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A B S T R A C T

In recent years, haze pollution has posed a great threat to public health in any Chinese cities. It is necessary to
explore different prevention methods for haze, and shaping a reasonable urban form may be a good way to
improve air quality. This study selected 269 cities as sample cities, used PM2.5 remote sensing data, and em-
ployed spatial regression models to explore the effects of urban form on haze pollution. The results show that
urban form can affect the concentration of PM2.5 through vehicle use, green land regulation, pollutant diffusion,
and the heat island effect. The results suggest that the effects of population density, degree of centering, and
compactness on air quality depend on population size. Therefore, different development strategies should be
used for cities of different sizes. Regional transmission is an important source of haze pollution, and regional
joint management strategies for combating haze pollution should be strengthened.

1. Introduction

In recent years, large-scale and long-term haze pollution has oc-
curred in many cities in China, largely due to PM2.5 pollution. PM2.5 can
damage the respiratory and cardiovascular systems of the human body,
as it can enter the lungs and blood via the respiratory tract (Cao et al.,
2011; Dominici et al., 2006; Tu & Tu, 2018). Air pollution causes the
premature death of 1.2 million people every year in China (Lim, Vos,
Flaxman, Danaei, Shibuya, & Adair-Rohani, 2010), and reducing the
concentration of PM2.5 is crucial to improving the health of residents.

Past studies have shown that rapid urbanization and industrializa-
tion have greatly contributed to air pollution in China, and some so-
cioeconomic development factors, including urbanization, urban ex-
pansion, per capita gross domestic product (GDP), industry, and
transport, affect air quality (Fang, Liu, Li, Sun, & Miao, 2015; Hao &
Liu, 2015; Liu et al., 2017; Tao et al., 2015). These studies have shown
that urban activities are the main sources of haze pollution in China,
but research studies on whether and how urban form would affect
PM2.5 pollution are limited. Studies in European and American cities
have shown that urban form could affect the source and diffusion of air
pollutants through urban traffic and climatic conditions, leading to the
deterioration of air quality (Bereitschaft & Debbage, 2013; Schweitzer
& Zhou, 2010; Stone, 2008). For example, low-density urban sprawl can
lead to longer commutes, excessive motor vehicle dependence, and

increased emissions, causing higher concentrations of air pollutants
(Song et al., 2014). For Chinese cities, tailpipe emissions from vehicles,
especially private cars, have become significant sources of haze pollu-
tion (Fang et al., 2015; Hao & Liu, 2015; Zhang, Sun, Wang, Li, Zhang,
2013). However, Chinese cities are quite different from European and
American cites in terms of urban form, and research on this topic is
limited for Chinese cities. Hence, it is necessary to fully investigate the
actual situation in Chinese cities. This calls for empirical research based
on pollution data and urban spatial data.

This study selects 269 Chinese cities as sample cities and utilizes
PM2.5 remote sensing data, GIS data, social and economic statistical
data alongside spatial regression models to explore the influence of
urban form on haze pollution, which may enhance policy decisions to
better deal with the air pollution in Chinese cities.

2. Literature review

As motor vehicles gradually became the main source of urban air
pollution (Fenger, 1999; Rojasrueda, De, Teixidó, & Nieuwenhuijsen,
2012), a large number of studies in Europe and America began to ex-
plore the relationship between urban form and air quality. However,
there are still different views on which urban forms may help in im-
proving air quality.

Some studies suggest that dense and compact urban forms can help
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to improve air quality. This viewpoint is based on studies of residents'
travel patterns, in which compact urban forms are shown to increase
bus sharing rates, reduce dependence on private cars, and reduce ve-
hicle travelling distances (Ewing & Cervero, 2010; Bento, Cropper,
Mobarak, & Vinha, 2005; Cervero & Murakami, 2010). With the de-
velopment of urban simulation models, land use–traffic–emission
models have been applied to some cities in Europe and America, and
the results show that emissions of air pollutants are lower in compact
development scenarios (Borrego et al., 2006; Morton, Rodríguez, Song,
& Cho, 2007; Civerolo et al., 2007; Hankey & Marshall, 2010). Pollution
monitoring networks provide more data support and promote empirical
studies. For example, Ewing, Pendall, and Chen (2003) and Stone
(2008) found that population density is negatively correlated with O3

