IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

5204914

An Information Flow Switching-Based Despeckling
Network Under Real Dual-Polarization
SAR Conditions

Liupeng Lin™, Huanfeng Shen™, Senior Member, IEEE, Jie Li~, Member, IEEE, Jingan Wu™,
Shaowei Shi, and Qiangqiang Yuan™, Member, IEEE

Abstract— Polarimetric synthetic aperture radar (SAR) can
capture rich polarization information of targets, but it is
inherently affected by speckle. Learning-based methods have
demonstrated superior speckle suppression potential. Most exist-
ing methods use optical images to simulate SAR noise for model
training. Because of the significant differences in the imaging
mechanisms between optical and SAR images, the data charac-
teristics of these two types differ significantly, resulting in poor
generalization performance. To this end, an Information Flow
Switching-based Despeckling Network (IFSDN) is proposed for
dual-polarization SAR image. By using the long time series data,
the first dual-polarization SAR real dataset is constructed. The
hybrid feature extraction module (HFEM) is constructed to inde-
pendently extract and integrate features from both the diagonal
and nondiagonal elements of the covariance matrix. Additionally,
the multihierarchical residual attention despeckling (MRAD)
module performs despeckling on feature maps from low to high
levels. On this basis, the information flow switching mechanism
facilitates the interaction of dominant features before and after
despeckling, injecting spatial details into the despeckled results,
reducing speckle noise, and preserving polarization information.
By considering temporal changes, an adaptive joint loss func-
tion is, furthermore, constructed to guide the network training
process, achieving high-fidelity despeckling while maintaining
spatial-polarization information. Experiments show that IFSDN
outperforms existing state-of-the-art methods in the speckle
removal task for real dual-polarization SAR images, which
can effectively preserve spatial and polarization information
while suppressing speckles. Besides, generalization experiments
demonstrate that the proposed model can be effectively applied
to diverse datasets across various climate zones, showcasing its
strong robustness.

Index Terms—Deep learning, dual-polarization SAR
(Dual-SAR) image despeckling, information flow switching
mechanism, real synthetic aperture radar (SAR) data, remote
sensing.
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I. INTRODUCTION

YNTHETIC aperture radar (SAR) is a widely used active

microwave remote sensing observation platform that can
continuously observe the Earth’s surface through microwave
coherent imaging all day and all day [1], [2]. Polarization
SAR, in particular, provides richer backscattering information
about ground objects through different signal transmission
and reception modes, facilitating better target interpreta-
tion and inversion analysis of surface physical parameters.
Consequently, SAR images play a crucial role in target detec-
tion [3], [4], disaster assessment [5], [6], land use and land
cover classification [7], [8], ecological environment monitor-
ing [9], [10], [11], and more. Because of the characteristics
of signal coherent imaging, there is inherent speckle noise in
SAR images, which, however, seriously pollutes SAR images
and limits their potential in applications [12]. It is, therefore,
essential to suppress speckles in SAR images.

Current despeckling methods can be classified into filter-
based, variation-based, and learning-based methods. Early
filter-based SAR image despeckling techniques primarily
relied on local spatial filtering. One classic example is
the linear minimum mean squared error (LMMSE) filtering
algorithm, which uses the local statistical properties of mul-
tiplicative noise. This algorithm led to the development of
several classic algorithms, such as the Lee filter [1], Frost
filter [13], Kuan filter [14], and Sigma filter [15]. These
algorithms employ the statistical characteristics of noise to
minimize the mean squared error between the real value and
the estimated value, determining the coefficients in the linear
relationship between the filtering result and the original image
to achieve despeckling. Building on this foundation, some
researchers have extended these methods to fully polarimetric
SAR images, resulting in techniques like IDAN [16], polar-
ized refined Lee filtering [17], and polarized refined Sigma
filtering [18]. While SAR image despeckling methods based
on the LMMSE estimator are known for their simplicity
and efficiency, they struggle to balance speckle suppression
and edge preservation due to their simplistic noise model
assumptions.

Subsequently, to leverage the polarization and structural
similarity between pixels, researchers focused on nonlocal
mean SAR image filtering. These methods estimate the
target pixel by searching for similar pixels within a non-
local window and performing a weighted average of the
found similar pixels. For single-polarization SAR image
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speckle suppression, Deledalle et al. [19] proposed the prob-
abilistic patch-based (PPB) method, which determines the
weight of similar pixels by considering the differences between
similar pixels and the target pixel during iterative solution, thus
achieving SAR image despeckling. Because of its excellent
performance in single-polarization SAR, the PPB method has
been extended to PoISAR images. The SAR Block Matching
and 3-D filtering (SAR-BM3D) [20] combines the nonlocal
algorithm with LMMSE denoising in the wavelet domain.
In multipolarization SAR despeckling, the PolSAR nonlocal
means filtering method uses the characteristic that Pol[SAR
data follow a complex Wishart distribution. It measures pixel
similarity through a similarity ratio hypothesis test, sets a
threshold based on this similarity, and excludes pixels outside
the threshold from the filtering process. Zhong et al. [21]
combined the advantages of nonlocal means and distributed
Lee filtering to fully account for the overall and internal
structural differences between similar blocks. Generally, non-
local mean filtering algorithms offer better filtering effects,
but they have high computational complexity, are prone to
oversmoothing and block effects, and can cause point targets
to become defocused and blurred.

The variation-based methods establish the energy func-
tion between the observed value and the real value,
which includes data fidelity terms and prior terms, and
achieve the goal of denoising by optimizing the energy
function [22], [23]. In single-polarization SAR image denois-
ing, Aubert and Aujol [24] were the first to introduce a
variational model into SAR intensity image despeckling,
namely, the AA model. Subsequently, Shi and Osher [25]
proposed the SO model, using total variation priors to solve
the model in the logarithmic domain. Ma et al. [26] proposed
the Adaptive Nonlocal Functionals (ANLFs) model, incor-
porating nonlocal self-similarity priors for model resolution.
Nie et al. [27] proposed the first variational model for the
PoISAR polarization covariance matrix, namely the WisTV-C
model. This model leverages the statistical properties of the
Wishart probability distribution function and the maximum
posterior probability framework to derive a PolSAR total
variation regularization term. The variational model is then
solved using variable splitting and alternating minimization
techniques. Variation-based despeckling methods effectively
balance speckle removal and spatial detail preservation; how-
ever, they tend to produce artifacts in heterogeneous areas and
have relatively low processing efficiency.

