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The absence of a high-quality seamless global digital elevation model (DEM) dataset has been a challenge
for the Earth-related research fields. Recently, the 1-arc-second Shuttle Radar Topography Mission
(SRTM-1) data have been released globally, covering over 80% of the Earth’s land surface (60°N-56°S).
However, voids and anomalies still exist in some tiles, which has prevented the SRTM-1 dataset from
being directly used without further processing. In this paper, we propose a method to generate a seamless
DEM dataset blending SRTM-1, ASTER GDEM v2, and ICESat laser altimetry data. The ASTER GDEM v2
data are used as the elevation source for the SRTM void filling. To get a reliable filling source, ICESat
GLAS points are incorporated to enhance the accuracy of the ASTER data within the void regions, using
an artificial neural network (ANN) model. After correction, the voids in the SRTM-1 data are filled with
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SRTM-1
ASTER GDEM the corrected ASTER GDEM values. The triangular irregular network based delta surface fill (DSF) method
ICESat/GLAS is then employed to eliminate the vertical bias between them. Finally, an adaptive outlier filter is applied

to all the data tiles. The final result is a seamless global DEM dataset. ICESat points collected from 2003 to

2009 were used to validate the effectiveness of the proposed method, and to assess the vertical accuracy

of the global DEM products in China. Furthermore, channel networks in the Yangtze River Basin were also

extracted for the data assessment.

© 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier
B.V. All rights reserved.

1. Introduction and Reuter, 2011). This dataset is the only DEM that covers ~99%

of the entire land surface at a high resolution, but the accuracy

Digital elevation model (DEM) data have been widely applied in
scientific fields such as ecology (Kellndorfer et al., 2004; Nasset
et al., 2016), agriculture (Fu and Rich, 2002), and hydrological mod-
eling (Wechsler, 2007; Zheng et al., 2015). With the development
of remote sensing and photogrammetric techniques, DEMs now
mainly refer to elevation data stored as regularly gridded elevation
values, based on remote sensing observations (Robinson et al.,
2014).

There are a number of DEM products available for global Earth
observation and analysis. The Advanced Spaceborne Thermal Emis-
sion and Reflectance Radiometer Global Digital Elevation Model
(ASTER GDEM) is a product generated from optical data collected
by the ASTER instrument onboard NASA’s Terra satellite (Hengl
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of the ASTER GDEM has attracted controversy due to the anomalies
and noises caused by the limitations of the optical imaging
(Tachikawa et al., 2011a,b; Mukherjee et al., 2013). Comparatively,
the Shuttle Radar Topography Mission (SRTM) DEM is the most
commonly used data source due to its relatively stable accuracy
(Yang et al., 2011). This near-global dataset was generated based
on spaceborne radar measurements collected in 2000 (Jarvis
et al., 2008). However, data voids are common in the mountainous
regions with large slope angles due to the squint mode of the SAR
imaging (Crosetto, 2002; Toutin, 2002; Baselice et al., 2009). After
void filling, SRTM-3 v4.1 was publicly released with a 1-arc-second
(~30 m) resolution in the U.S and a 3-arc-second (~90 m) resolu-
tion in the rest of the world. More recently, the 1-arc-second global
SRTM-1 data product has been released; however, voids still exist
in some tiles of complex terrain. Other commonly used global DEM
products include the Global 30-Arc-Second Elevation Data Set
(GTOPO30) (USGS, 1996), the Global Multi-resolution Terrain
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Elevation Data 2010 (GMTED2010) (USGS, 2010), NEXTMAP
WORLD 30™ (Tighe and Chamberlain, 2009) and WorldDEM™
(2014). Among them, the 30-m NEXTMAP WORLD 30™ and the
12-m WorldDEM™ have not yet been freely available to the public.
Furthermore, the Geoscience Laser Altimeter System (GLAS)
onboard NASA’s Ice, Cloud and Land Elevation Satellite (ICESat)
provides global laser points with high-accuracy elevation informa-
tion (Schutz et al., 2005).

There has been extensive research into the assessment of the
main public global DEM products (Athmania and Achour 2014;
Wang and Wang 2015). Due to the limited spatial resolution of
GTOPO30 (~1 km) and GMTED2010 (30, 15, and 7.5 arc seconds),
the two datasets cannot satisfy some application demands. There-
fore, researchers have mainly focused on the accuracy comparison
of the SRTM-3 data and the ASTER GDEM (Hirt et al., 2010; Li et al.,
2013; Mukherjee et al., 2013; Satgé et al., 2015; Wang and Wang,
2015). The vertical accuracies of both these DEM datasets are clo-
sely related to slope and terrain roughness (Toutin, 2002). It is gen-
erally acknowledged that the SRTM-3 data are superior to ASTER
GDEM in terms of vertical accuracy in the low-relief areas
(Jacobsen, 2010; Zhao et al., 2011; Li et al., 2013), while the ASTER
GDEM shows a better performance in some mountainous areas
than the SRTM-3 data, which is probably due to the inaccurate void
filling of the SRTM-3 data (Li et al., 2013; Yue et al., 2015). The ver-
tical accuracy of ICESat GLAS data points can reach a sub-meter
level; however, the sparsely distributed GLAS points are separated
by intervals of nearly 170 m along-track and several kilometers
across-track (Zhang et al., 2011).

With the growing demand for the monitoring of Earth surface
changes, the absence of a high-quality seamless global DEM data-
set has been a challenge for the Earth-related research fields
(Robinson et al., 2014). On one hand, modern imaging technologies
have been applied to Earth observation, and new DEM products are
being generated and released (Fritz et al., 2012; Tadono et al.,
2015). On the other hand, the analysis and improvement of the
currently available datasets also make sense (Reuter et al., 2007,
Arefi and Reinartz, 2011; Yue et al., 2012; Robinson et al., 2014).
Reuter et al. (2007) presented a void-filling strategy in conjunction
with other sources of elevation data using a range of interpolation
algorithms. The SRTM-3 v4.1 data were processed following the
method described by Reuter et al. (2007). However, the accuracy
of the void-filled results are still unstable as validated in the
related works (Li et al., 2013; Yue et al., 2015). Arefi and Reinartz
(2011) tried to utilize ICESat data to improve the accuracy of ASTER
GDEM data. Given the sparse distribution of the ICESat data, it is
difficult to control the accuracy of the corrected ASTER tiles with-
out sufficient reference points using an ordinary Moving Average
interpolation method. Robinson et al. (2014) reconstructed a new
90-m DEM product by integrating multi-scale DEM products
(1-arc ASTER GDEM v2, 3-arc SRTM-3 v4.1 and 3-arc GLSDEM).
Nevertheless, they did not fully consider the unstable filling results
in SRTM-3 v4.1, and the spatial resolution of the final product is
limited (only 90 m). In addition, the method only used information
from GLSDEM to fill the voids of ASTER GDEM at high latitudes,
ignoring the low accuracy of the auxiliary data within the voids.

