large number of experiments, due to the limitations on the
acquirement of remote sensing datasets. Fortunately, there have been
many published studies that have reported on the performance of the
pansharpening methods. Therefore, how to take advantage of these
previously published articles to make a more robust and reliable eva-
luation is an inspiring and feasible idea. The idea of meta-analysis [55]
provides a feasible solution. It involves taking the results from primary
research articles and quantitatively analyzing and synthesizing these
data in an attempt to arrive at more robust conclusions, and it has been
widely used in many areas, including ecology [56], medicine [57], and
sociology [58], etc.

In this paper, the performance of the different categories of pan-
sharpening methods published from 2000 to 2016 is analyzed based on
the idea of meta-analysis. In the proposed scheme, based on strict se-
lection criteria, as many published studies as possible in the pan-
sharpening field were collected. The statistical analysis was then per-
formed on the reported quantitative experimental results of the
pansharpening methods, including the proposed methods and other
methods for comparison, etc., in these collected studies to make a re-
liable evaluation. It should be noted that due to the amounts of the
researches on the DL-based pansharpening methods are insufficient, the
DL-based methods are not included in the statistical analysis. On the
whole, this paper makes three main contributions. (1) The development
of the pansharpening methods is comprehensively reviewed. (2) This is
the first time that the idea of statistical analysis has been applied to the
review of the pansharpening methods, and this is a novel and feasible
strategy to make use of large amounts of published studies. (3) The
proposed scheme avoids the very huge cost of implementing a large
number of pansharpening algorithms, especially the VO-based methods,
and the insufficient datasets used in the previous studies. The statistical
results in this paper provide a reliable evaluation on the performance of
the different categories of pansharpening methods.

2. Pansharpening methods

The three main categories of pansharpening methods, i.e., the CS-
based methods, the MRA-based methods, and the VO-based methods,
are comprehensively reviewed, including the process of development
from the traditional understanding to the current understanding, the
characteristics of each category, and the main directions for their im-
provement in the process of development.

2.1. Component substitution (CS)-based methods

The CS-based methods are the simplest and the most widely used in
the pansharpening family, and as such, they are provided in most of the
professional remote sensing software, including ENVI, ERDAS Imagine,
PCI Geomatica, etc. The traditional understanding of the CS-based
methods is that the MS bands are first projected into a new space based
on the spectral transformation, one of the components that represents
the spatial information is then substituted by the HR PAN image, and
the inverse projection is finally performed to obtain the fused image.
Therefore, they are also generally referred to as “projection-substitu-
tion” methods [26]. The representative methods include the IHS
methods [20,59], the principal component analysis (PCA) methods
[20,60,61], the Gram-Schmidt (GS) methods [28], etc. Fig. 1(a) shows
the flowchart of the traditional understanding of the CS-based pan-
sharpening methods.

Subsequently, Tu et al. [31] demonstrated that the CS-based
methods can be generalized to a new formalization, without explicit
calculation of the forward and backward transformation, and this was
then extended in [30,34]. Accordingly, the understanding of the CS-
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Fig. 1. Flowchart of the CS-based pansharpening methods. (a) The traditional understanding of the CS-based pansharpening methods. (b) The new understanding of

the CS-based pansharpening methods based on the general formalization.

based methods has become more general. The new understanding, as
shown in Fig. 1(b), is that this category of methods is based on the
simple substitution of a single component by the PAN image, and the
component is generally obtained by a linear combination of the spectral
bands of the MS images, such as the typical GSA (adaptive GS) [62] and
BDSD (band-dependent spatial detail) [63] methods, etc. It is note-
worthy that, in effect, this involves extracting the high spatial structure
information of the PAN image through the difference between the PAN
image and the component, and the extracted high spatial structure in-
formation is then injected into the MS images by an appropriate in-
jection scheme. This can be represented as:
M=M+g®-1) €h)
where M is the fused image, M is the resampled MS image, I; denotes
the component to be substituted, P denotes the PAN image, which is
generally normalized (e.g. through histogram matching) with I to re-
duce the spectral distortion, and g represents the injection weight.
The general formalization of the CS-based methods has two ad-
vantages: 1) it leads to a faster implementation of the traditional
methods. However, it should be noted that this should satisfy the pre-
mise that the component to be substituted is linearly generated from the
available spectral bands. For example, the hyperspherical color shar-
pening (HCS) method [64] is based on the nonlinear hyperspherical
coordinate transformation, and hence it does not admit a fast Algo-
rithm. 2) It opens up new horizons for the development of this kind of
methods, and a number of improved methods have been subsequently
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proposed. In general, the improvements for the CS-based methods have
mainly focused on the optimal determination of component I; and the
injection weight g. Among them, the calculation of I, is based on the
assumption that the greater the correlation between the component and
the PAN image, the better the fused result. In conclusion, there are
several popular solutions. On the one hand, I is calculated from the
earlier simple averaging of the spectral bands of the MS image
[27,28,59], to the optimization by the spectral response functions of the
sensors [34,65], and the optimal calculation by least squares regression
[62,66,67]. On the other hand, it is calculated from global solutions
[20,27,60,61] to optimal solutions by consideration of the local fea-
tures [54,68]. For the determination of the injection weight g, a variety
of solutions can be applied [2,22,23]. On the one hand, in the spatial
dimension, the injection weight can be determined by a global model
[62] or a local model [53]. On the other hand, in the spectral dimen-
sion, the injection weight may be equal for all the spectral bands [31],
or determined by a band-dependent solution [28].