With the development of computing power, deep learning
has made gratifying progress in the field of SAR image
processing with its powerful capabilities in fitting nonlinear
relationships and feature representation [28], [29], [30], [31].
The learning-based despeckling methods learn the mapping
function between noisy images and clean images through
a large amount of driving data and then apply the con-
verged model to the noisy images to achieve speckle removal.
Generally, the learning-based methods adopt the following
three strategies for network model learning. The first strat-
egy involves directly learning the multiplicative noise model
between noisy and clean SAR images through the net-
work. Wang et al. [32] proposed the division residual network,
which replaces the addition operation of the original resid-
ual network with the division operation. deSpeckNet [33]

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

directly generates clean images and noisy images through
two branch networks, applying a multiplicative noise model
to constrain the loss function. The second strategy rewrites
the multiplicative noise model as an additive noise model.
This approach converts multiplicative noise, which has a mean
value of 1 and a stationary variance, into additive noise with
a mean value of 0 and nonstationary variance. The network
model is then used to remove the noise. Zhang et al. [34]
proposed a residual neural network with seven dilated convo-
lutions to remove speckles from SAR images, using dilated
convolutions to increase the receptive field size. Hybrid
Dilated Residual Attention Network (HDRANet) [35] couples
dilated convolution and attention mechanisms to enhance the
network’s global information perception and calibrate fea-
ture maps. The third strategy involves networks based on
homomorphic transformation, which perform a logarithmic
transformation on SAR images to convert multiplicative noise
into additive noise, enabling subsequent speckle removal.
Chierchia et al. [36] used a network with 17 convolutional
layers to denoising the logarithmically transformed noisy
image, followed by an exponential transformation to obtain
the filtered image. On this basis, Dalsasso et al. [37] further
considered the Fisher—Tippett distribution characteristics of
SAR images. This strategy has been extended to polarimetric
SAR images. The MUItichannel LOgarithm with Gaussian
denoising (MuLoG) [38] framework performs matrix logarith-
mic transformation on polarimetric SAR images, then uses
Wishart—Fisher-Tippett denoiser for denoising, and obtains
filtered covariance matrices through matrix exponential trans-
formation. Under this framework, Tucker and Potter [39]
used a CNN network to replace the Wishart—Fisher—Tippett
denoiser to achieve speckle removal from fully polarimetric
SAR images.

In the existing supervised learning paradigm, most methods
adopt optical image simulation noise to construct “multiplica-
tive noisy image-clean image” training sample pairs. Because
of the different imaging mechanisms between optical images
and SAR images, there are significant differences in data
characteristics and distribution between the two. Consequently,
models trained on these simulated datasets often fail to
meet the despeckling needs of real SAR images. Most deep
learning despeckling methods are, furthermore, based on simu-
lated single-polarization SAR intensity image datasets, leaving
dual-polarization SAR or full-polarimetric SAR image datasets
largely unexplored. Currently, deep learning methods often
transplant optical image denoising networks to SAR images,
without developing specialized network structures tailored to
the numerical characteristics of SAR images. Besides, existing
methods do not fully consider the correlation and redundancy
of features extracted from each polarization channel. To this
end, this article adopts long-time series dual-polarization SAR
images to establish a dual-polarization SAR “noisy image-
temporal average label image” sample dataset. Based on
this dataset, an information flow switching-based despeckling
network (IFSDN) is constructed to perform dual-polarization
covariance matrix despeckling. The contributions of the pro-
posed despeckling framework mainly include the following
three aspects.

1) Combined with the long-term series data, a real dual-
polarization SAR data sample dataset is established.
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Fig. 1. Overall architecture diagram of IFSDN.

Oriented to the real SAR data conditions, a despeckling
convolution network based on the information flow
switching is constructed.

Under the end-to-end despeckling framework, a dual-
SAR hybrid feature extraction module (HFEM)
designed to independently process the diagonal elements
and nondiagonal elements of the dual-polarization SAR
covariance matrix. Subsequently, the independently pro-
cessed feature maps are integrated and reconstructed.
Besides, the multihierarchical residual attention mod-
ule is constructed to perform multilevel feature map
despeckling.

In terms of spatial information reconstruction, the
information flow switching mechanism is coupled
with the multihierarchical residual attention despeckling
(MRAD) module to interactively weight the feature
maps before and after despeckling. This process injects
spatial detail into the despeckled results and enhances
polarization information. Besides, an adaptive joint loss
function based on change detection is proposed, which
fully considers the numerical changes in label data
caused by temporal variations.

The rest of this article is organized as follows. Section II
describes the degradation model and data organization.
Section III delves into the details of the despeckling framework
for real dual SAR. Section IV presents experiments con-
ducted across four seasons and four cities, comparing results
with five mainstream algorithms, followed by the discussion
in Section V. The conclusion and future work are provided
in Section VI

2)

3)

II. DEGRADATION MODEL

According to the fully polarimetric SAR image theory,
under the condition of satisfying reciprocity, the complex
scattering vector u can be expressed as [1]

T
u= Shh’ ﬁshv» va (1)

where Sy, and Sy, represent power return in the copolarized
channels, Sy, is power return in the cross-polarized channels.
A reciprocal medium u follows a zero-mean multivariate
complex, and the Gaussian probability density function is as
follows [1]:
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where C denotes complex covariance matrix, and T represents
the complex conjugate transpose. For the polarimetric SAR
covariance matrix C, the diagonal terms of the matrix follow
a multiplicative noise model, and the off-diagonal terms can
be modeled by a combination of additive and multiplicative
noise models [40]. In this article, the mapping relationship
between the observed polarization SAR covariance matrix C,
and the noise-free polarization SAR covariance matrix C, is
constructed, and the polarimetric SAR image noise model is
modeled as: C, = f;(C,). For dual-polarization data, such
as Sentinel-1 data, the complex scattering vector u reduces
to u [Syv, \/ES}W]T, the covariance matrix Cgy, of the
dual-polarization SAR data can be defined as follows [41]:

(SwSi)  (SwSih)
(SnS) (S

where Cq,a represents the dual-polarization SAR covariance
matrix. (.) represents spatial statistical averaging operator,
and * represents the conjugate operation. In the proposed
method, the real and imaginary parts of the upper triangular
matrix of the covariance matrix are extracted to obtain the SAR
covariance value matrix as below so that each element of the
covariance matrix can be processed equally and independently

Cn]’ &)

where the subscript indicates its position in the covariance
matrix Cgyy, Cior is the real part value, and Cjy is the
imaginary part value. [.]7 is the transpose operation.
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III. DUAL-POLARIZATION SAR DESPECKLING
FRAMEWORK UNDER REAL DATA CONDITIONS