concentrations in American metropolitan areas. Sovacool and Brown
(2010) compared CO2 emissions from 12 capital cities, and the result
showed that compact cities tend to have lower levels of energy con-
sumption and pollution emissions. Bereitschaft and Debbage (2013)
discussed the situation in the 86 metropolitan areas of the United States
and concluded that low-density urban sprawl may lead to higher con-
centrations of air pollution. In addition, some studies have shown that
the spatial fragmentation of urban land is positively correlated with air
pollution (Bechle, Millet, & Marshall, 2011; McCarty & Kaza, 2015).

Conversely, other scholars have argued that a high-density compact
urban form does not significantly improve air quality and may even
lead to more serious air pollution. Using a panel data analysis of 17
cities in South Korea, Cho and Choi (2014) found that compact urban
forms have no significant effect on improving air quality and their high
density may even lead to an increase in SO2 and CO concentrations.
Clark, Millet, and Marshall (2011) selected 111 cities in the United
States as samples and found that PM2.5 pollution levels increase as
population density increases. Rodríguez, Dupont-Courtade, and
Oueslati (2016) found that high-density cities are vulnerable to high
concentrations of SO2 by studying 249 European cities. In addition,
some studies have argued that high-density urban forms will increase
the number of people exposed to air pollution, leading to even greater
health threats (De Ridder et al., 2008; Hixson et al., 2010; Kahyaoğlu-
Koračin, Bassett, Mouat, & Gertler, 2009).

In addition, urban form could affect air quality in a variety of ways.
For example, although urban green spaces can purify air and absorb
particulate matter (Groenewegen & Vries, 2012), how urban forms can
make the most effective use of this purification effect is still unknown.
The geometric shape of city streets is also important, and it is generally
understood that excessive building density is not conducive to the dif-
fusion of pollutants (Buccolieri, Sandberg, & Di Sabatino, 2010; Gaigné,
Riou, & Thisse, 2012; Taseiko, Mikhailuta, Pitt, Lezhenin, & Zakharov,
2009). At the same time, urban form is related to the urban heat island
effect, and the increase in urban air temperature not only increases
electricity consumption and CO2 production (through air conditioning)
but may also promote the formation of PM2.5 and O3 pollutants (Sarrat,
Lemonsu, Masson, & Guedalia, 2006; Schwarz & Manceur, 2014a; Taha,
2008).

In recent years, some scholars have begun to focus on the re-
lationship between urban form and air quality in China, but there are
not yet any consistent and clear conclusions. Some scholars believed
that the low density and dispersed urban form is one of the causes of
long-distance commutes and traffic congestion (Wang, Chai, & Li, 2011;
Yang, Shen, Shen, & He, 2012; Zhao, Lü, & de Roo, 2010) and that
compact, high-density urban forms with mixed land use and better bus
service can reduce vehicle travel distances and tailpipe exhaust emis-
sions (Qin & Han, 2013). Other studies argue that the compact urban
form is not applicable to Chinese cities with already high densities and
mixed land use (Juhee, 2014). With the establishment of air pollution
monitoring networks in China, some scholars tried to use observation
data to conduct empirical studies, but they could not arrive at a clear
conclusion. For example, Liu, Arp, Song, and Song (2016) analyzed the
panel data for 30 cities in China and found that the increase in urban

land compactness may increase the concentration of PM10. By studying
the pollution data for 287 Chinese cities, Lu and Liu (2016) found that
land-use compactness is generally negatively correlated with con-
centrations of NO2 and SO2, but the effect varies from region to region.
By analyzing the pollution data for 84 cities in China, Yuan, Song,
Huang, Hong, and Huang (2017) found that population density is ne-
gatively correlated with the concentrations of PM2.5, PM10, and O3.