On the whole, there are two main limitations among these
works presented. Firstly, most of the researchers focused on
SRTM-3 and ASTER GDEM v2, which are the most popular global
DEM datasets. However, the ASTER GDEM is severely affected with
random noise and anomalies, while the previously released SRTM-
3 v4.1 dataset is limited by the 3 arc second resolution and the
inaccurate void-filling results. Secondly, there are few works incor-
porating the high-quality elevation data in addition to the raster
DEM datasets into the process of multi-source data fusion.

Given these facts, the fusion of multi-source and multi-scale
data to generate a high-quality seamless DEM product is still

challenging. For the first issue, the release of the global 1-arc
SRTM-1 dataset can be considered as progress. As voids and
anomalies still exist in some tiles, the current SRTM-1 data cannot
be directly used without further processing. Nevertheless, with the
release of the high-resolution SRTM-1 data, there is now a chance
to generate a DEM product with a high resolution, a global extent,
and a reliable accuracy, by integrating multi-source elevation data.
Given the comparative resolutions and the same project coordinate
system, the ASTER GDEM v2 can be regarded as a good elevation
source for SRTM-1 void filling. Moreover, ICESat laser points can
be incorporated to correct the inaccurate elevation values in the
ASTER data within the void regions considering the relatively low
accuracy in the rugged terrain.

This paper intends to convey a processing method to generate a
high-resolution, high-quality, and seamless global DEM product
blending the recently released global SRTM-1 dataset, the
optical-derived ASTER GDEM v2, and ICESat GLAS data points. To
correct the ASTER elevations using the ICESat points, it turns out
to be a point-surface fusion problem on account of the large spac-
ing between the ICESat data. The common solution is to generate a
correction layer using an interpolation method (Arefi and Reinartz,
2011; Verdin et al., 2015), while the ICESat points are used as
ground control points (GCPs). Nevertheless, the distance between
the scanning tracks of the ICESat data results in significant errors.
In this paper, we employ an ANN model to simulate the relation-
ship between the ICESat and ASTER GDEM data, followed by a void
filling process. Furthermore, an adaptive outlier filter is applied to
reduce the anomalies for the non-void areas in the SRTM-1 data.

The rest of the paper is organized as follows. Section 2 gives a
detailed description of the data used. In Section 3, we provide
the details of the processing flow. The results after void filling
and correction are analyzed in Section 4. Finally, Section 5 provides
the conclusion.

2. Datasets

In this paper, we integrate multi-source elevation data for the
generation of a seamless global DEM dataset. The data sources
include the 1-arc SRTM-1 DEM, the 1-arc ASTER GDEM v2, and
the ICESat GLAS land elevation product. Meanwhile, the SRTM-3
DEM data are also included for the accuracy validation and com-
parison. The specific characteristics of the datasets are provided
in the following.

2.1. SRTM data products

The SRTM was an international project conducted by NASA and
the National Geospatial-Intelligence Agency (NGA) in February
2000 (Van Zyl, 2001). The 11-day mission acquired data via radar
interferometry using an onboard/outboard antenna system and
single-pass data acquisition, which were used to generate near-
global land elevation data products. The SRTM was successful in
collecting elevation data over 80% of the Earth’s land surface
(60°N-56°S) (Farr and Kobrick, 2000). There are two main global
SRTM DEM datasets with different levels of processing.

The original SRTM elevation data were processed from C-band
radar signals spaced at intervals of 1 arc seconds at NASA’s Jet
Propulsion Laboratory (JPL). However, the original data for regions
outside the U.S were released at 3 arc seconds for open distribu-
tion, and are referred to as the SRTM-3 data. Since its original
release, the SRTM-3 dataset has been updated several times for
quality improvement. The most commonly used SRTM-3 v4.1
was released by the Consortium for Spatial Information of the Con-
sultative Group of International Agricultural Research (CGIAR-CSI)
after data improvement and void filling, and distributed as 5° x 5°



22 L. Yue et al./ISPRS Journal of Photogrammetry and Remote Sensing 123 (2017) 20-34

tiles (Jarvis et al., 2008). The vertical error of the DEM was reported
to be less than 16 m at the 90% confidence level based on the
WGS84 horizontal datum and EGM96 vertical datum (Gamache,
2004).

The SRTM-1 global dataset has been released since September
2014. This newly released dataset provides worldwide coverage
of void-filled high-resolution elevation data. However, it still con-
tains large amounts of voids in mountainous regions and areas
where the initial processing did not satisfy quality specifications
(Pipaud et al., 2015). The SRTM-1 global data are distributed as
1° x 1° tiles.

2.2. ASTER GDEM v2

As mentioned before, the ASTER GDEM product was jointly pro-
duced by NASA and the Japanese Ministry of Economy, Trade and
Industry (METI), based on the measurements collected by NASA’s
Terra satellite. The original ASTER GDEM1 data were generated
employing over 1.2 million observed scenes covering land surfaces
from (83°N to 83°S). The overall accuracy of the GDEM1 data is
around 20 m at the 95% confidence level, as assessed by a joint
U.S./Japan validation team (ASTER Validation Team, 2009). Incor-
porating an additional ~260,000 scenes, the current version is
the second data product after resolution improvement and water
body coverage refinement, with a resolution of 1 arc second
(~30 m) referenced to the WGS84/EGM96 geoid. The ASTER GDEM
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v2 data were distributed as 22,702 1° x 1° tiles. The dataset covers
a nearly global geographic extent, with an accuracy of 17 m at the
95% confidence level (Tachikawa et al., 2011a,b). However, it is
known to be influenced by a variety of artifacts and anomalies that
limit its use without any further preprocessing. With the elevation
measured from the Earth’s reflective surface, the accuracy of the
ASTER GDEM V2 is sensitive to the land-cover type, such as forest
canopy or buildings (Arefi and Reinartz, 2011).