This article proposes a dual-polarization SAR despeckling
framework designed to bridge the gap between training models
under simulated data conditions and applying models in real
scenarios. As illustrated in the upper part of Fig. 1, within this
framework, long time series data are used to construct real
dual-polarization SAR training and test datasets, employing
the strategy of “noisy images-multitemporal average images”
for network training. As illustrated in the lower part of Fig. 1,
in the despeckling network, the HFEM is constructed to inde-
pendently extract features from each element of the covariance
matrix and integrate all-element features. The MRAD module
is designed to perform feature maps denoising from low levels
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to high levels. On this basis, the information flow switching
module (IFSM) facilitates the exchange of dominant features
in the feature maps before and after denoising, promoting
the interaction of beneficial information flow. An adaptive
joint loss function based on temporal changes is proposed
to constrain network training, ensuring high fidelity speckle
removal from dual-polarization SAR images while preserving
spatial-polarization information. The details of the despeckling
framework are as follows.

A. Real Dataset Construction

Because of the limitation of the SAR imaging mechanism,
there is inherent speckle noise in SAR images. Existing optical
simulation SAR data cannot correctly represent the backscat-
tering coefficient of the ground objects, resulting in poor model
generalization when applied to real scenes. Based on long time
series SAR images, this article, therefore, obtains clean SAR
images through multitemporal synthesis, and then generates a
real dual-polarization SAR “noisy image-clean image” sample
dataset. For data availability reasons, the Sentinel-1, which
provides C-band dual-polarization SAR data, is adopted as
the primary data source. Among the two types of Sentinel-1
Level-1 products, single look complex (SLC) data is chosen
over the ground range detected (GRD) data due to its richer
spatial detail information and retention of phase informa-
tion; thence, the level-1 SLC data obtained with terrain
observation with progressive scan technology (TOPS) in
interferometric wide swath (IW) mode is used for real
dataset construction. The dataset construction process is as
follows.

1) Precise Orbit Correction. Since the orbit state vector
in the metadata of the raw SAR product is usually
inaccurate, this processing can be used to refine the orbit
state vector.

Radiation Calibration: This process corrects the radio-
metric bias of the level 1 image to generate pixel values
of the SAR image that can truly represent the radar
backscatter of the reflecting surface. In this article, the
complex radiometric calibration is adopted for radiomet-
ric correction of dual-polarization SAR images.
TOPS-Deburst: The SLC products obtained by TOPS
technology have multiple swaths, with each subswath
image is composed of bursts. TOPS-Deburst operation
concatenates the bursts and merges the effective parts of
adjacent subswaths to generate a full-scene SAR image.
Polarimetric Matrices Generation: Dual-polarization
SAR covariance matrices Cgyy [41] are generated.
Multilook Processing: This process performs multilook
processing on range and azimuth directions, and gener-
ate ground range square pixels. It is worth mentioning
that the main goal of multilook processing in this article
is to generate ground range square pixels, not to suppress
speckle noise.

Terrain Correction: Terrain correction is performed
by using SRTM worldwide elevation data, and the
pixel spacing of the data is resampled to 15 m. The
SRTM Plus V3 products with 1-arc-second resolution
are adopted for terrain correction.

Data Registration: Multitemporal data in the same area
are spatially registered.

2)

3)

4)

5)

6)

7
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TABLE I
SATELLITE IMAGE PARAMETER INFORMATION

Mission Sentinel-1A

Acquisition Mode w

Band C

Product Type SLC

Looks 1
Antenna Pointing Right
Spacing (resample) 15%15m
Polarimetric Mode VH/VV

Radar Centre Frequency  5.405GHz

TABLE 11
IMAGE ACQUISITION TIME INFORMATION

Sentinel-1A (MM/DD/YY)

05/02/2020  05/14/2020  05/26/2020  06/07/2020 06/19/2020
07/01/2020  07/13/2020  07/25/2020  08/06/2020 08/18/2020
08/30/2020  09/11/2020  09/23/2020  10/05/2020 10/17/2020
10/29/2020  11/10/2020  11/22/2020  12/04/2020 12/16/2020
12/28/2020  01/09/2021  01/21/2021  02/02/2021 02/14/2021
02/26/2021  03/10/2021  03/22/2021  04/03/2021 04/15/2021
04/27/2021  05/09/2021  05/21/2021  06/02/2021 06/14/2021

8) Change Detection Mask Extraction: This process is used
to distinguish changing areas and nonchanging areas in
multitemporal data and generate the change detection
masks.

“Noisy Data-Label Data-Change Detection Mask” Pair-
ing and Dataset Generation: This processing mainly
involves pairing the above processed data and perform-
ing necessary trimming on the paired data to facilitate
network model training.

Based on the aforementioned processing steps, Wuhan,
China, and its adjacent areas are selected as the research
area. This area contains a variety of surface cover types, such
as urban built-up areas, cropland, forests, shrubs, grassland,
water bodies, and bare land, which can meet the surface cover
diversity requirements of the training dataset. At the same
time, the selected area of the dataset covers common scattering
mechanisms, including homogeneous areas and heterogeneous
areas. The long-time series dual-polarization SAR images of
the Wuhan area acquired by Sentinel-1 serve as experimental
data. The detailed parameters of the satellite images used in
the experiment are shown in Table I. The 35 data with a
period of one year are used to construct the sample dataset.
The data acquisition time is shown in Table II. Three regions
with different land surface types in various climate zones are,
furthermore, chosen to generate generalization experimental
data, including Xi’an, China, located in the temperate monsoon
zone; Guangzhou, China, located in the subtropical monsoon
zone; and Hainan Island, China, located in the tropical mon-
soon zone. The preprocessing steps for constructing the real
dataset are carried out using SNAP software version 10.0.0,
provided by the European Space Agency (ESA). All parameter
settings in these preprocessing steps are set to the default
values officially provided by SNAP.