In summary, the existing research has not yet reached a unanimous
conclusion, and conclusions from European and American cities cannot
be applied directly to cities in China due to differences in both urban
forms and pollution sources. The PM2.5 pollution monitoring network
does not cover all cities in China, and it is difficult to carry out a robust
regression analysis using only a small number of urban samples.
Satellite remote sensing data have the advantage of full coverage and
high-precision earth observations, and PM2.5 concentration data can be
acquired from remote sensing aerosol data (Li, Shen, Zeng, Yuan, &
Zhang, 2017; Martin, 2008). In addition, PM2.5 regional transmission is
also an important source of urban haze, and there exists a spatial au-
tocorrelation of PM2.5 concentration for nearby cities. However, most
existing research ignores this effect, making the model results some-
what biased.

3. Data and methodology

Taking 269 Chinese cities above the prefecture level as samples, this
study adopts spatial regression models to eliminate the influence of
PM2.5 regional transmission and explore the effects of urban form on
PM2.5 concentrations in China. According to conventions established by
previous research, this study assumes that urban form will influence
PM2.5 concentration through vehicle use, green land regulation, pollu-
tant diffusion, and the heat island effect and then quantifies urban form
metrics in these four aspects. The work on data collection, model
building, and metric selection is described in detail below.

3.1. Study area and data

As Fig. 1 shows, the sample includes 4 municipalities, 26 provincial
capitals, and 239 prefecture-level cities. The data used in this study
include nighttime light data, PM2.5 remote sensing data, population
spatial distribution data, land-use data, meteorological data, and social
and economic statistical data. DMSP/OLS satellite remote sensing
nighttime light data from 2012 were used to extract the built-up area of
each city (Jiang, 2015), which laid the foundation for the calculation of
urban form metrics. The haze pollution level of each city was measured
using PM2.5 remote sensing data (Li et al., 2017). These data were based
on the 2014 MODIS satellite remote sensing aerosol data and the na-
tional air pollution ground monitoring data. A deep learning method
was used to retrieve spatial patterns of PM2.5 concentrations, with a
spatial resolution of 3 km×3 km and a concentration accuracy of 82%,
which meets the requirements of this study. By overlaying PM2.5 con-
centrations on maps of built-up areas, the mean PM2.5 concentrations
were calculated for each city (Fig. 2-a). The population distribution
data used is from the 2014 ORNL LandScan global population dis-
tribution at approximately 1-km resolution and represents an ambient
population (averaged over 24 h) for each city (Fig. 2-b). Land-cover
data are from the 2010 GlobeLand30 dataset (http://www.
globallandcover.com/GLC30Download/index.aspx) with a spatial re-
solution of 30m and an accuracy of over 80% (Fig. 2-c). Tan & Li, 2015
Open Street Map (OSM) road data (Fig. 2-d), 2014 MODIS land surface
temperature data (Fig. 2-e), and 2015 China city statistical yearbook
(with data for 2014) were also used in this study.

3.2. Spatial regression model

This study uses a spatial autocorrelation analysis to evaluate whe-
ther the PM2.5 concentration is related to geographical position, which

M. Yuan et al. Applied Geography 98 (2018) 215–223

216

http://www.globallandcover.com/GLC30Download/index.aspx
http://www.globallandcover.com/GLC30Download/index.aspx


lays the foundation for the use of spatial regression models. A global
spatial autocorrelation coefficient, Moran's I, is used to identify the
influence of the regional transmission of pollution across the country,
and a local spatial autocorrelation coefficient, LISA, is used to identify
the effects of pollution from neighboring cities at different locations.
The spatial weight matrix is defined with an inverse distance weighting
method for the spatial autocorrelation analysis in the study.