A comparison of the three datasets is shown in Fig. 1. The sam-
ple data are from a small area (elevation from 614 to 1815 m) with
relatively rugged terrain in Sichuan province, China. It can be seen
that the SRTM-3 data cannot clearly reflect the details of the ter-
rain surface, while the ASTER GDEM is significantly affected by
noise. Moreover, the SRTM data show obvious advantages in delin-
eating topographic feature lines, compared with the other two
datasets.

2.3. ICESat GLAS

The GLAS system was the laser scanning instrument carried
onboard NASA’s ICESat satellite launched in January 2003. The ICE-
Sat science mission started in 2003, and ended due to the failure of
its instrument seven years later (Satgé et al., 2015). The primary
objective of the GLAS instrument was to measure ice sheet eleva-
tion and elevation changes over time. The secondary products
included measurements of cloud and aerosol height profiles, and

Fig. 1. A comparison of the three global DEM datasets in a sample area (elev: ~614-1815 m). From left to right: 90-m SRTM-3, 30-m ASTER GDEM v2, and 30-m SRTM-1 data,

respectively.
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Fig. 2. The spatial extent of the ICESat tracks collected in March 2003.
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land elevation and vegetation cover (http://nsidc.org/data/icesat).
In this paper, we utilize the GLAS/ICESat L2 Global Land Surface
Altimetry Data Version 34 (GLAH 14) for the DEM accuracy
enhancement and assessment. The GLAS instrument produced
laser spots on the Earth’s surface with a 70-m diameter. Fig. 2
shows the spatial extent of the ICESat tracks collected in March
2003, where it can be seen that the data points distribute over
the entire land surface of the Earth. The spacing between the
along-track points is nearly 170 m, while the cross-track spacing
varies from several kilometers to several tens of kilometers, based
on the latitude (Abshire et al., 2005).

The vertical accuracy of the GLAS points can be better than 1 m
(Zhang et al., 2011). However, outliers caused by poor acquisition
conditions, such as cloud reflections and saturated waveforms,
need to be filtered and the accuracy needs to be refined before
using the ICESat elevation products (Huber et al., 2009; Arefi and
Reinartz, 2011). The GLA14 data provide the centroid height of
the return echo, and offer parameters related to the return pulse
characteristics and the measurement conditions (NSIDC, 2014).
Different criteria have been proposed to select ICESat samples sat-
isfying the accuracy demand in various applications (Huber et al.,
2009; Gonzalez et al., 2010). The principal parameters of the GLAS
data include the number of Gaussian peaks, the surface slope and
roughness, the cloud layers, the pulse energy, and the surface type
(Arefi and Reinartz, 2011). Furthermore, the reference geoid needs
to be converted to be consistent with the SRTM and ASTER data,
from TOPEX/Poseidon to WGS/EGM96 (Baghdadi et al., 2011).
The specific processing flow is explained in Section 3.1.1.

3. Processing flow

The general processing flow of the proposed approach is shown
in Fig. 3, and consists of the following steps. Firstly, for each DEM
tile (1° x 1°) with voids in the SRTM-1 data, the accuracy of the
ASTER GDEM is enhanced using the high-accuracy ICESat data.
The accuracy enhancement process is performed with an ANN
model. After the accuracy enhancement, the SRTM voids are filled
with the corresponding corrected ASTER GDEM values. The trian-
gular irregular network (TIN)-based delta surface fill (DSF) method
(Luedeling et al., 2007) is then utilized to remove the vertical bias
between the SRTM data and the corrected ASTER GDEM surfaces.
Finally, postprocessing is performed with an outlier filter applied
to all the data tiles, including the non-void tiles. All these process-
ing steps contribute to a continuous global DEM product with
improved quality. The specific details of the processing flow are
described in the following.

3.1. Accuracy enhancement of the ASTER GDEM using ICESat GLAS
data

3.1.1. Processing of the ICESat GLAS data
Before the accuracy enhancement, the ICESat GLAS data first
need to be preprocessed. ICESat elevations correspond to the

|
| /ASTER GDEM //ICESat GLAS
! 2

|
| |
| | Accuracy enhancement :
! |

using ANN

o e

ellipsoidal heights with reference to the TOPEX ellipsoid. For the
fusion with the SRTM-1 and ASTER GDEM data, the reference
datum needs to be converted to the WGS84 geographical coordi-
nate system and the EGM 96 geoid model. The difference in geode-
tic latitude and longitude produces a horizontal displacement of
less than a meter, which can be ignored. The vertical datum con-
version from the TOPEX ellipsoid to the WGS84 ellipsoid can be
approximated by hwcssa = hropex — 0.707 m (Baghdadi et al., 2011).
The ellipsoidal elevations (hygss4) are then converted to orthomet-
ric elevations H = hygsgss — N, where N is the EGM96 geoid value
(Bhang et al., 2007).

After the datum conversion, the GLAS points need to be filtered
to exclude the low-quality outliers. Theoretically, the outliers can
be detected with the provided parameters referring to the data
structure (Gonzalez et al., 2010). In this paper, our main target is
to select the ICESat laser points whose accuracy meets the SRTM
requirements. The outliers with gross errors caused by cloud
reflections and atmospheric noise during the time of data acquisi-
tion are the main concerns. The commonly used criteria for erro-
neous points filtering are considered, including the number of
peaks, the signal width and the received energy (Huber et al.,
2009; Arefi and Reinartz, 2011). Specifically, the 6-peak points
are removed to eliminate most forest points. Moreover, the points
with received energy lower than 10 f] and a signal width of less
than 25 m are selected. In addition, a threshold for the height dif-
ference between the ICESat values and the corresponding reference
DEM datasets is also set to filter the ICESat measurements. The ICE-
Sat points are excluded from the analysis if the difference between
the ICESat data and both the ASTER GDEM and SRTM data exceeds
200 m.

3.1.2. Accuracy enhancement using the ANN model

An ANN can be a powerful tool to derive meaning from compli-
cated datasets, no matter how the errors are distributed or what
the relationship is between the data (Hsu et al., 1995; Luk et al,,
2000; Oztopal, 2006). With the help of the ANN's remarkable abil-
ity to learn the statistical information from a training dataset com-
posed of the corresponding ASTER GDEM and ICESat GLAS data, the
ASTER GDEM values with a similar pattern to the training samples
can be corrected accordingly.