9)

B. Dual-Polarization SAR HFEM

Lépez-Martinez and Fabregas [40] have mathematically
demonstrated that there are significant differences in the
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Fig. 2.  HFEM module.

noise models of diagonal elements and nondiagonal elements
in the dual-polarization SAR covariance matrix. The diag-
onal elements of the covariance matrix are subject to the
multiplicative noise model, while the off-diagonal elements
follow a combined model of multiplicative noise and additive
noise; therefore, the dual-polarization SAR HFEM is designed.
Under this module, the independent complex relationship
mapping layer is constructed to extract features from both
diagonal elements and nondiagonal elements, addressing the
distribution differences of various noise models, and thereby
obtaining more accurate feature mapping. In the HFEM,
as shown in Fig. 2, under satisfying the reciprocity condition,
three independent complex relationship mapping layers are
constructed to extract features of two diagonal elements and
one nondiagonal element, respectively, including real value
features of diagonal intensity information and the complex
characteristics of off-diagonal phase difference information,
which can be modeled as

F11 :C“owﬁfe+bﬁfe (5)
Fio = fea(Ciar, Ci2i) 0 Wiy + iy (6)
F22 = C22 [¢] wﬁfe + bsfe (7)

where F; and F», represent the feature maps of two diagonal
elements respectively, and Fj; is the feature maps of nondiag-
onal elements, and o denotes the convolutional operator. The
proposed method separates and extracts the real and imaginary
parts of the nondiagonal elements to obtain real-valued images
so as to avoid the potential accuracy loss that can occur when
real-valued networks process complex-valued images.
Subsequently, the three feature maps are cascaded. Full
element feature integration and information compression are
performed to optimize features and reduce the number of
network parameters. The specific process is as follows:

Fote = feu(F11, Fia, Fp) o wi, + b, ®)

where feq(.) denotes the element cascade operator, iy, Wi,
wi, wi., and bl., b3, b, bi., respectively, represent
the weights and bias terms of each convolutional layer of
the HFEM.

C. MRAD Module

An MRAD module is proposed to effectively suppress
speckles in dual-polarization SAR feature maps. This mod-
ule uses three layers of residual convolution blocks (RCBs)
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Fig. 3.  MRAD module. Among them, (a) architecture diagram of MRAD,
(b) RCB module, and (c) RSPA module.

to filter low-, medium-, and high-level features, effectively
reducing speckles. The filtered feature maps are then fused
through cascade processing for multilevel speckle removal. In
order to enhance key features and reduce redundant features, a
residual spatial and polarization attention mechanism (RSPA)
recalibrates feature weights in both spatial and polarization
dimensions.

As shown in Fig. 3(b), the RCB module consists of three
convolutional layers. The first two convolutional layers are
used for progressive feature map filtering. Since spatial detail
information may be lost during the despeckling, the outputs
of two convolution filtering are cascaded to jointly process
despeckled features at different levels, enhancing the reusabil-
ity of spatial details. Subsequently, the 1 x 1 convolution
is used to perform dimensionality reduction on the cascaded
features. Finally, the residual structure is employed for local
feature concatenation to introduce original features back into
the network. In the RSPA module, a spatial enhancement
unit (SEU) recalibrates the spatial weight, producing spatially
enhanced feature maps, which can be modeled as

Foew = fmul(Fim %-(Fm o wsleu + b:eu)) (9)

where Fg, represents the spatial-enhanced feature maps, Fj, is
the input feature map, f,,(.) represents the element mul-
tiplication operator, £(.) denotes the Sigmoid normalization
function. wse, and by, are the convolution kernel weight and
bias term of the SEU, respectively.

In order to process polarization information equally, the
polarization enhancement unit (PEU) is built in parallel to
recalibrate the polarization weight of feature maps to obtain
polarization-enhanced feature maps, which can be formu-
lated as

Fpew = oo (Fins € (( i (Fin) 0 0l 83, ) 0 0y +52,))
(10)

where Fp., represents the polarization-enhanced feature
maps, fmp(.) represents the maximum pooling operator,
wéeu and wgeu represent the weight of the sparse fully con-
nected layer and the dense fully connected layer, respectively,

b;eu and bgeu represent the corresponding bias items.
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By performing feature fusion on the above two parallel
enhanced feature maps and using the residual structure to
achieve original feature reuse, the RSPA module can be
expressed mathematically as

Frspa = fadd(Fina fadd(Fseua Fpeu) O Wrspa + brspa) (1 l)

where f,q4q(.) is the element-wise addition operator, wysp, and
brspa, TESpectively, represent the convolution kernel weight and
bias term of the RSPA module.

D. Information Flow Switching Mechanism

The attention mechanism is a widely used feature weight
recalibration mechanism [42], [43] that can effectively increase
the weight of key features. Among various attention mecha-
nisms, cross-attention [44], [45], as a weighting mechanism
for the dominant features of multisource data, has been suc-
cessfully applied in image fusion tasks. In the dual-polarization
SAR image despeckling task, the feature map processed by the
despeckling module inevitably loses spatial detail information,
whereas the feature map before despeckling retains rich spatial
detail despite significant noise; thus, effectively reconstructing
spatial detail information while removing speckle presents a
major challenge. In order to address this, inspired by the
cross-attention mechanism, this article proposes an informa-
tion flow switching mechanism. This mechanism aims to
make full use of the texture information of the feature map
before despeckling through information interaction, guiding
the reconstruction of spatial information in the feature map
after despeckling. In the multilayer residual attention module,
after despeckling the feature maps at different levels, the
IFSM is embedded in turn to guide their spatial information
reconstruction. Simultaneously, the despeckled polarization
information is injected into the feature maps before despeck-
ling, maintaining its polarization characteristics while reducing
the impact of speckle noise. Additionally, the IFSM is also
embedded after the dual-polarization SAR HFEM to improve
the use of polarization information in the hybrid feature maps.

The IFSM comprises three basic units: the SEU, the PEU
and the information flow switching unit (IFSU), as shown
in Fig. 4. The SEU performs spatial weight calibration on
feature maps with richer spatial details to obtain spatially
enhanced feature maps F2¢. The PEU guides denoised feature
maps to perform polarization weight calibration, resulting in

polarization-enhanced feature maps F;‘e‘fl. Subsequently, the

above two enhanced feature maps are input into the IFSU. This
unit generates spatial weights using the feature maps enhanced
by spatial information before despeckling and then injects
spatial information flow into the feature maps after despeckling
to guide its spatial information reconstruction. In parallel,
it generates polarization weights using the despeckled feature
map enhanced by polarization information, exchanging polar-
ization information flow to promote the polarization features
optimization and speckle noise weakening of the feature maps
before despeckling. By switching the information flow of the
dominant features between the two, the efficient fusion of
the dominant characteristics before and after despeckling is
achieved.

IFSU can improve the spatial texture information while
maintaining the consistency of the polarization information of
the feature maps, which can be mathematically expressed as

fmul (F;e‘fu (Fsbeﬁ © wilfsu + bi]fsu))
fot (FL4 & (Fed 0wy + b))

where F%¢ is the spatial-enhanced feature maps before
despeckling and F;’e‘fj is the polarization-enhanced feature map
after despeckling. w, and bk, represent the weight and bias
terms of the 1 x 1 convolution layer. w , and b are the

Figu = fcat

(12)

ifsu ifsu
ifsu ifsu

weight and bias terms of the fully connected layer.