Instead of traditional OLS regressions, this study uses spatial re-
gression models to analyze the effect of urban form on haze pollution to
consider the effect of regional transmission of pollution. Three main
types of spatial regression models, namely the Spatial Lag Model (SLM,
equation (1)), Spatial Error Model (SEM, equation (2)), and Spatial
Durbin Model (SDM, equation (3)) (Anselin, 1988), are used in this
study. These spatial econometric models have been used to control for
the spatial effects of air pollution in various studies (Fang et al., 2015;
Hao & Liu, 2015; Liu et al., 2017), which validates the effectiveness of
the models:

∑= + +y ρW a X ε,y i i (1)

∑= + = +y a X u u λW ε, ,i i u (2)

∑= + + = +y ρW a X u u λW ε, ,y i i u (3)

where y is the dependent variable of PM2.5 concentration; ρ is a spatial
regression coefficient that shows the spatial dependence of the sample
observations; λ is a spatial autoregressive coefficient that reflects the
spatial dependence of the residuals; Wy and Wu are the spatial lag op-
erators calculated with y, the residual u, and spatial weight matrixW; Xi

represents the urban form metric or control variable, and ai is the
corresponding coefficient; and ε is the error term. The SLM contains the
spatial dependence effects of the dependent variable y; the SEM con-
tains the spatial dependence effects of the residual u; and the SDM
contains both effects. The SLM and SEM were run using GeoDa with the
maximum likelihood (ML) method, and the SDM was run using Geo-
DaSpace software with the Generalized Method of Moments (GMM).

3.3. Metrics

(1) Urban form metric

Urban form metrics are measured in four dimensions, namely ve-
hicle use, green land regulation, pollutant diffusion, and heat island
effect, and ArcGIS and Fragstats were used to calculate these metrics.

Population density, degree of centering, accessibility, and com-
pactness are usually correlated with vehicle usage (Zhao et al., 2010),
and this study focuses on these metrics. For each city, population
density is calculated with LandScan population data and the calculated
built-up area. Degree of centering is the ratio of the standard deviation
and the mean value of the LandScan population in the built-up area,
which reflects the spatial clustering degree of the population (Ewing,
Pendall, & Chen, 2002). The larger the value, the higher the level of
population aggregation in urban centers. Conversely, smaller values
indicate homogeneous population distributions, where there are no
obvious urban centers. A landscape metric, SHAPE, is used to reflect the
compactness of artificial land (Bereitschaft & Debbage, 2013; She et al.,
2017), and this study considers a negative value of SHAPE to evaluate
the compactness. The larger the value, the more compact the urban

Fig. 1. Locations of the 269 cities selected in this study.
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form (Wang, Madden, & Liu, 2017). Road density is used to measure the
accessibility of urban traffic, which is calculated using OSM road data.

The increase in urban green space may help to reduce pollutant
concentrations, but it remains to be confirmed which spatial pattern of
green land can improve air quality most effectively (Chen, Zhu, Fan, Li,
& Lafortezza, 2016; Janhäll, 2015). A Shannon landscape diversity
index (SHDI) is used to characterize the spatial pattern of green land.
The larger the value, the higher the spatial mixing degree of different
land types, and the more balanced the spatial distribution of green land.
The green land data is based on GlobeLand30 land-cover data, and data
with a resolution of 30m could properly reflect the spatial pattern of
urban green space (as Fig. 2-c shows).

Urban form may affect air quality by influencing pollutant diffusion,
and a landscape index, “Aggregation Index,” is used to measure the

spatial continuity of artificial land. Higher values of continuity indicate
higher building densities, which may have a stronger effect on pollution
diffusion.

The urban heat island effect may be one of the driving forces of haze
pollution, and it is also closely related to urban form (Connors, Galletti,
& Chow, 2013; Huang, Yuan, & Lu, 2017). Therefore, the urban heat
island intensity is taken as an independent variable in the spatial re-
gression model. Satellite remote sensing has been widely used in studies
on urban heat island effects (Schwarz & Manceur, 2014b; Zhou, Zhao,
Liu, Zhang, & Chao, 2014), and the Terra MODIS remote sensing pro-
duct MOD11A1 is used to calculate the average annual land surface
temperature in this study (observation period: January to December
2014, observation time: 10:30 a.m., resolution: 1 km). The urban heat
island intensity (UHI) of each city is determined by calculating the

Fig. 2. Example data for Beijing.
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difference in the average land surface temperature between an urban
built-up area and the surrounding rural area (Fig. 2-e). The surrounding
rural area is the buffer from the built-up area (the radius = S

π2
, S is

the area of the corresponding built-up area), and artificial land is ex-
cluded from the buffer (Tan & Li, 2015).