2.2. Multiresolution analysis (MRA)-based methods

The MRA-based methods originated in the 1980s [21]. The fore-
runners of this kind of method were based on single-level decomposi-
tion, such as the high-pass filter (HPF) method [20,21], and the pio-
neering formal MRA-based pansharpening methods were strictly based
on the decimated wavelet transform (DWT) [69]. The traditional un-
derstanding of the MRA-based methods is [70]: “The source images are
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Fig. 2. Flowchart of the MRA-based pansharpening methods. (a) The traditional understanding of the MRA-based pansharpening methods. (b) The new under-
standing of the MRA-based pansharpening methods based on the general formalization.

decomposed into a series of bandpass channels based on wavelet
transform or Laplacian pyramids, etc. Then, the high-frequency chan-
nels coming from the PAN decomposition are inserted into the corre-
sponding MS band channels before the reconstruction step.” Fig. 2(a)
shows the flowchart of the traditional understanding of the MRA-based
pansharpening methods.

The traditional understanding of the MRA-based methods has sub-
sequently been extended. It is denoted as the popular ARSIS in [71], to
highlight that the purposes of these methods are to preserve the whole
content of the LR MS image and add the further high spatial structure
information of the HR PAN image [22,23,72]. Tu et al. [31] subse-
quently extended the MRA-based methods based on the general for-
malization, and this general formalization was further extended in
[23,30,70] as a unifying framework. It is demonstrated that the math-
ematical representation of most of the MRA-based methods can be re-
presented as:
M=M+gP-P) @
where P, is the low-pass version of the PAN image. It can be seen that
the main difference between the MRA-based methods and the CS-based
methods depends on how they extract the spatial details. For the MRA-
based methods, the high spatial structure information is obtained by the

difference between the PAN image P and its low-pass version. The
flowchart of the MRA-based pansharpening methods based on the
general formalization is shown in Fig. 2(b).

It should be noted that the different MRA-based methods are un-
iquely characterized by how they obtain the image P; and the injection
weight g. For the solution of P;, there is a number of ways. These range
from the methods based on single-level decomposition; to the methods
based on formal multiresolution analysis algorithms; and to the
methods based on more general MRA framework. Specifically, in the
early stage, the HPF method is the representative approach.
Subsequently, the pansharpening methods based on multiresolution
DWT [69,73,74] have grown in popularity as a result of their better
spectral preservation ability. However, due to the existence of sub-
sampling in the wavelet decomposition, artifacts generally appear in
the spatial structures. Therefore, pansharpening methods based on
undecimated discrete wavelet transform (UDWT) [75,76], especially
the a trous wavelet transform method [52,70,77,78], have been pro-
posed and are attracting more and more attentions, such as the popular
additive wavelet luminance proportional (AWLP) method [42,52]. In
addition, MRA-based pansharpening methods using the generalized
Laplacian pyramid (GLP) [79,80], the contourlet transform [81,82],
and the curvelet transform [50] have also become popular. On the
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whole, the calculation of the P; with the above different kinds of filters
can be divided into two ways, i.e., the calculation based on decimated
filters and undecimated filters. For the calculation with the un-
decimated filters, the low-pass version P; has the same spatial dimen-
sion with the P. For the calculation with the decimated filters, such as
the DWT filter, the low-pass version P; has to go through the down-
sampling and interpolation operation, and this generally introduce the
spatial aliasing artifacts. However, it is noteworthy that the MRA-based
methods would perform better if the filters used are closely tuned to
match the modulation transfer function (MTF) of the sensor [42,79,80],
such as the typical MTF-GLP method [80]. For the determination of the
injection weight g, this is similar to the CS-based methods. The popular
injection models include high-pass modulation (HPM) [83], the con-
text-based decision (CBD) model [84], and the spectral distortion
minimizing (SDM) model [84], the representative methods including
the MTF-GLP-HPM and MTF-GLP-CBD [84], etc.