E. Adaptive Joint Loss Function Based on Temporal Changes

Through the dual-polarization SAR despeckling framework
under real data conditions, the nonlinear mapping relationship
from dual-polarization SAR noisy images to dual-polarization
SAR noise-free images can be established, represented math-
ematically as

C, = (13)

5(¢))

where Cy represents the noise covariance matrix, §(.) indicates
the proposed network model, and C, denotes the denoising
covariance matrix. Considering the large dynamic range of
the SAR covariance matrix and the spatiotemporal differ-
ences of real training data, the Charbonnier loss function
is adopted as the basis to construct the adaptive joint loss
function based on temporal changes, which is specifically
expressed as

Li(©®) = aL,(®) + BL.(O) (14)
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where L,(®) is the proposed adaptive joint loss function, and
L,(®) denotes the numerical loss function, which is used to
constrain the numerical consistency of the denoising results
and the multitemporal mean label data. L.(®) represents the
edge information loss function, which is used to maintain the
edge detail information of the denoising result. « and § are
nonnegative adaptive regularization parameters, determined as
follows, and are used to adaptively optimize the weight:

"y L,(®) B L.(®)
CLy(®)+L(O®) T L,(®)+ L(O)

The numerical loss function can be depicted as

B (15)

1 < ; ; N
L@ =Y m e -ec)f+e ae
i=1

where N is the number of training data pairs {C!, C'},
C; represents the ith covariance matrix with speckle noise,
and C! represents the ith noise-free covariance matrix.
mi_ denotes the change detection mask, which is generated
by the derivation of statistical similarity parameters on multi-
temporal SAR data. In this article, PoISAR pro v5.0 software
is used to obtain change detection masks m! . ¢ is a constant
term, which is set to 1073 in the proposed network.
The edge information loss function can be expressed as

1L ) )
L©) = - Y mic /A - aE(c)) P +e2 am
i=1

where A(.) represents the Laplacian edge information extrac-
tion operator.

IV. COMPARISON AND EVALUATION EXPERIMENTS

In order to comprehensively demonstrate the effectiveness
of the IFSDN model under diverse land surface condi-
tions, we conducted spatial information retention experiments
and polarization information analysis experiments on dual-
polarization SAR images acquired by Sentinel-1 in different
seasons. Besides, model generalization experiments are con-
ducted in various cities across different climate zones.

A. Experimental Data and Parameter Settings

In this article, the sample dataset generated in Section III-A
is used for both training and testing. As shown in Table II,
data from the four seasons of July 1, 2020; October 5, 2020;
January 9, 2021; and April 3, 2021 are selected as noise data.
The data of the ten adjacent time phases (the five phases before
and after the target date) are statistically averaged to generate
label data. A change detection mask is also generated based
on the target time. Subsequently, the “noisy data-label data-
change detection mask” is paired to generate a training dataset.
The size of each data used in training is 8500 x 9200 x 4.
For the convenience of training, it is cropped into 40 x 40 x
4 patches. There are a total of 194944 patches for the four
seasons. Similarly, data from July 13, 2020; October 17, 2020;
January 21, 2021; and April 15, 2021, are selected to generate
the test dataset. The size of each Sentinel-1 test data is 8000 x
8000 x 4, covering four seasons. In order to ensure the fairness
of the experiment, there is no overlap between the training data
and the test data. In addition, dual-polarization SAR images
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from Xi’an, Guangzhou and Hainan Island are selected as
generalization experimental data. The size of these data is also
8000 x 8000 x 4. To verify the sensor generalization, L-band
ALOS2 and X-band TerraSAR-X data are used to verify the
despeckling performance of the proposed model. The size of
ALOS?2 data is 2000 x 2000 x 4, and the size of TerraSAR-X
data is 1000 x 1000 x 4.

The IFSDN is trained in the Windows environment, using
Pytorch1.10.0 and NVIDIA GeForce RTX 3080 GPU with a
maximum memory of 64 GB. During the training, kaiming
normal [46] is adopted for convolution kernel initialization,
and Adam [47] is employed for network optimization. The
training runs for 200 epochs, with an initial learning rate set
to 1073, which decreases by one-tenth every five epochs.

B. Comparison Algorithms and Quantitative Indicators

In the spatial information preservation experiment, five
mainstream despeckling methods are adopted for com-
parison with the proposed IFSDN, including PPB [48],
MuLoG-BM3D [38], MuLoG-TV [38], SARDRN [34],
deSpeckNet [33]. The PPB and MuLoG-BM3D are nonlocal
mean filtering algorithms. MuLoG-TV is a total variation-
based despeckling method under the MuLoG framework.
SARDRN and deSpeckNet are learning-based despeckling
methods. In terms of quantitative indicators, five commonly
used metrics, namely, mean absolute error (MAE), mean
relative error (MRE), log Euclidean metric (LEM), edge
preservation degree on the ratio of average (EPD-ROA), and
the equivalent number of looks (ENLs) are employed for
evaluating despeckling capability. For the aforementioned indi-
cators, MAE, MRE, and LEM are reference-based quantitative
indicators, while EPD-ROA and ENL are reference-free quan-
titative indicators. Lower values of MAE and MRE signify a
smaller error between the denoised result and the reference
image. LEM is a commonly used measure in Riemannian
manifolds and measures the distance between two covari-
ance matrices. A smaller LEM value indicates that the two
covariance matrices are closer. A higher EPD-ROA reflects
greater spatial detail fidelity, while a higher ENL indicates
better smoothing of homogeneous areas. The MAE can be
formulated as

M

1 . )

MAE = M2|c;m—c; (18)
i=1

where C; and Cy,, respectively represent the despeckled results

and the multitemporal composite reference image, and M is

the number of pixels.
The MRE can be mathematically expressed as

M . .
1 c..—C
MRE = — Z mt_=d | (19)
M3 Con
The LEM can be calculated by the following formula:
1 2
LEM = — > |flog(Chy) —log(CH) || - (20)
i=1
The EPD-ROA is depicted as
I .
M api T
EPD-ROA = iz [lij/ “’f’“|, j=VVor VH (21)

S8/ 1
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Fig. 5. Despeckling results in urban areas. (a) Original image with speckle.
(b)—(g) Despeckling results of the PPB, the MuLoG-BM3D, the MuLoG-TV,
the SARDRN, the deSpeckNet, and the proposed IFSDN method, respectively.
(h) Multitemporal average image. (al)-(hl) and (a2)-(h2) Enlarged images
of the corresponding area.

where the subscript j indicates polarization mode, it repre-
sents VV and VH polarization, respectively. /; ; , and I} ;
represent the adjacent pixel values in the horizontal direction
of despeckled and noisy SAR intensity image, respectively.
I a,j,v and I§ i y,j,v» Tespectively, denote the adjacent pixel values
in the vertical dlrectlon of despeckled and noisy SAR intensity
image.
The ENL can be defined as
2
ENL = %
where 1 and o represent the mean and standard deviation of
the target homogeneous area within the SAR intensity image.