(2) Control variables

Both anthropogenic and natural factors have impacts on air quality
(Bereitschaft & Debbage, 2013; Clark et al., 2011; Fang et al., 2015; Hao
& Liu, 2015; Liu et al., 2017), and the following factors are taken as
control variables in the study. The per capita GDP reflects the level of
urban economic development (Hao & Liu, 2015), and the ratio of sec-
ondary industry to tertiary industry (GDP2_3) reflects the industrial
structure (Fang et al., 2015; Liu et al., 2017). The total amount of
central heating (Heat) represents the pollution from urban heating in
winter, and industrial emissions (Emi) are calculated by summing the
amount of SO2 and smoke from industry (Yuan et al., 2017). The above
data are gathered from the 2015 China city statistical yearbook (which
contains data for 2014). Only the statistical data for “districts under
city” (shixiaqu) are used in this paper, which may exclude data from the
county (xiaxian) or county-level city (xiaxianjishi) under its jurisdiction.
The total population of each city (PopSum) is calculated using Land-
Scan data and the calculated built-up area. The mean value of the wind
speed and air temperature are used to reflect meteorological conditions
(Liu et al., 2017; Yuan et al., 2017), and these values are calculated
from the interpolation values of climatological data from the China
Meteorological Data Service Center.

4. Results and discussion

4.1. Spatial patterns of PM2.5 concentrations

Statistics of PM2.5 concentrations and metrics are shown in Table 1.
Xingtai, Shijiazhuang, Baoding, Handan, and Hengshui, all located in
Hebei Province, were the five cities with the most severe haze pollution,
while the five cities with the best air quality were Sanya, Haikou,
Jiayuguan, Yuxi, and Kunming. The global spatial autocorrelation
coefficient, Moran's I, of the PM2.5 concentration is 0.77 (p < 0.001),
which indicates a spatial agglomeration of haze pollution. As Fig. 3
shows, there are three highly correlated areas of haze pollution, namely
the high PM2.5 concentration Jingjinji urban agglomeration area, the
low PM2.5 concentration southeastern coastal area, and the low PM2.5

concentration Yunnan province. Hence, haze pollution may be closely
related to regional pollution transmission, which provides the basis for
the application of spatial regression models.

4.2. Results of the regressions

Due to the spatial autocorrelation from the analysis above, an OLS
model was used firstly as a pre-judgement test. As Table 2 shows,
compactness, continuity, SHDI, per capita GDP, industrial emissions,
heating amount, and wind speed have significant effects on PM2.5

concentrations. The variance inflation factor (VIF) for each variable is
smaller than three, so multicollinearity may have no impact on the
results. However, the highly significant Moran's I of the OLS residuals
suggests that the OLS regression model cannot solve the spatial auto-
correlation problem when dealing with PM2.5 concentrations, and it
may lead to bias in the significance, size, and sign of the regression
coefficients as well as misleading conclusions. The Lagrange multiplier
(LM) and robust LM tests for the SLM and SEM are significant, and these
two spatial regression models are both used in the following estima-
tions.

To determine which spatial regression model is most appropriate,
SLM, SEM and SDM are used with different explanatory variables in
Models 1–7 (Table 3, Table 4). Model 1 includes all urban form metrics,
excluding other control variables. Model 2 only considers the control
variables in order to examine the correlation between different socio-
economic factors and PM2.5 concentrations. Models 3 and 4 add control
variables to Model 1 to improve the fitness of the model. Instead of R2,
log-likelihood (LL) is used to reflect the goodness of fit for the spatial
regression models, where a higher value of LL indicates better fitting of
the models. The OLS model has the lowest LL value (Table 2), sug-
gesting that the spatial regression model is better than the OLS model in
terms of the goodness of fit. The spatial regression coefficient ρ in SLM
and the spatial autoregressive coefficient λ in the SEM are significantly
positive, and it is not necessary to depend on the SDM due to the in-
significance of λ in the SDM (Models 1, 3, 4). The SLM and SEM are
used in Models 5–7 with the quadratic or interaction term of some
variables. For most models, the SLM has a higher log-likelihood value
than does the SEM, and the SLM is considered the more appropriate
model in the following analysis. Meanwhile, the spatial lag of the PM2.5