2.3. Variational optimization (VO)-based methods

The VO-based methods are an important category of the pan-
sharpening family. The major process of this category of pansharpening
methods is generally based on or converted to the optimization of a
variational model. The VO-based methods include two major parts: (1)
the construction of the energy functional; and (2) the optimization
solution. Fig. 3 shows the schematic of the VO-based pansharpening
methods.

For the construction of the energy functional, the methods based on
observation model [85-91] and the sparse representation [37,92-94]
are the most popular. Among them, the model-based methods regard
the fusion process as an ill-posed inverse optimization problem, and the
energy functional is constructed based on the observation models be-
tween the ideal fused image and the degraded observations, as shown in
Fig. 3. Generally, the energy functional can be summed up as three
terms: (1) the spectral fidelity model; (2) the spatial enhancement
model; and (3) the prior model. It can be generally represented as the
following expression:

E(X) = spectral (X’ LR MS) + f;patial (X’ HR PAN) + fpriﬂr (X) (3)
where x denotes the ideal fused image. The first term is the spectral
fidelity model, the second term is the spatial enhancement model, and
the third term is the prior model. Among them, the spectral fidelity
model relates the ideal fused image to the LR MS image. It is generally
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constructed based on the assumption that the observed LR MS image
can be obtained by blurring, downsampling, and the noise operators
performed on the HR MS image [1,32,91,95,96]. The spatial enhance-
ment model relates the ideal fused image to the HR PAN image. In
general, it is constructed based on two assumptions. The first is that the
spectral degradation between the HR MS image and the HR PAN image,
i.e., the wide PAN band is assumed to be a linear combination of the
narrow bands of the HR MS image [91,95,97]. The second is the as-
sumption that the spatial structures of the ideal fused image are ap-
proximately consistent with the HR PAN image [98-101]. This is gen-
erally represented by gradient features [98,99,102], wavelet
coefficients [101], or other approaches [88,103]. The prior model im-
poses constraints on the ideal fused image, and many VO-based pan-
sharpening methods based on a Laplacian prior [104], a Huber-Markov
prior [91], a total variation (TV) prior [90], a nonlocal prior [105], and
a low-rank priors [106], etc., have been proposed. To the best of our
knowledge, a certain number of fusion energy functions can be gen-
erally simplified as the following two basic expression:

E(x) = A4||LR MS — DSx|| + ||[HR PAN — Cx||+A,prior (x)
B

E(X) = AlILR MS — DSx|| + ), [[W*HR PAN — W*xy|| + A,prior (x)
b=1

4

where the D and S denote the downsampling and blurring matrix, re-
spectively, the C denotes the spectral combination matrix, and the W
represents the operator to extract the high spatial structure information.
The A; and A, are two model parameters to balance the three terms. It
can be seen that an obvious characteristic of the two representative
energy functions in (4) depends on the two classical assumptions of the
spatial enhancement models. In addition, it can also find an interesting
phenomenon that the two assumptions are highly correlated to the
basic ideal of the spatial structure extraction of the CS-based methods
and the MRA-based methods, respectively.

The sparse-based methods are mainly based on sparse representa-
tion theory. It is assumed that the signals of the remote sensing images
are sparse in a basis set [107], and they can be represented by a linear
combination of relatively few base elements in a basis or an over-
complete dictionary. This is generally represented as x = Wa, where the
¥ denotes the dictionary, and the a denotes the sparse coefficients. The
sparse-based pansharpening methods were first proposed by Li and
Yang [37], and since then, they have got rapid development. It is no-
teworthy that the acquisition of the dictionary is relatively important
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Fig. 3. Flowchart of the VO-based pansharpening methods.
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for this kind of pansharpening methods. For the dictionary acquisition,
the early sparse-based methods mainly rely on external database to
train the dictionary, therefore, this type of methods is also called the
offline dictionary training methods [37,93]. However, they acquire a
large collection of external images, which is computationally expensive.
To deal with this problem, the online dictionary training methods
[92,94,108] were developed. They directly train the dictionary from
the source images, and they are also the current mainstream methods to
obtain the dictionary. It is noteworthy that the model-based and the
sparse-based approach do not have the rigid distinction. Such as many
methods [37,93] are both based on sparse representation theory and
the observation model.