(22)

C. Spatial Information Retention Experiment

In order to verify the speckle suppression ability and spatial
information retention ability of the proposed method, a spa-
tial information experiment is constructed. This experiment
involved despeckling dual-polarization SAR images, followed
by both visual and quantitative evaluations. The visual evalua-
tion experiment includes a visual evaluation of RGB synthesis
results of despeckling results and corresponding ENLs map-
ping, as well as the visual evaluation of intensity images
and corresponding ratio diagrams. The quantitative evalua-
tion experiment includes the calculation of reference-based
quantitative indicators between the despeckling results and the
multitemporal average covariance matrix, as well as calcula-
tions of reference-free quantitative indicators. For the visual
evaluation, three typical areas are selected: urban complex land
coverage area, farmland area, and mountain area. Figs. 5-7
shows the RGB composite images of the speckle removal
results of various methods. The R, G, and B bands of false
color correspond to Cp, |Cij —2Ci2 e + C22], and Cyy,
respectively.

In the three groups of experiments, traditional methods
achieved a higher degree of speckle removal but exhibited
varying degrees of oversmoothing, particularly the TV method.
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Fig. 6.  Despeckling results in farmland areas. (a) Original image with
speckle. (b)—(g) Despeckling results of the PPB, the MuLoG-BM3D, the
MuLoG-TYV, the SARDRN, the deSpeckNet, and the proposed IFSDN method,
respectively. (h) Multitemporal average image. (al)-(hl) and (a2)-(h2)
Enlarged images of the corresponding area.

\
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Fig. 7.  Despeckling results in mountain areas. (a) Original image with
speckle. (b)—(g) Despeckling results of the PPB, the MuLoG-BM3D, the
MuLoG-TYV, the SARDRN, the deSpeckNet, and the proposed IFSDN method,
respectively. (h) Multitemporal average image. (al)-(hl) and (a2)—(h2)
Enlarged images of the corresponding area.

The PPB method, in contrast, introduced magenta spot-like
artifacts after despeckling. Learning-based methods effectively
preserved spatial information while removing speckle noise.
SARDRN and deSpeckNet are, however, prone to color dis-
tortion when dealing with strong scattering point targets or
areas with drastically varying backscattering coefficients. The
proposed method outperformed others, closely approximating
the multitemporal average image.

In urban built-up areas, as shown in Fig. 5(al)—(hl), the
PPB and MuLoG-BM3D methods show noticeable over-
smoothing, and the MuLoG-TV suffered significant detail loss.
SARDRN and deSpeckNet exhibited obvious artifacts in areas
with strong scattering points. This issue was even more pro-
nounced in Fig. 5(a2)—(h2), where SARDRN and deSpeckNet
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Fig. 8. ENL mapping. (al)-(h1) ENL mapping of the original image with
speckle, the PPB, the MuLoG-BM3D, the MuLoG-TV, the SARDRN, the
deSpeckNet, the proposed IFSDN method, and the multitemporal average
image in urban areas respectively. (a2)—(h2) and (a3)—-(h3) ENL maps of the
farmland area and the mountain area respectively.

failed to denoise ships properly, leading to severe distor-
tion of contour information. The proposed method excelled
by effectively suppressing speckles while maintaining spatial
detail and color information. The inadequacy of multitemporal
averaged images in areas with drastically changing ground
objects or moving targets further emphasized the necessity of
a single-temporal speckle removal approach.

In the farmland area, depicted in Fig. 6(al)—(hl), the
PPB and MuLoG-BM3D methods produce nonuniform col-
ors along field ridges, while MuLoG-TV shows defocusing,
and SARDRN exhibits abnormally high values in some
ridges. Both deSpeckNet and the proposed IFSDN effectively
suppress noise in paddy fields, preserving the structured infor-
mation of field ridges more completely. In Fig. 6(a2)—(h2),
learning-based methods outperform traditional ones, balancing
denoising with spatial detail preservation. In mountainous
areas, as illustrated in Fig. 7, similar patterns are observed.
The spot-like artifacts still exist in the PPB method, while the
MuLoG-BM3D and MuLoG-TV methods suffer from serious
texture information loss. Fig. 7(e3) indicates that SARDRN
has outliers near the ridge line. The results of deSpeckNet and
IFSDN have clear ridge lines and rich mountain texture details,
aligning more closely with multitemporal average results.

ENL mapping results are shown in Fig. 8 to better demon-
strate the despeckling performance of different methods in
homogeneous areas and heterogeneous areas. All methods
improve image visual quality to varying degrees. The PPB
and MuLoG-TV methods achieve strong smoothing but lose
significant spatial details in high-frequency areas like urban
built-up zones. MuLoG-BM3D preserves spatial details better.
Learning-based methods provide a better balance between
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Fig. 9. Despeckled intensity image in complex land cover areas.
(a) Original image with speckle. (b)—(g) Despeckling results of the PPB,
the MuLoG-BM3D, the MuLoG-TV, the SARDRN, the deSpeckNet, and
the proposed IFSDN method, respectively. (h) Multitemporal average image.
(al)—(h1l) Corresponding ratio diagrams respectively.

i

e e

SHEE
SR o
S

(al)

Fig. 10.

Magnified image of despeckled intensity image in complex land
cover areas. (a) Original image with speckle. (b)—(g) Despeckling results of the
PPB, the MuLoG-BM3D, the MuLoG-TYV, the SARDRN, the deSpeckNet, and
the proposed IFSDN method, respectively. (h) Multitemporal average image.
(al)—(h1l) Corresponding ratio diagrams respectively.

speckle removal and detail preservation, with high ENL in
smooth areas and lower ENL in heterogeneous regions such
as built-up zones, field ridges, and ridgelines.