The structure of a feed-forward ANN is shown in Fig. 4. The
network usually consists of a number of neurons connected by
links through several layers. It can be characterized as parallel
interconnections of cross-layer neurons, which link the input
and output data through a set of weighted transfer functions.
By creating a network with r input neurons, s hidden neurons,
and p output neurons, the corresponding variables for the input
training samples are defined as x = (x1,...,x;), h= (hy,...,h),
and 0 = (04,...,0p). The output for each layer can be calculated
as:

h = f, (ijfwg + ﬁ,-) o =f> <2]:th}1 + rk> (1)
1= =

Void tiles > TIN delta surface ‘—y/ Filled data

f SRTM1 Global /

Postprocessing Processed dataset

Nonvoid tiles

Fig. 3. The flow chart of the whole framework.
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Fig. 4. The structure of a feed-forward ANN. The expected output is obtained with signal feed-forward propagation, while the weight is adjusted iteratively through error

back-propagation.

where w{j'. indicates the weight for the link from the input neuron x;
to the hidden neuron h;, and wj, is the weight for neurons h; and oy.
p; and 1 represent the bias for neurons h; and oy, respectively. In
the above equation, f;(-) and f,(-) indicate the transfer functions,
which are used to simulate the relationship between the connec-
tions. The transfer functions are continuous and bounded, and are
usually chosen from linear, logistic, and sigmoid functions. The
error function obtained using the actual output and the ideal output
can be minimized by adjusting the weight matrix. A back-
propagation (BP) algorithm is usually used for the optimization
problem, with the output errors propagated backwards through
the network, and changes are made to the weights in each layer
to reduce the error signal (Zhang et al., 2008). Each weight is
updated in the nth iteration as:

on+1 __ n_ OE
wytt = w}’k n ow,

(2)

hn+l _ yohn _ 40 OF
Wit = Wi Mown

In this equation, E = 3, (y, — 0x)” is the error function calcu-
lated with the target vector y and actual output o. The changes
of the weight are determined by the learning rate #, which is a
parameter that influences the speed and quality of the learning.
A higher learning rate causes faster iteration and more accurate

%

Target vector

training; however, this sometimes leads to overfitting in the train-
ing process.

Specifically, in our case, the ICESat data collected from 2003 to
2008 are used as the training dataset, while the data points in 2009
are used for the result validation after the accuracy correction. For
each ASTER tile, we extract the neighboring patch of every pixel
where an ICESat point is located. The extracted patch is then con-
verted to an input vector corresponding to the target ICESat value.
Through traversing every ICESat point, we can obtain the input
matrix, which is composed of the extracted input vectors. The ICE-
Sat data points are used to construct the target vector, as shown in
Fig. 5.

In addition to the ASTER values, we also incorporate slope infor-
mation and the spatial location (latitude and longitude coordi-
nates) to construct the training dataset. The slope information is
related to the varying terrain relief. Generally, the anomalies occur
more often in the rugged terrain with large slope. However, not all
the data points within the high-slope relief are contaminated with
large errors (Li et al., 2013). To avoid introducing errors to the nor-
mal values, spatial information is included in the model. The neigh-
boring coordinates can reflect the similar spatial pattern, thus
taking the influence of spatial variation into account. The combina-
tion of terrain variation and spatial information can help us to
learn the relationship between the ASTER GDEM values and the

=8 u

Target value

Input vector

. B

B

Input matrix

Fig. 5. Training sample construction for the ANN model.
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Fig. 6. The ANN model of accuracy enhancement for the ASTER GDEM.

control points. Fig. 6 shows the ANN enhancement model. A super-
vised BP neural network is created to learn the approximated rep-
resentations of the input ASTER GDEM data to the high-accuracy
ICESat values from the normalized training set. After the training
process, the optimal weight matrix can be obtained, and thus other
pixels without ICESat points located can also be mapped based on
the learned representations as the test data.

There are several parameters in the ANN enhancement model,
including the neurons for each layer, the transfer function, the
learning rate, etc. The parameters are chosen empirically. In our
experiments, the “purelin” function is adopted for the transfer
function. The learning rate for the training process is set as 0.001.

Fig. 7. The distribution of the ICESat data over data tile numbered ‘N28E086’. The
3788 points within the rectangle area are excluded from the training process and
are used for the independent test validation, while the remaining 15845 points are
used as the training dataset.

3.1.3. Model performance validation

During the training process, the network randomly divides the
training dataset into three parts, which are respectively used for
training, validation, and testing. The validation set is mainly used
to minimize overfitting by tuning the parameters during the train-
ing process, while the test set plays the role of assessing the perfor-
mance of the trained network (Ripley, 2007). However, considering
the zonal distribution of the ICESat points, the random divided sets
with neighboring spatial locations still cannot easily reflect the real
predictive ability of the ANN model. Therefore, we further validate
the model performance by manually separating the reference data
points into two parts for training and testing, respectively.

An example is given in Fig. 7. In Fig. 7, all the points within the
rectangular area are excluded from the training process and are
used for the independent testing. Hereafter, they are called the “in-
dependent test dataset”. The remaining points outside the rectan-
gle, which are referred as the “training dataset”, are input into the
ANN model. The assessment results are given in Table 1, where the
root-mean-square error (RMSE) values of both the training and
independent test datasets are calculated. For a better comparison
and analysis, the results of the original ASTER data, the ordinary
multiple linear regression (MLR) and the ANN method using differ-
ent amounts of training data are also presented. The percentage
numbers in the brackets indicate the training dataset proportion.
For example, in the case of “10%”, 10% of the points in the training
dataset are randomly chosen for training, while the other 90% are
used for the validation and test set in the ANN model. In the case
of the MLR model, all the points in the training dataset are involved
in the regression process, and obtained a closed-form solution of
the estimated weights.