concentrations ρWy in the SLM may help to explain the PM2.5 regional
transmission between neighboring cities.

4.3. Effects of urban form

Population density has a significant positive effect on PM2.5 con-
centrations in Model 1, but it becomes insignificant when the total
population is controlled, as in Model 3. The insignificant interaction
term between population density and total population in Model 5 also
suggests that the effect of population density on PM2.5 concentrations
may depend on population size. Compared to most western countries,
the population density of Chinese cities is high (Huang, Lu, & Sellers,

Table 1
Statistic of metrics.

ID Metric Min Max Mean Std. D Unit

PM2.5 PM2.5 concentration 22 125 63 17 μg/m3

PopDen Population Density 835 11071 3540 1438 person/km2

Center Degree of centering 1.04 3.62 1.91 0.47
RoadDen Road density 0.2 5.7 1.5 0.8 km/km2

Compact Compactness −20.31 −1.72 −5.23 2.74
Contin Continuity 90.22 99.52 96.13 1.45
SHDI Landscape diversity 0.62 1.71 1.11 0.25
PopSum Total population 51438 21838398 1318307 2305891 person
GDP Per capita GDP 10265 467749 71787 54172 yuan/person
Emi Industrial emission 1210 786853 100454 90656 ton
Heat Central heating 0 35466 1093 3195 10,000 GJ
GDP2_3 Industrial structure 0.23 4.24 1.25 0.62
Wind Wind speed 9 44 21 5 0.1m/s
Temp Air temperature −5 254 151 48 0.1 °C
UHI Urban heat island −1.9 4.4 1.7 1.1 °C
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2007). For large cities, excessive population density may lead to ex-
cessive agglomeration of roads and other infrastructures, which may, in
turn, bring greater environmental pressure. Excessive population den-
sity is likely to cause traffic congestion in urban centers, and vehicle
engines will produce more pollutants under idle conditions. Hence,
reducing population density appropriately will help to mitigate traffic
congestion and improve air quality in large cities. For small- and
medium-sized cities, low population density may increase commuting
distances, the number of private cars, and the energy consumption of
the power grid and heating, leading to more vehicle and industrial
emissions. Total population is not significant in Models 2–4, so the
PM2.5 concentrations are not necessarily related to urban size. Although
the increase in the urban population will put some pressure on the
environment, poorly planned urban forms may be the main cause of air
pollution. These results also suggest that haze pollution is not only
occurring in large cities, but that some small- and medium-sized cities
also show high levels of PM2.5 concentrations. More attention should be
paid to air pollution in small- and medium-sized cities in the future.

Degree of centering is negatively correlated with the PM2.5

concentration, which indicates that urban centrality may contribute to
improved air quality. The metric is closely related to the spatial dis-
tribution of the urban population and thus has an impact on traffic flow,
commuting distance, and exhaust emissions. Compactness is negatively
associated with PM2.5 concentrations, because a compact urban form
helps to shorten travel distances and reduce residents' dependence on
motor vehicles (Bereitschaft & Debbage, 2013). In addition, compact
urban forms are conducive to a centralized layout for industrial en-
terprises, which not only can improve the energy efficiency in industrial
production but is also beneficial to the layout, construction, and op-
eration of environmental protection facilities (Lu & Liu, 2016). The
interaction term between compactness and total population was added
to Model 6, and its coefficient was significantly positive. Hence, the
coefficient of compactness could be expressed as −0.766 + 4.11E-
08 × PopSum (a negative value). This suggests that the absolute value
of the coefficient of compactness may decrease as total population in-
creases. The smaller the city size, the greater the effect of compactness
on improving air quality; as the size of the city increases, the effect of
compactness gradually weakens. For small- and medium-sized cities, a

Fig. 3. PM2.5 concentrations and local spatial autocorrelation analyses.