Intensity image and ratio diagrams experiments are con-
structed to observe spatial structure information leakage in
areas with complex land cover. As shown in Figs. 9 and 10,
PPB, MuLoG-BM3D, and MuLoG-TV exhibit significant
structural information leakage. PPB’s leakage is concentrated
in urban and river-edge areas, while MuLoG-BM3D and
MuLoG-TV show more uniform leakage across various land
types. Learning-based methods experience some information
loss near river contours. SARDRN and deSpeckNet introduce
artifacts in urban areas, causing texture detail loss. In contrast,
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TABLE III

QUANTITATIVE EVALUATION RESULTS OF
VARIOUS DESPECKLING METHODS

Method  PPB MuLoG-BM3DMuLoG-TVSARDRNdeSpeckNet IFSDN
MAE  0.027 0.029 0.035 0.028 0.030 0.027
MRE  0.365 0.398 0.484 0.344 0.375 0.306
LEM  0.542 0317 0.333 0.227 0.234 0.156

EPD-ROA 0.916 0.923 0.913 0.949 0.956 0.923
ENL  125.858 57.838 212,533 90.162  85.904 104.018

the proposed method’s ratio diagrams are closer to 1, indi-
cating better spatial structure preservation. It is worth noting
that due to objects changing, the spatial information of the
multitemporal average image in some areas differs from the
noisy image.

In the quantitative evaluation experiment, as shown
in Table III, the proposed method has smaller errors and
achieved optimal results in the three quantitative indica-
tors: MAE and MRE for intensity images and LEM for
covariance matrix. In the speckle removal task, there is a
trade-off between spatial information preservation and fil-
tering smoothness. The SARDRN and deSpeckNet methods
with higher EPD-ROA have relatively lower ENL, while
the PPB and MuLoG-TV methods with higher ENL have
relatively lower EPD-ROA. The proposed method can better
balance spatial information preservation and speckle sup-
pression and achieves the third-best performance in both
EPD-ROA and ENL.

D. Polarization Information Analysis Experiment

Polarization information reveals the geometric structure and
physical properties of targets, making it crucial for assess-
ing despeckling performance in polarimetric SAR images.
By decomposing the polarization scattering matrix into funda-
mental components, polarization decomposition uncovers the
intrinsic scattering mechanisms of targets. This study uses
HAA polarization decomposition [49] methods to analyze and
verify the IFSDN method’s ability to preserve polarization
information by analyzing the entropy (H), anisotropy (A), and
mean alpha angle («). These parameters, sensitive to scattering
mechanisms, help evaluate polarization retention before and
after despeckling. Sentinel-1 dual-polarization SAR images
are classified using the H/Alpha/A Wishart method based
on the system in [50]. Fig. 11 shows three object classes:
yellow (low-entropy multiple scattering, urban areas), blue
(low-entropy surface scattering, water bodies), and green (low-
entropy volume scattering, vegetation).

In Fig. 11(a), noise causes fragmented object representation,
whereas Fig. 11(b)-(h) shows more cohesive classifications
for denoised images. The PPB and MuLoG-TV methods
produce overly smooth results, losing urban area boundaries.
MuLoG-BM3D and SARDRN expand water areas, indicating
altered backscattering coefficients, while deSpeckNet struggles
with slender water bodies. IFSDN closely matches mul-
titemporal average images, preserving object morphologies
effectively. In Fig. 12, IFSDN and MuLoG-TV results show
compact scatter plots on the H-Alpha plane, indicating better
clustering for different object types. Other methods display
more dispersed plots, highlighting IFSDN’s superior discrim-
ination capabilities for accurate image interpretation.
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Fig. 11. HAA Wishart classification results. (a)—(h) Original image with
speckle, the PPB, the MuLoG-BM3D, the MuLoG-TV, the SARDRN, the
deSpeckNet, the IFSDN method, and the multitemporal average image.
Among them, the yellow area represents the urban area, the blue area
represents the water area, and the green area represents vegetation.

500

Fig. 12. H-alpha plane. (a)-(h) Original image with speckle, the PPB, the
MuLoG-BM3D, the MuLoG-TYV, the SARDRN, the deSpeckNet, the IFSDN
method, and the multitemporal average image.

Fig. 13.

Despeckling results in Xi’an area. (al) and (a2) Original images
with speckle. (bl)—(gl) and (b2)—(g2) Despeckling results of the PPB, the
MuLoG-BM3D, the MuLoG-TV, the SARDRN, the deSpeckNet, and the
IFSDN method in different areas.

E. Generalization Evaluation Experiments

In order to verify the generalization performance of the
proposed model, data from different climate zones are used
to evaluate its robustness. Dual-polarization SAR images from
three typical regions, namely, Xi’an in the temperate monsoon
region, Guangzhou in the subtropical monsoon region, and
Hainan Island in the tropical monsoon region, are selected for
generalization evaluation experiments.

As shown in Figs. 13-15, the PPB method results across
all three regions exhibit varying degrees of magenta noise.
The MuLoG-BM3D method and MuLoG-TV can effectively
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Fig. 14. Despeckling results in Guangzhou area. (al) and (a2) Original
images with speckle. (b1)-(gl) and (b2)—(g2) Despeckling results of the PPB,
the MuLoG-BM3D, the MuLoG-TV, the SARDRN, the deSpeckNet, and the
IFSDN method in different areas.

Fig. 15. Despeckling results in Hainan Island. (al) and (a2) Original images
with speckle. (bl)—(gl) and (b2)—(g2) Despeckling results of the PPB, the
MuLoG-BM3D, the MuLoG-TV, the SARDRN, the deSpeckNet, and the
IFSDN method in different areas.

remove speckle noise but cause obvious structural information
loss and oversmoothing. The SARDRN and deSpeckNet have
obvious artifacts in urban built-up areas, particularly in Xi’an
and Guangzhou. In addition, both SARDRN and deSpeckNet
poorly preserve strong scattering points and exhibit prominent
artifacts in high backscattering coefficient areas, as shown
in the enlarged images of Figs. 13 and 14. Conversely, the
proposed method performs well across all three climate zones,
effectively removing speckle noise while retaining spatial
detail information with minimal reconstruction error. Table IV
presents the quantitative evaluation results for each region,
using reference-free indicators for evaluation. The quantitative
results demonstrate that in all three regions, the proposed
method can effectively balance the despeckling performance
and the spatial detail preservation, indicating its superior
robustness over the comparison methods.
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Fig. 16. Despeckling results under different phase numbers. (a)-(e) Noisy
images, the despeckling results of 7t, 11t, 21t, and 31t data, respectively.