The optimization solution of the fusion model is generally based on
an iterative optimization algorithm [1,109], such as the gradient des-
cent algorithm [91,110], the conjugate gradient algorithm [1], the split
Bregman iteration algorithm [86], and the alternating direction method
of multipliers (ADMM) algorithm [96], etc. For most of the optimiza-
tion solution, the fused image was solved iteratively. In addition, an
optimization solution based on the Sylvester equation [96,111],
without any iterative update step, has been proposed for the VO-based
methods, and it can effectively accelerate the efficiency. On the whole,
to the best of our knowledge, there are three key points in the VO-based
pansharpening methods. The first is the construction of the optimal
fusion energy functional; the second is the adaptive selection of the
model parameters; and the third is the fast optimal solution. It is no-
teworthy that the low efficiency has seriously hindered the application
of the VO-based pansharpening methods, and it should be given more
attentions.

2.4. Relations among CS-based, MRA-based, VO-based methods

In this section, the relations among the CS-based methods, the MRA-
based methods, and the VO-based methods are reviewed and discussed.

2.4.1. Relations between the CS-based methods and MRA-based methods
The CS-based methods and MRA-based methods have been devel-
oped from the traditional understanding to the current new general
understanding. For the new understanding of both the CS-based and
MRA-based methods, most of them can be generalized into two major
steps, i.e., (1) the extraction of the high spatial structures of the HR PAN
image; (2) the injection of the extracted high spatial structures into the
resampling MS image to obtain the fused image. In addition, the
mathematical representation, i.e., the Eq. (1) and (2), of the two cate-
gories of pansharpening methods is similar. Then, how to distinguish
the CS-based methods and the MRA-based methods under the new
general understanding? This is dependent on the way to extract the
high frequency information of the PAN image. On the one hand, if the
extracted high frequency information, which is generally implemented
by a spatial filter or other spatial operators, is individually dependent
on the PAN image, such as Fig. 2 and Eq. (2), then they are regarded as

Literature in the
pansharpening field
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the MRA-based methods. Therefore, the MRA-based methods are also
called the spatial methods [42]. On the other hand, if the high fre-
quency of the PAN image is extracted based on both the PAN and the
intensity component, which is generally obtained by the linear combi-
nation of the spectral bands of MS image, as shown in Fig. 1 and Eq. (1),
then they are regarded as the CS-based methods. Therefore, the CS-
based methods are also called the spectral methods [42]. For example,
the AWLP method [52] involved both the spectral transformation of the
MS image and the & trous wavelet transform; however, the high fre-
quency is only extracted on the PAN image based on a trous filter.
Therefore, the AWLP method is classified into the MRA-based pan-
sharpening methods in this paper.

2.4.2. Relations between CS-based/MRA-based methods and VO-based
methods

The VO-based methods [85,89] developed relatively later compared
with the CS-based methods and MRA-based methods. On the one hand,
there is obvious difference between the VO-based methods and the CS-
based/MRA-based methods. The basic principle of the general CS-based
and MRA-based methods is to explicitly extract the high spatial struc-
tures of the HR PAN firstly, and then inject them into the MS image in
terms of a weighting scheme to obtain the fused image [112]. Different
from the CS-based and MRA-based methods, the VO-based methods
mainly integrate the spatial structure injection of the HR PAN and the
spectral fidelity of the LR MS into a constraint energy model, based on
the relationship between the desired fused image and the observations,
and the prior knowledge of the desired fused image is generally utilized
in the model. In addition, the major solution generally depends on the
iterative optimization algorithms. On the other hand, there is correla-
tion between the VO-based methods and the CS-based/MRA-based
methods. For example, an interesting phenomenon is the idea of the
spatial enhancement term of two typical VO-based fusion models,
which is based on the linear spectral band combination and the simi-
larity of the high spatial structure, respectively. It can be easily find that
they are highly correlated to the basic ideal of the spatial structure
extraction of the CS-based and MRA-based methods, respectively.

Therefore, the CS-based methods, the MRA-based methods, and the
VO-based methods should be learned from each other. On the one hand,
the future development of the CS-based and MRA-based methods can be
learned from the VO-based methods. On the other hand, the develop-
ment of the VO-based methods should be further learned from the idea
of the CS-based and MRA-based methods.