Table 2
Results of the OLS estimation.

Variable Coefficient Probability VIF Spatial dependence Value Probability

PopDen 4.16E-04 0.556 1.4 Adjusted R2 0.35
Center −1.667 0.443 1.41 Log likelihood −1085.17
RoadDen −1.093 0.368 1.38 Moran's I (error) 0.412 0
Compact −1.435 −0.001 1.9 LM (lag) 708.3696 0
Contin 1.868 0.007 1.36 Robust LM (lag) 83.5597 0
SHDI −28.978 0 1.35 LM (error) Infinity 0
PopSum −6.23E-07 0.283 2.41 Robust LM (error) Infinity 0
GDP −3.68E-05 0.094 1.91
Emi 2.48E-05 0.016 1.17
Heat 5.43E-04 0.097 1.47
GDP2_3 1.429 0.35 1.22
Wind −0.516 0.007 1.39
Temp 0.005 0.842 1.61
UHI 2.782 0 1.16

Note: values in bold are significant at 0.1 level.
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compact urban form should be promoted, and single center structures
should be set up to facilitate public transport systems, thus reducing
pollution from private cars. For large cities, multi-center structures
should be set up to shift the population from the urban center to various
subcenters, reducing the negative effects of crowding on air quality.

In contrast to results for western countries, increased continuity in
artificial land may increase PM2.5 concentrations in China. In European
and American cities, low urban continuity refers to fragmented,
“leapfrog”-style development, and it may significantly increase vehicle
travelling distance (Bereitschaft & Debbage, 2013; Rodríguez et al.,
2016). However, Chinese cities are much denser than western cities,
and a higher continuity of artificial land with higher building density
may impede the diffusion process of air pollutants (Hang, Sandberg, Li,
& Claesson, 2009; Taseiko et al., 2009). Landscape diversity is sig-
nificantly negative in most models, and a spatially balanced pattern of
green land may help to clean the air and absorb particulate matter.

Road density is significantly positively correlated with PM2.5 con-
centrations in most models, and its squared term is not significantly
negative in Model 7. Increases in road density will improve the acces-
sibility of streets, which may induce more cars to travel. Because there
is not an inverted U-shape relationship between air pollution and road
density, increasing road density may result in more traffic and air
pollution. This suggests that the new “small street block, high-density
road network” initiative may not currently be suitable for most Chinese
cities.

The urban heat island effect significantly boosts the formation of
haze pollution, showing a significantly positive coefficient. The heat
island effect will lead to higher air temperatures, lower air densities,
and lower wind speeds, which will not only make it more difficult for

air pollutants to disperse but will also push pollutants from surrounding
rural areas toward urban centers. The urban heat island intensity is
closely related to some urban form metrics. For example, building
density and continuity of artificial land is positively correlated with the
urban heat island intensity, and green land will reduce the urban heat
island intensity (Huang et al., 2017; Zhou, Zhang, Li, Huang, & Zhu,
2016; Zhang, Qi, Ye, Cai, Ma, Chen, 2013). In addition, particulate
matter will retain heat and increase the urban heat island intensity,
which would form a positive feedback loop between haze pollution and
urban heat island effects (Chang et al., 2016).

4.4. Effects of control variables

The per capita GDP is significantly negative in most models, which
indicates that air quality may gradually improve with economic growth
in China. In cities with high levels of economic development, the gov-
ernment has a higher awareness of pollution control and more financial
input on environmental protection, and there are also fewer high-pol-
lution vehicles and more clean energy vehicles. Industrial emissions and
the ratio of secondary industry to tertiary industry are significantly
positive in most models, showing that industrial production is still a
significant source of air pollution, particularly with respect to the
highly polluting and energy-consuming industries. Central heating
tends to be significantly positive in the models, showing that air pol-
lution caused by coal burning is still not negligible, and clean heating
methods should be promoted in northern China. Wind speed is sig-
nificantly negative in the SLM, and air temperature shows a significant
positive relationship with PM2.5 concentrations in the SEM.