It can be seen from the table that the test accuracy of the MLR
result shows a weak predictive ability of the MLR model. With suf-
ficient training samples, the ANN model performs better than the
MLR method. There is an improvement in the ANN results as the
training samples increase, which is mainly reflected in the inde-
pendent test accuracy. The quantitative results become stable
when 50% of the training points are involved in the training pro-
cess. Given the quite different spatial coverage of the training

Table 1

The validation results of the training process.
Unit: m ASTER MLR ANN (1%) ANN (10%) ANN (50%) ANN (70%)
RMSE_train 23.753 22.840 21.934 20.746 20.593 20.579
RMSE_test 23.225 23.928 24.892 22.339 22.100 22.031
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and independent test datasets, the test results can provide us with
some more reliable information about the predictive ability of the
model.

In addition to the sample case, a great variety of experiments
are also conducted to validate the model performance. The exper-
imental results confirm that the simulation process performs well.
In the tiles with sufficient ICESat points, the assessment results
using the ICESat training dataset and the independent test dataset
are comparative, which indicates that the neural network is cap-
able of predicting the relationship between the DEM data and
the target laser points through learning from the training set.

3.2. Void filling of the SRTM-1 data and delta surface calculation

Considering the error distribution of the DEM datasets and the
spatial coverage of the ICESat data, only the void regions with a rel-
atively low accuracy (and the bordering pixels) are corrected using
ICESat points. After the accuracy enhancement, the voids of the
SRTM-1 data can be filled with the corresponding corrected ASTER
GDEM values.

The crux of the void-filling problem is a reliable source of auxil-
iary data and the method used to eliminate the bias between the
datasets (Ling et al., 2007; Karkee et al., 2008). The main methods
used to deal with the vertical bias in multi-source DEM fusion
include fill and feather (FF) (Dowding et al., 2004), DSF (Grohman
et al., 2006), and TIN-DSF (Luedeling et al., 2007). The FF algorithm
simply uses a constant to approximate the bias, which ignores the
varying terrain surface within the void regions. Comparatively,
the DSF method uses the non-void values in the surface to compute
the difference surface between the input data, referring to a “delta
surface”. The voids in the delta surface are then filled using a geo-
statistical interpolation method, considering the local surface trend
(Grohman et al., 2006). However, this method is only optimal for
small voids. A more promising method is the TIN-based DSF
method, which quantifies the pixel-specific difference between
the surfaces based on the TIN base surface (Luedeling et al., 2007).

Among these methods, TIN-DSF can deal with the variable ter-
rain surface within the voids by utilizing the available height infor-
mation, thus obtaining more promising results. Following the idea
of the TIN-DSF method (Luedeling et al., 2007) (Fig. 8), the SRTM
surface is merged with the corrected ASTER GDEM data in this

VoID

A

()
g

(d)

Auxiliary data source

paper. The DSF method computes an adjustment of the fill source
to the SRTM. As no SRTM data information is provided in the void
regions, the neighboring valid elevations are incorporated to esti-
mate the delta surface. The detailed steps of the method are as fol-
lows. Firstly, we create two base surfaces using the points
bordering the voids from both the SRTM data and the corrected
ASTER GDEM data with the natural neighbor interpolation method,
as shown in Fig. 8(c). The bordering pixels are extracted in a buffer
zone of five pixels around the data voids. The delta surface
between the ASTER surface and the ASTER base surface can then
be obtained. Assuming that the surface morphology of the ASTER
and SRTM data are basically consistent within the region, the rela-
tive elevation delta surface for the ASTER DEM can be applied to
the SRTM model. To avoid any abrupt changes in the elevation dif-
ferences and the errors brought about by the interpolation method,
the delta surface is then filtered to obtain a relatively smooth sur-
face. Finally, a seamless merged elevation model can be acquired
by adding the delta surface to the SRTM base surface as:

Sc =5y +Ac— Ay 3)

where S, and A, indicate the base surface of the SRTM and ASTER
data, respectively. Ac is the corrected ASTER values obtained within
the void regions. The whole process is also illustrated in Fig. 8. Con-
sidering that some pixels bordering the voids are contaminated
with noise, a slight feathering is performed to smooth the transi-
tional regions.

3.3. Postprocessing

After all the tiles with voids have been filled following the
above process, we post-process all the tiles using an adaptive out-
lier filtering algorithm. This helps to reduce the noise and outliers
in the corrected DEM data. For every pixel, a neighborhood patch
(5 x 5) surrounding the central pixel is extracted. Through calcu-
lating the difference between the neighboring pixels and the cen-
tral pixel, the number of pixels whose difference is greater than
twice the standard deviation can be counted. If 75% of the elevation
difference values within the patch are counted as above the thresh-
old, or the height value is clearly abnormal (e.g. above 8850 m), the
central pixel is classified as an outlier. The corresponding pixel is
filtered by averaging the neighboring pixels. This algorithm is sim-

Base surfacel

Base surface2

Void filled
d

©

Fig. 8. An illustration of the process of delta surface calculation. (a) represents a projected DEM surface with voids, while (b) indicates that the auxiliary data source for void
filling might be mismatched with the original surface due to the varying vertical bias, and (c) illustrates the process of creating a delta surface with the TIN base surface. A
comparison of the original filling source and the filled result using the TIN-DSF method is shown in (d).
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Fig. 9. Color map of the topography of most of the China land surface. (a) represents the elevation map of SRTM-1 with voids, while (b) is the processed dataset. The
highlighted parts in (b) are the study areas for the accuracy assessment: the Tibet Autonomous Region (yellow) and the Xinjiang Uygur Autonomous Region (blue).

ple to implement and can avoid excessive smoothing of the
detailed terrain information.

4. Results and analysis

The final processed dataset comprises seamless SRTM-1 land
elevation data covering 60°N to ~56°S globally. In this paper, the
accuracy of the processed dataset within China is analyzed in
detail, while the ASTER GDEM v2 and the SRTM-3 data are included
in the comparison. For a more detailed and comprehensive accu-
racy analysis, all the valid ICESat laser points collected from 2003
to 2009 are used as reference data for the validation.

4.1. Study area

The landscape of China is vast and diverse, ranging from coastal
plains to high-altitude plateaus, covering over 9.6 million square
kilometers. In Fig. 9, most of the land area of China is shown
(except the sea areas and some small islands), where it can be
observed that the elevation basically increases from the eastern
coastal area to the western mountainous area.