3. Materials and methods

In this paper, we propose to innovatively evaluate the performance
of the three categories of pansharpening methods developed between
2000 and 2016 based on a statistical analysis of the collected published
studies, in which each study is focused on the performance of the
pansharpening methods. The schematic of the proposed method is

Statistical results
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Fig. 4. The schematic of the proposed method.
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shown in Fig. 4. It can be seen that the process of the proposed method
includes two main steps: (1) data collection; and (2) statistical analysis.
In the process of the data collection, as many published studies as
possible are firstly retrieved; the satisfactory studies are then selected
based on the strict selection criteria to ensure the reliability of the
statistical analysis; and finally, the performances of the pansharpening
methods in each selected study are recorded. After the data collection,
the implementation of the statistical analysis follows. Firstly, the effect
sizes, which denote the basic unit for the statistical analysis, are cal-
culated. Secondly, all the data used in the analysis are grouped based on
the pansharpening categories and the different effect sizes. In addition,
the obvious abnormal outliers are eliminated. Finally, the weighted
averaging is performed on the data in each group. Through the statis-
tical analysis of the collected studies, the overall performance of the
three categories of pansharpening methods is obtained.

3.1. Data collection

Firstly, the relevant studies in the pansharpening field from 2000 to
2016 were retrieved from the Web of Science, and more than 1000
studies were searched. It is noteworthy that the retrieval period was
determined based on the objective of this paper, i.e., the performance
evaluation of the three categories of pansharpening methods with
controversy. To the best of our knowledge, most of the improved
pansharpening methods were published after 2000, especially, since Tu
et al. [31] proposed a general framework for the CS-based methods and
MRA-based methods. Therefore, the controversy with regard to the
performance of the different categories of pansharpening methods
generally existed in the studies published after 2000. The performances
of the earlier traditional methods, such as IHS [20,59], PCA [20,60,61],
the Brovey [27], etc., are straightforward. Therefore, they are not in the
scope of this study. Secondly, the satisfactory articles were selected
based on strict criteria, and 48 representative articles (see the supple-
mentary file) were finally selected from the more than 1000 studies.
The selection criteria were as follows: (1) The quantitative evaluation
results should be reported, as they are the only feasible statistical in-
dicators to certify the performance of the pansharpening methods. In
addition, it is important that at least one of the three popular quanti-
tative evaluation indices—the dimensionless global error in synthesis
(ERGAS) index [113], the spectral angle mapper (SAM) index [91,114],
and the Q4 index [115] should be included. This is because, on the one
hand, according to statistics, these three quantitative evaluation indices
are the most widely used in the pansharpening studies; on the other
hand, they are more robust to the difference between experimental
datasets. (2) The experimental datasets should be introduced, and this
mainly includes the introduction of the remote sensing sensor types or
the spectral bands. In this paper, the studies in which the spectral bands
of the MS image to be fused were approximately covered by the PAN
image were selected to ensure homogeneity. Such as the QuickBird
images and the IKONOS images, etc. They are also the primary ex-
perimental datasets in the past researches of pansharpening methods. In
addition, it should be noted that for the WorldView-2 and ETM + da-
tasets, etc., if they are implemented based on a subset of MS spectral
bands, which is approximately covered by the spectral rang of the HR
PAN image, then they are also admitted. (3) A common pansharpening
method should be reported in each selected article, and it is regarded as
a reference to ensure the feasibility and the objectivity of the statistical
analysis. The selected common method should satisfy two essential
criteria. On the one hand, it should be popular and widely used in ex-
periments to ensure the sufficiency of the statistical data. On the other
hand, it should be performed by professional commercial software, such
as ENVI, to ensure consistency and avoid controversy. To the best of our
knowledge, and based on the collected studies, the GS pansharpening
method [28] is the optimal choice. Finally, the relevant information
was extracted and recorded from the selected articles. This information
was: the authors; the year of publication; the pansharpening methods
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applied in the experiments; the quantitative evaluation results of the
ERGAS, SAM, and Q4; and the basic information of the experimental
datasets. Through the collection, the experimental datasets including
the QuickBird, IKONOS, Pléiades, GeoEye-1, WorldView-2 (im-
plemented on parts of the MS bands covered by the spectral rang of
PAN), and the ETM + (implemented on parts of the MS bands covered
by the spectral rang of PAN), etc., were collected and statistically
analyzed.