Fig. 17. Despeckling results of ALOS2 data. (a) Original image with speckle.
(b)—(g) Despeckling results of the PPB, the MuLoG-BM3D, the MuLoG-TV,
the SARDRN, the deSpeckNet, and the IFSDN method, respectively.

V. DISCUSSION

A. Phase Quantity Sensitivity Analysis

In order to investigate the impact of the phase numbers
on the labeled data generation, this study analyzes the per-
formance of labeled datasets constructed with varying phase
counts, using Sentinel-1 data from July 1, 2020, as the
target date data. Datasets are constructed with 7, 11, 21, and
31 phases, corresponding to three, five, ten, and 15 phases
before and after the target date, respectively, labeled as 7t,
11t, 21t, and 31t. The IFSDN network is retrained with these
datasets and tested on Sentinel-1 data from July 13, 2020.

As shown in Table V, increasing the number of phases
improves noise suppression and significantly enhances the
ENL; however, this comes at the cost of losing edge details,
leading to a decrease in EPD-ROA. Visual results in Fig. 16
show that as the number of phases increases, the despeck-
ling results become smoother, and noise reduction improves.
A larger number of phases and a longer time span, how-
ever, introduce seasonal changes, causing variations in the
backscattering coefficient and resulting in color distortion in
the despeckling results. In Fig. 16, compared to the original
noisy image, the 7t and 11t datasets, averaged within the same
season, show minimal color distortion and maintain intensity
in farmland areas closer to the original. In contrast, the 21t
and 31t datasets, derived from cross-seasonal data, exhibit
brightening in farmland areas, indicating stronger backscat-
tering coefficients. In order to balance noise suppression and
minimize color distortion, this study uses the 11-phase average
dataset, covering approximately one season, as the label data
to mitigate the effects of seasonal changes.

B. Generalization Experiments Across Sensors

In order to verify the cross-sensor despeckle performance
of IFSDN, the L-band ALOS-2 and X-band TerraSAR
data are adopted to construct a generalization experiment.
Fig. 17 shows despeckling results for ALOS-2 urban areas.
Traditional methods can effectively reduce noise, but they
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TABLE IV
QUANTITATIVE EVALUATION RESULTS OF VARIOUS DESPECKLING METHODS ACROSS VARIOUS CLIMATE ZONES

Method PPB MuLoG-BM3D  MuLoG-TV__ SARDRN  deSpeckNet IFSDN

XA EPD-ROA  0.814 0.815 0.806 1.001 0.919 0.829
ENL 46.344 28.202 58.133 15.362 3.620 17.491

Gz EPD-ROA  0.751 0.753 0.736 1.208 0.811 0.773
ENL 64.931 43.982 85.366 11.630 8.255 13.089
EPD-ROA  0.817 0.821 0.813 0.858 0.835 0.829
ENL 54.865 28.636 132.325 15.950 15.504 16.839

Note: XA stands for Xi’an, GZ stands for Guangzhou, and HN stands for Hainan Island.

TABLE V

QUANTITATIVE EVALUATION RESULTS OF PHASE
QUANTITY SENSITIVITY ANALYSIS

Method ENL EPD-ROA
IFSDN-7t 61.006 0.934
IFSDN-11t  108.601 0.927
IFSDN-21t  120.373 0.925
IFSDN-31t  157.130 0.923

Fig. 18.
with speckle. (b)—(g) Despeckling results of the PPB, the MuLoG-BM3D,
the MuLoG-TV, the SARDRN, the deSpeckNet, and the IFSDN method,
respectively.

Despeckling results of TerraSAR data. (a) Original image

TABLE VI

QUANTITATIVE EVALUATION RESULTS OF GENERALIZATION
EXPERIMENTS ACROSS SENSORS

Method PPB MuLoG-BM3DMuLoG-TVSARDRNdeSpeckNetIFSDN

ALOS2 EPD-ROA 0.707 0.707 0.694 0.921 0.792  0.742
ENL 47.807  22.471 80.271 5.347 45.282  45.635
TerraSAREPD-ROA 0.485 0.483 0.464 0.518 0.509  0.506
ENL 12.506 9.913 16.868 6.064 12.630  23.703

struggle to retain structural details, blurring building out-
lines. Deep learning methods preserve texture better, but
SARDRN introduces color distortion, and deSpeckNet fails
to fully suppress road noise. The proposed method success-
fully balances noise suppression with texture preservation.
Fig. 18 presents TerraSAR despeckling results, where speckle
noise is more intense. In water areas, all methods except
SARDRN remove speckles effectively. PPB, however, pro-
duces magenta artifacts, and MuLoG-BM3D and MuLoG-TV
over-smooth the results. Both deSpeckNet and IFSDN achieve
a good balance between noise removal and detail retention.
As shown in Table VI, performance on ALOS-2 data is
relatively better, but in TerraSAR data, the higher noise
intensity reduces overall despeckling effectiveness and spatial
detail retention. The proposed method maintains a balance
between noise suppression and detail preservation for both
datasets.

VI. CONCLUSION

This article proposes an IFSDN framework tailored for
real SAR image conditions. Under this framework, the
long-time series SAR images from Sentinel-1 are temporally
synthesized to generate the “noisy-temporal average label”
dual-polarization SAR dataset for sample data. The HFEM
is constructed to independently process and integrate features
from each element of the covariance matrix, thereby prevent-
ing information interference between polarization channels.
The multihierarchical residual attention module is designed
to effectively extract and recalibrate feature maps from low
to high levels. An innovative information flow switching
mechanism is constructed to exchange beneficial informa-
tion dominated by features before and after denoising. This
mechanism guides the spatial information reconstruction of
despeckled feature maps, weakens the noise impact on prede-
noised feature maps, and maintains polarization information.
Additionally, an adaptive joint loss function, which considers
the changing relationship of ground objects in multitemporal
data, is constructed to eliminate the difference in backscat-
tering coefficients caused by changes in ground objects and
constrain the network training process. The spatial information
retention experiments and polarization information analysis
experiments indicate that the IFSDN model is superior to the
existing state-of-the-art methods in both visual comparison and
quantitative evaluation. The proposed method has excellent
spatial-polarization information retention capabilities, lower
errors in speckle suppression, and fewer artifacts.

Because of data availability constraints, the proposed
method primarily targets Sentinel-1 dual-polarization SAR
images. The focus of subsequent research is to improve
the applicability of the proposed method and extend it to
full-polarimetric SAR image despeckling tasks. In addition,
future work will also focus on the coupling task of the
scattering mechanism and learning mechanism.
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