The voids in the original SRTM-1 global data are shown in Fig. 9
(a). We can see that the voids mainly occur in the western part of
China, where the high elevation and varying slopes result in rugged
terrain. Specifically, there are 85 tiles with voids in China, which
are mainly distributed in the Tibet Plateau, the Hengduan Moun-
tains, and the edge of the basins in the Xinjiang Uygur Autonomous
Region. Among the tiles, three are contaminated with over 30%
void pixels. The total number of void regions within China is
172,503, which are composed of 95,255,394 void pixels in total.
Among them, 7.9% of the voids are small with less than 20 pixels,
while 20.7% of the voids are relatively large with over 200 pixels.
Void filling and accuracy improvement was conducted for the
SRTM-1 data tiles in China by incorporating the ASTER GDEM
and ICESat GLAS data, following the processing flow described in
Section 3. A color map of the seamless data after processing is
shown in Fig. 9(b). In the next sections, we present both the visual
performance and the vertical accuracy assessment of the processed
data. Two sample areas (the highlighted regions in Fig. 9(b)) are
chosen for a detailed analysis. Furthermore, a channel network
extracted from the datasets is also given for assessment.

4.2, Vertical accuracy assessment and analysis

The assessment of the processed data was performed over the
whole of China and within two sample regions in China: the Tibet
Autonomous Region and the Xinjiang Uygur Autonomous Region.
Both of these regions are located in the western part of the Chinese
mainland, where data voids are common due to the complex ter-
rain. Firstly, the overall accuracy comparison of the global DEM
products in China is given, followed by the detailed analysis of
the processed dataset in the Tibet and Xinjiang regions. Three
indexes are employed for the vertical accuracy: the mean absolute
error (MAE), the standard deviation (SD), and the RMSE. We denote
d as the elevation error calculated by the difference between the
corresponding DEM value and the reference data, and n as the
number of validation samples, so:

L ldi " (di - d)’ s
MAE:ZI:r:'dll’ SD: Zi:l (Cril' d) . RMSE: Z;;]d1 (4)

where d is the mean value of the error vector. Compared with the
MAE, the RMSE can reflect the error distribution more precisely,
especially where there are gross errors.

4.2.1. Overall accuracy assessment and discussion

We give the results of the overall accuracy validation of the
DEM datasets covering most of China (Fig. 9), shown in Tables 2
and 3. In China, over 15.27 million ICESat points were used for
the accuracy validation, while approximately 53,000 points were
distributed within the voids. The accuracy statistics for the void
and non-void regions are given separately in Table 2. In addition
to the processed data, the validation results of the ASTER GDEM
v2 and the SRTM-3 data are also given for comparison. The no-
data regions in the earlier releases of the SRTM-3 data were filled
following the method described by Reuter et al. (2007). The small
holes were filled by the use of interpolation algorithms, and then
the auxiliary DEMs were used for the large voids, with cleaning
of the surface to reduce pits and peaks. However, we previously
found that even when the voids in the SRTM-3 v4.1 data had been
filled, the accuracy of the void regions was still unreliable (Yue
et al., 2015).

The accuracy in the void areas is clearly affected by the anoma-
lies and errors, which are mainly brought about by the steep slopes
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Table 2
The accuracy statistics in China for the void and non-void areas.
Unit: (m) Void Non-void
ASTER SRTM-3 Processed ASTER SRTM-3 Processed
MAE 35.088 100.160 25.038 10.816 9.495 5.677
SD 119.320 183.690 54.380 18.960 19.804 14.563
RMSE 121.140 191.549 55.160 19.182 20.007 14.853
Table 3
The overall accuracy statistics in China.
Unit: (m) Overall
ASTER SRTM-3 SRTM-1 Processed
MAE 10.905 9.814 5.784 5.749
SD 20.249 22.809 16.215 14.918
RMSE 20.467 22.963 16.487 15.205

and rugged terrain. The accuracy of the SRTM-3 data is much lower
than the ASTER GDEM data within the void regions, which is prob-
ably due to the unreliable void-filling results in the earlier release.
After correction, the elevation values are more accurate in the
rugged terrain. Excluding the voids, the vertical accuracy is much
better and more stable. There is little difference between the statis-
tics for the SRTM-1 data and the processed dataset for the non-void
areas, because only a few outliers were filtered in these regions to
avoid introducing unnecessary errors. Given this fact, only the
results for the processed dataset are given here. The MAE of the
SRTM-3 data is slightly less than the MAE of the ASTER GDEM data
within the non-void areas, while the SD and RMSE values behave in
the opposite way. This indicates that the accuracy of the SRTM-3
data is more affected by gross errors, which might be due to the
fact that there are more voids in the unfilled SRTM-3 data than
the newly released SRTM-1 data. The errors introduced in the
void-filling process for the SRTM-3 data were not eliminated by
excluding the void regions in the SRTM-1 data. In Table 3, we com-
pare the overall accuracies, where the overall accuracy of the
SRTM-1 data was calculated with the voids filled directly using
the corresponding ASTER values. The improvement is clearly
reflected in the RMSE values. The overall accuracy of the processed
dataset obtained in this study in China is about 15.2 m. However,
the accuracy varies from region to region based on the terrain com-
plexity. As expected, the accuracy of the western areas with more
rugged terrain is below the overall average level, while the eastern
flat terrain has a relatively higher accuracy.

4.2.2. Tibet autonomous region

The Tibet Autonomous Region is located in the southwestern
part of China, spanning over 1.2 million square kilometers. It cov-
ers part of the Tibet Plateau, and is representative of harsh and
rugged terrain. The southern part of the Tibet Autonomous Region
is bounded by the Himalayas, while to the north there is a broad
mountainous area. The Tibet Plateau is known as “the roof of the
world”, and this region is the highest region on Earth (Ma et al,,
2008). In the northern part, the elevations reach an average of over
4500 m. The voids of the SRTM-1 data within China are distributed
mainly in this region (Fig. 10), where 31 1° x 1° data tiles contain-
ing 72285 void areas exist. There are 2.29 million valid ICESat data
points over this region, with about 14,000 points distributed
within the voids.

After void filling and accuracy improvement, the accuracy vali-
dation results of the datasets are shown in Table 4, where we pre-
sent both the accuracy of the void areas and the overall region. As
in the previous analysis, the accuracy of the DEMs is significantly
affected by the steep slopes, where voids are common. Although
the voids in the ASTER GDEM and the SRTM-3 products in the
rugged terrain have been filled, the datasets are still far from being
suitable for direct use without further processing. The MAE and
RMSE values indicate that the ASTER data might be more signifi-
cantly affected by anomalies or incorrect height values in this
region.