3.2. Statistical analysis

The effect size is regarded as the basic unit for the statistical ana-
lysis, and it should be firstly determined. In the collected studies, the
quantitative evaluation indices were generally used to objectively
evaluate the performance of the pansharpening methods. However,
different experimental datasets were generally utilized in the different
articles, and the recorded quantitative evaluation results in the selected
studies may have been influenced by the difference between the ex-
perimental datasets. Hence, a statistical analysis directly using the
original quantitative evaluation results is not suitable. In this paper, the
effect size, including the adjusted ERGAS, the adjusted SAM, and the
adjusted Q4, is calculated for the analysis. This is represented as:
Sindex = (Endex - Rindex)/Rindex %)
where  Sipgex denotes the adjusted evaluation results with
index = [ERGAS, SAM, Q4]. Fiyqex represents the original evaluation
results of a pansharpening method in an experiment; and R;,gex denotes
the quantitative evaluation results of the common reference pan-
sharpening method, i.e., the GS method, in the corresponding experi-
ment.

After the adjusted evaluation results of all the studies were ob-
tained, they were then divided into three primary groups based on the
three categories of pansharpening methods. In addition, each primary
group included three specific groups based on the three different effect
sizes, i.e., the adjusted ERGAS, the adjusted SAM, and the adjusted Q4.
To ensure the robustness and effectiveness of the final statistical results,
the obvious abnormal outliers were eliminated [116]. It should be
noted that if an outlier in a group was eliminated, then the corre-
sponding collected data in other groups should be removed. Such as an
outlier in the group of adjusted ERGAS was eliminated, then the cor-
responding values in the group of adjusted SAM and Q4 should be also
removed. In addition, for a specific pansharpening method in each
group, at least two evaluation results should be included. Finally, the
weighted averaging was performed on the statistical data in each group.
This can be represented as:

Km,n

Om,n = Z Wm,n(i) Sm,n(i)
i=1

with  m = [CS — based methods, MRA — based methods, VO — based methods];
n = [adjusted ERGAS, adjusted SAM, adjusted Q4];

(6)

where O, , denotes the results of the (m, n) group, with m corre-
sponding to the index of the three categories of pansharpening
methods, and n corresponding to the index of the three different effect
sizes. Wy, (i) denotes the weight for the ith record of the (m, n) group,
and the weight of 1/K,, , is applied, where K, , is the total number of
records of the corresponding group. The 95% confidence interval is
further calculated to provide reliable statistical results, and it is calcu-
lated as O, , * 1.96p(Sp, n), With p(Sy.) = 0//Kp,, denoting the
standard error for the statistical data of the (m, n) group, and o is the
standard variance.
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Fig. 5. The frequency distribution of the statistical data for each group (the vertical lines are drawn at zero). (a)-(c) The frequency distribution of the adjusted ERGAS
for the three categories of pansharpening methods. (d)-(f) The frequency distribution of the adjusted SAM for the three categories of pansharpening methods. (g)-(i)
The frequency distribution of the adjusted Q4 for the three categories of pansharpening methods.

4. Results and discussion

4.1. Results

To reveal the characteristics of the statistical data, their frequency
distribution for each group is shown in Fig. 5. The abscissa denotes the
adjusted evaluation results, and the vertical axis represents the fre-
quency. In addition, the vertical lines at zero are drawn to intuitively
show the characteristics of the distribution. It should be noted that the
smaller the adjusted ERGAS, the smaller the adjusted SAM, and the
bigger the adjusted Q4, then the better the result.

Fig. 5(a)-(c) show the frequency distribution of the adjusted ERGAS
for the CS-based methods, the MRA-based methods, and the VO-based
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methods, respectively. The frequency distribution of the adjusted SAM
for the three categories of pansharpening methods is shown in
Fig. 5(d)-(f), and the corresponding adjusted Q4 is shown in
Fig. 5(g)-(@). It can be clearly seen that the total frequency distribution
of all the adjusted ERGAS, the adjusted SAM, and the adjusted Q4 for
the CS-based methods and the MRA-based methods are similar. The
frequency distribution for the VO-based pansharpening methods has
obvious differences with the other two types of methods, and it is more
obviously gathered at one side of the red line. This shows that most of
the VO-based methods generally perform better than the CS-based
methods and the MRA-based methods.

The statistical results of the three categories of pansharpening
methods from 2000 to 2016 are shown in Fig. 6 and Table 1. Among
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Fig. 6. Statistical results (average) of the three categories of pansharpening methods from 2000 to 2016 in terms of the three adjusted evaluation indices, i.e., the

adjusted ERGAS, the adjusted SAM, and the adjusted Q4.

Table 1
The detailed statistical results of the three categories of pansharpening methods
from 2000 to 2016 in terms of the three adjusted evaluation indices.

Methods  Average Confidence interval (95%)  Variance
Adjusted ERGAS  CS —0.1078 [—0.1513, —0.0643] 0.0546
MRA —0.0864 [—0.1125, —0.0604] 0.0378
VO -0.2101 [-0.2472, —0.1731] 0.0257
Adjusted SAM CcSs -0.1274  [-0.1730, —0.0818] 0.0595
MRA —0.1042 [-0.1317, —0.0766] 0.0407
VO —-0.2010 [—0.2509, —0.1512] 0.0427
Adjusted Q4 CS 0.0508 [0.0310, 0.0707] 0.0100
MRA 0.0622 [0.0487, 0.0757] 0.0094
vO 0.1012 [0.0730, 0.1293] 0.0117

them, the overall performance is visualized in Fig. 6, and it is note-
worthy that, for Fig. 6, the longer the bar, the better the performance of
the methods.

It can be clearly seen that the VO-based pansharpening methods
show the best performance, and they have obvious advantages over the
CS-based methods and the MRA-based methods in terms of the three
quantitative evaluation indices. The statistical results between the CS-
based methods and the MRA-based methods have little difference. In
comparison, the CS-based methods perform slightly better in the ad-
justed ERGAS and the adjusted SAM; however, they perform slightly
worse in the adjusted Q4. The detailed statistical results are shown in
Table 1. In the table, the average column corresponds to Fig. 6. The
95% confidence interval and the variance are further applied to show
more precise results and the robustness of the statistical analysis. It can
be seen that the confidence intervals of all three quantitative evaluation
indices for the VO-based methods further indicate their better perfor-
mance. In addition, the performance of the CS-based and MRA-based
methods is similar. The low variances and concentrated confidence
intervals both indicate the reliability and robustness of the results. On
the whole, the statistical results show that the VO-based methods per-
form the best. The CS-based methods and MRA-based methods perform
slightly worse, and their performances are similar.

4.2. Discussion

The statistical results indicate that the VO-based pansharpening
methods perform the best, and the CS-based methods and the MRA-
based methods perform slightly worse. On the whole, the CS-based
methods and the MRA-based methods show similar performances.
However, it should be noted that this denotes the overall performance
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of the three categories of pansharpening methods, and it does not in-
dicate the performance of each specific method. For example, the sta-
tistical results show that the VO-based methods perform better than the
MRA-based and CS-based methods; however, some methods in the VO-
based category may perform worse than the methods in the other two
categories. Though it has a great significance to evaluate the perfor-
mance of the individual methods within each category; however, this is
limited by the amount of the collections of the statistics. In this paper, it
is assumed that a robust statistical result depends on large amounts of
statistical datasets. Therefore, by seriously considering the reliability of
the statistical results for each specific method, the statistical analysis for
individual methods was not shown. Furthermore, it does not indicate
specific factors in the performance of the pansharpening methods, such
as the performance of the pansharpening methods for different surface
features, and this will be studied in our future work.

In this paper, the performance of the pansharpening methods has
been statistically analyzed based on the quantitative evaluations, and
the qualitative evaluations were not involved. This is because the
quantitative evaluation is objective, and it is also the sole feasible sta-
tistical indicator for the analysis. In the statistical analysis of the
quantitative evaluation, the weight was set to 1/K,, , in (6), which is
feasible when considering the specific objective and the characteristics
of the data in this study. Finally, some interesting statistical analysis are
limited by the amount of the collections, such as the quantitative eva-
luation of the real experiments. It is noteworthy that the quality eva-
luation is one of an open problem for pansharpening. For example, a
method performs good in the simulated experiment may be poor in the
real experiment in some case. Although a quantitative evaluation result
of the simulated experiment cannot fully represent the performance of
the pansharpening methods in the real experiments, the overall per-
formance between them will not vary substantially. In addition, Palsson
etal. [117] have demonstrated that the consistency property in the real
experiments and the synthesis property in the simulated experiments
show high correlated for the ranking of the pansharpening methods. In
addition, it should be noted that some non-reference evaluation indices
have been proposed for the real experiments, such as the popular QNR
[118] and GQNR [119] metrics, etc. However, Palsson et al. [117]
demonstrated that the QNR metric cannot effectively reflect the per-
formance of the pansharpening methods, and it is also limited by the
spectral rang between the PAN and MS images [119]. In addition, the
efficiency of the pansharpening methods has not been statistically
analyzed. This is because the efficiency was generally not reported in
most of the articles, and hence the amount of corresponding statistical
data is insufficient. However, to the best of our knowledge, most of the
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VO-based pansharpening methods are less efficient than the CS-based
methods and the MRA-based methods, especially for datasets of large
dimensions. In comparison, the CS-based methods and the MRA-based
methods are more suitable for practical engineering applications, and
the CS-based methods are generally routinely used duo to their greater
robustness to MS-to-PAN misalignments.