After correction using the ICESat laser points with more accu-
rate elevation information, the accuracies of the void areas show
90°00'E
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Fig. 10. The shaded relief map of the SRTM-1 data in the Tibet Autonomous Region (elev: —1-8833 m). The voids mainly occur in the southern part, and are shown as white

pixels. The blue tracks indicate the spatial coverage of the ICESat data points.
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Table 4
The accuracy statistics in the Tibet Autonomous Region for void pixels and the overall region, respectively.
Unit: m Void Overall
ASTER SRTM-3 Processed ASTER SRTM-3 SRTM-1 Processed
MAE 64.942 70.048 38.118 14.984 14.612 7.798 7.619
SD 214275 120.499 74.397 27.470 25.046 20.150 11.251
RMSE 218.326 120.697 76349 28.032 25.687 21.127 12.838
40 — . , —2800
—e—Void ratio . . L. .
- m—- Number of ICESat data | 2400 Uygur Autonomous Region, there are 26 tiles containing voids,
composed of 41,613 void areas. It can be seen from Fig. 14 that
2000 most of the voids are on the southern edge of this region. This is
s L1600 = because the extremely rugged Karakoram, Kunlun, and Tianshan
5 5 mountains occupy much of Xinjiang’s borders. The central part of
® 1200 & the Xinjiang Uygur Autonomous Region, which mainly consists of
2 00 desert landscapes, is divided into two large basins by the Tianshan
> mountain range (Yang et al., 2002; Jia et al., 2004). In this region,
400 there are over 3.84 million ICESat points for the accuracy valida-
Lo tion, with 20,709 reference points distributed within the voids.
. . . . . . Similar to Section 4.2.1, we give the accuracy statistics for the
0 5 10 - 15 b20 25 30 global DEM products in the Xinjiang Uygur Autonomous Region
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Fig. 11. Distribution of voids and ICESat points distributed within the voids in the
void tiles in the Tibet Autonomous Region.

an obvious improvement, with the number of outliers reduced,
compared with the original data. However, the errors cannot be
eliminated completely due to the limited accuracy of the original
data, as well as the influence of the complex topography. The over-
all accuracy is also validated in this region. The improvement in
MAE is relatively slight due to the small proportion of void pixels
compared to the total number of pixels, while the RMSE value
shows that the large errors are corrected and the accuracy shows
a significant improvement.

The statistical information for each data tile is also presented. In
Fig. 11, the red! curve shows the ratio of void pixels in each tile
(3601 x 3601), and the blue curve represents the number of ICESat
points distributed within the voids. Among the 31 tiles in the Tibet
Autonomous Region, there were five tiles where less than 50 ICESat
points were distributed within the voids, or the ratio of void pixels
was less than 0.05%. Therefore, the accuracy curves of the other 26
tiles are shown in Fig. 12 to avoid a biased conclusion due to insuffi-
cient data samples. It can be seen from the figure that the curves of
the SD and RMSE show the similar trends, and the improvement of
the processed result compared to the original data varies with the
topographic relief, the size and distribution of the voids, and the den-
sity of the ICESat points. In Fig. 13, a sample area within the tile num-
bered ‘N28E086’ is given for a visual inspection. In this tile, 4.49% of
the pixels were voids, and 20465 ICESat points were included in the
accuracy improvement and assessment. Using the corrected ASTER
values, the voids in the SRTM data were filled, and the vertical bias
was dealt with using the TIN-DSF method. The processed dataset
can then be used as a seamless elevation product.

4.2.3. Xinjiang uygur autonomous region

The second sample area we chose to analyze in this paper is the
Xinjiang Uygur Autonomous Region, which is located in the north-
west of the country, bordering the Tibet Autonomous Region. It is
the largest Chinese administrative division, spanning over 1.6 mil-
lion kilometers. As mentioned before, the voids in the original data
are distributed mainly in the western part of China. In the Xinjiang

! For interpretation of color in Fig. 11, the reader is referred to the web version of
this article.

in Table 5. For the void areas in the Xinjiang Uygur Autonomous
Region, the accuracy of the SRTM-3 data is significantly affected
by the anomalies, which results in the lower overall accuracy.
The processed dataset outperforms both the ASTER GDEM and
SRTM-1 data in terms of all the indexes used to measure the verti-
cal accuracy. As the improvement is related to the spatial distribu-
tion of the voids and the ICESat reference data points, the related
information is given in Fig. 15. Furthermore, the specific accuracy
assessment statistics for each void tile with sufficient data samples
are displayed in Fig. 16. The improvement of the processed dataset
can be clearly observed both in terms of both the evaluation results
in the voids areas and the overall accuracy.

The visual comparison of the tile ‘N42E90’ is given in Figs. 17
and 18. The sample tiles in this region mainly consisted of desert,
and 15.43% of the pixels in the SRTM-1 data were invalid. The
ASTER GDEM data were clearly affected by noises and anomalies,
as shown in Fig. 17(b). Over 25,000 ICESat points were incorpo-
rated in the accuracy improvement and generated a seamless
result with clearer terrain relief. The shaded relief map of the
cropped region is given in Fig. 18. Compared with the directly filled
data, the merged result shows smoother transitions over the bor-
ders of the voids. Meanwhile, most of the anomalies in the original
ASTER GDEM data are removed after the correction and filtering
process.

4.3. Extracted channel network assessment

One of the most significant applications of DEM data is hydro-
logical information extraction. Therefore, we compared the river
networks extracted from the global DEM products in the Yangtze
River Basin, China. The Yangtze River is the longest river in Asia
and the third-longest in the world, spanning over 6300 km. It starts
from the glaciers on the Tibet Plateau in Qinghai, and flows east-
ward across southwest, central, and eastern China. The sample area
in Fig. 19 covers most of the drainage area, where the partially
extracted stream flows are presented. We used the Arc Hydro Tools
embedded in ArcGIS software to extract the drainage system in this
study. The reference flow network (red) was provided by the
National Science and Technology Infrastructure Program of China.?
It corresponds to a resolution of ~1 km, with a high quality, after

2 The data are from the National Science and Technology Infrastructure Program of

China, the Data Sharing Infrastructure of Earth System Science-Lake-Watershed
Science Data Center (http://lake.data.ac.cn).
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Fig. 12. The vertical accuracy assessment of the void data in the Tibet Autonomous Region. (a)-(c) indicate the MAE, SD, and RMSE values for the 26 tiles with voids,

respectively.
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Fig. 13. A sample area from the Tibet Autonomous Region. (a)-(c) indicate the original SRTM-1 data with voids, the ASTER GDEM data for void filling, and the processed

result, respectively.
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Fig. 14. The shaded relief map of the SRTM-1 data in the Xinjiang Uygur Autonomous Region (elev: —194-7889 m). The voids are mainly distributed on the southwestern and
southeastern borders, and are shown as the white pixels. The blue tracks indicate the spatial coverage of the ICESat data points in this region.

postprocessing by the Nanjing Institute of Geography and
Limnology.

It can be seen in Fig. 19 that the network extracted from the
SRTM data is denser than the reference due to the difference in
the data resolutions. However, the two channel networks are basi-

cally consistent in terms of the flow directions and branch

locations. For a more detailed comparison, we provide zoomed
views of the rectangular regions in Fig. 20, and the extracted flows
from the SRTM-3 and ASTER GDEM data are also shown for com-
parison. In Fig. 20, Region (a) is a sample area with high mountains
in Sichuan province. Therefore, there were large areas of voids in
this data tile, which affected the continuity of the extracted chan-
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Table 5
The accuracy statistics in the Xinjiang Uygur Autonomous Region for the void pixels and the overall region, respectively.
Unit: m Void Overall
ASTER SRTM-3 Processed ASTER SRTM-3 SRTM-1 Processed

MAE 27.522 176.901 23.243 9.889 8.503 4531 4.507

SD 46.391 247.115 37.825 15.560 26.655 9.405 9.116

RMSE 49.406 285.706 38.302 16.010 26.695 9.711 9.416
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Fig. 15. Distribution of voids and ICESat points distributed within the voids in each
void tile in the Xinjiang Uygur Autonomous Region.

more, it can be observed that the SRTM-1 data perform the best
in hydrological information extraction in Fig. 20(c).
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Fig. 16. The vertical accuracy assessment of the void data in the Xinjiang Uygur Autonomous Region. (a)-(c) indicate the MAE, SD, and RMSE values for the 23 void tiles with
sufficient samples, respectively.

(a)

(b)

(©

Fig. 17. A sample area in the Xinjiang Uygur Autonomous Region for visual inspection. (a)-(c) represent the original SRTM-1 data, the ASTER GDEM data, and the processed

result.
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(©
Fig. 18. The shaded relief map of the rectangular region in Fig. 17(a). (a)-(c) represent the ASTER GDEM data, the SRTM data filled directly using the ASTER GDEM values, and
the processed result, respectively.
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Fig. 19. The extracted river networks in the Yangtze River Basin, China. The extracted result by the processed dataset is shown in blue, with the red lines indicating the
reference stream flow.
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Fig. 20. Details of the three rectangular regions in Fig. 19. (a)-(c) are the zoomed displays of the above rectangular regions (with the same colors), respectively. The stream
flows extracted by the SRTM-3 data (orange) and the ASTER GDEM (green) are also shown. The elliptical areas in (a) and (c) highlight the significant differences between the
extracted flows in the sample areas.
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5. Conclusions and future work

In this paper, we have addressed a method for the improvement
of the global SRTM-1 DEM through the blending of the ASTER
GDEM and ICESat laser altimetry data. The main problem with
the recently released SRTM-1 data is the remaining voids. The pro-
cessing flow of the proposed method can deal with the voids by
incorporating the auxiliary data. Instead of filling the voids with
other datasets directly, we utilize an ANN model to enhance the
accuracy of the ASTER GDEM, using the ICESat data as reference
points, considering the noise and anomalies in the ASTER data. Fur-
thermore, the vertical bias between the elevation products in the
multi-source data fusion is handled with a TIN-based delta surface
method. Finally, an outlier filter is applied to all the data tiles.

An accuracy assessment was performed to validate the vertical
accuracy of the corrected dataset, as well as the ASTER GDEM data,
the SRTM-3 data, and the original SRTM-1 data. The currently pro-
cessed dataset covers most of the eastern Asian continent; there-
fore, we mainly present the results from the Chinese mainland in
this paper. It can be seen from the results that fused dataset shows
a promising improvement in data quality compared with the
SRTM-3 data and the ASTER GDEM. The voids existed in the origi-
nal data are seamlessly filled, and the accuracy is improved com-
pared with the other datasets in terms of the statistical
assessment and visual performance. The results presented in this
paper can also reflect the accuracy level of the global DEM datasets
in other places with similar spatial patterns. After the data
improvement, the new SRTM-1 data could be better used in appli-
cations such as hydrology and geology.

However, it is worth mentioning that the performance of the
proposed framework depends on the distribution of the voids
and the ICESat points. If we perform accuracy enhancement on
the data tiles without sufficient training samples, the unreliable
results might be obtained. The voids in China are mainly dis-
tributed in the western, where the density of the GLAS samples
can satisfy our demands. In our work, this issue will be analyzed
in detail when the remaining data tiles around the world are pro-
cessed. Furthermore, the correction performance inevitably
depends on the data quality to some extent. For example, the cor-
rection results might be influenced by the inaccurate slope infor-
mation calculated using the ASTER data contaminated by the
clouds and shadow. In the regions with large-scale cloud-covered
and shaded observations, the artefacts are difficult to eliminate.
However, as the ASTER GDEM data were generated with data sce-
nes collected from 2000 to 2011, the repeating data reduce the
influence of clouds. On the other hand, compared with the SRTM
data generated with SAR observations, the accuracy of the ASTER
GDEM derived from optical data and ICESat laser scanning points
are less sensitive to the slope angles.

The final processed result comprises seamless SRTM-1 land ele-
vation data covering 60°N to ~56°S globally. The finished data have
been published on an FTP server at http://sendimage.whu.edu.cn/
res/DEM_share/. The remaining data will be processed in each
30° x 30° grid area over a global extent. The latest status of the
processing will also be published on the website. The global data
are expected to be finished by the end of 2016. Due to the limited
validation data source, we only undertook an accuracy assessment
based on the ICESat data. Further validation with other reliable ref-
erence data would help to allow a more comprehensive under-
standing of the processed dataset.
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