In addition, there is an interesting phenomenon that the CS-based
pansharpening methods and the MRA-based pansharpening methods
show similar statistical results, and this is different from the general
understanding that the CS-based methods tend to bring serious spectral
distortions. To the best of our knowledge, it is because the general
understanding on the performance of the CS-based methods is still
based on the traditional pansharpening methods or a particular part of
the popular pansharpening algorithms, such as the IHS pansharpening
method, the PCA pansharpening method, and the GS pansharpening
method, etc. However, it should be noted that the CS-based methods
have been improved, and a number of state-of-the-art methods have
been proposed. Especially since 2000, the CS-based methods have been
simplified and generalized into the unifying framework, and various
advanced strategy can be applied to improve their performance.
Therefore, the approaching performance of the advanced CS-based
methods to the MRA-based methods is understandable and encoura-

ging.

5. Future challenges

As the above description, the pansharpening methods have went
through a remarkable development over thirty years, and numbers of
pansharpening methods have been developed. However, at the present
time, there are still many open-ended problems. In this section, we put
forward some future challenges on this topic.

5.1. Difference of the spectral response between MS and PAN images

This has been one of the main reasons to cause the distortions for
pansharpening. Such as most of the popular pansharpening methods
can be directly applied to the fusion of HR PAN and 4-band LR MS for
IKONOS, QuickBird, GaoFen-1/GaoFen-2 satellite images; however,
what about the fusion of all the spectral bands of the MS and PAN
images for the WorldView-2, Landsat-8 OLI, and Sentinel-2? Most of the
popular pansharpening methods maybe perform worse in these cases.
This is because only part of the MS spectral bands are covered by the
spectral range of the PAN image, the larger difference of the spectral
response, the less correlation between images to be fused, and generally
the worse of the fusion performance. Therefore, how to design more
effective pansharpening methods to overcome the difference of the
spectral response between MS and PAN images is a challenging work.
Future exploration in this direction can be further conducted.

5.2. MS-to-PAN misalignments with moving objects

The misalignments generally introduce spatial artifacts of the fused
image, and this has been one of the key problems in pansharpening
[120], especially for the MRA-based methods. The misregistration
problem is generally inevitable for very high-resolution remote sensing
images, especially for the images located in city region with moving
objects existed. For these images, geometrical registration can be per-
formed to satisfy the general fusion requirements for most regions;
however, it seems to be helpless to realize a high precise registration for
the local regions with moving objects, such as vehicles. Though the CS-
based methods are relatively robust to MS-to-PAN misalignment, this
will also affect the spectral fidelity of the fused image to some extent.
Therefore, future exploration on pansharpening methods with greater
robust to MS-to-PAN misalignments should attract more attentions.
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5.3. Application-oriented pansharpening methods

To date, a number of pansharpening methods have been developed;
however, few algorithms can be applied to engineering applications. On
the one hand, for the CS-based and MRA-based methods, several pop-
ular pansharpening methods have been commercialized in some pro-
fessional software; however, most of them generally introduce spectral
distortions. On the other hand, for the VO-based methods, they gen-
erally have higher fusion accuracy as shown above; however, the low
efficiency has seriously hindered their applications, especially the fu-
sion tasks for large regions. In addition, though many pansharpening
methods have been proposed, most of them don't have good robustness
to remote sensing images from different scenes. Therefore, on the one
hand, it is incontrovertible that the fast high-fidelity pansharpening
methods should be further developed to satisfy the engineering appli-
cations. On the other hand, it is noteworthy that, in fact, different ap-
plications may have different requirements for more spectral fidelity or
more spatial enhancement. Therefore, the development of the appli-
cation-oriented pansharpening methods should attract more attentions.

6. Conclusion

This paper has presented a comprehensive review of the pan-
sharpening methods for remote sensing images. In addition, the per-
formance of the three main categories of pansharpening methods, i.e.,
the CS-based methods, the MRA-based methods, and the VO-based
methods developed between 2000 and 2016, has been innovatively
statistically analyzed based on the articles ever published. Nevertheless,
the future work can potentially expand the research into the perfor-
mance evaluation of the individual methods within each category of
pansharpening methods, and the specific factors, such as the different
ground features, for the pansharpening methods.
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