Table 3
Results of spatial regressions.

variable Model 1 Model 2 Model 3 Model 4

SLM SEM SDM SLM SEM SDM SLM SEM SDM SLM SEM SDM

ρ 0.883 0.975 0.915 0.83 0.872 0.96 0.873 0.96
(0) (0) (0) (0) (0) (0) (0) (0)

λ 0.93 0.088 0.944 0.292 0.945 0.122 0.945 0.11
(0) (0.447) (0) (0.057) (0) (0.336) (0) (0.388)

PopDen 7.44E-04 3.53E-04 4.20E-04 2.62E-04 4.06E-05 8.52E-05
(-0.09) (0.428) (0.282) (-0.537) (0.922) (0.823)

Center −2.62 −2.45 −2.633 −2.44 −3.149 −2.407 −2.7 −3.09 −2.466
(-0.055) (0.083) (0.03) (-0.06) (0.021) (0.041) (-0.029) (0.02) (0.028)

RoadDen 0.509 1.235 1.176 1.43 1.958 1.881 1.41 1.852 1.794
(-0.486) (0.096) (0.079) (-0.05) (0.009) (0.005) (-0.048) (0.011) (0.006)

Compact −0.496 −0.464 0.36 −0.544 −0.44 −0.424 −0.508 −0.363 −0.35
(-0.03) (-0.041) (0.083) (-0.036) (-0.077) (-0.073) (-0.035) (-0.113) (-0.109)

Contin 0.387 0.344 0.166 0.69 0.481 0.424 0.718 0.456 0.408
(-0.356) (0.433) (0.663) (-0.097) (0.247) (0.263) (-0.076) (0.262) (0.269)

SHDI −7.85 −6.51 −4.03 −7.37 −4.386 −3.768 −6.9 −4.335 −3.622
(-0.002) (0.037) (0.131) (-0.003) (0.133) (0.136) (-0.004) (0.13) (0.139)

PopSum 3.32E-07 3.08E-07 2.00E-07 −2.41E-07 −3.11E-07 −3.00E-07
(-0.313) (0.35) (0.504) (-0.489) (0.379) (0.33)

GDP −3.31E-05 −3.05E-05 −3.12E-05 −2.66E-05 −2.43E-05 −2.35E-05 −3.04E-05 −2.89E-05 −2.8E-05
(-0.009) (0.017) (0.01) (-0.044) (0.066) (0.048) (-0.013) (0.017) (0.013)

Emi 1.45E-05 1.13E-05 1.44E-05 1.08E-05 1.06E-05 1.00E-05 1.04E-05 9.778E-06 9.30E-06
(-0.022) (0.081) (0.018) (-0.082) (0.089) (0.074) (-0.092) (0.113) (0.093)

Heat 3.57E-04 3.04E-04 2.94E-04 3.55E-04 3.24E-04 2.49E-04 3.09E-04 2.66E-04 1.91E-04
(-0.08) (0.142) (0.12) (-0.069) (0.108) (0.159) (-0.095) (0.163) (0.252)

GDP2_3 1.68 1.77 0.587 2.28 2.625 1.45 2.39 2.78 1.61
(-0.075) (0.054) (0.498) (-0.013) (0.004) (0.078) (-0.008) (0.002) (0.047)

Wind −0.279 −0.18 −0.228 −0.274 −0.168 −0.207 −0.278 −0.168 −0.203
(-0.017) (0.202) (0.059) (-0.017) (0.226) (0.054) (-0.014) (0.226) (0.055)

Temp 7.43E-03 0.124 3.81E-03 1.99E-02 0.127 1.70E-02 1.89E-02 0.123 0.015
(-0.585) (0.014) (0.816) (-0.147) (0.01) (0.21) (-0.163) (0.011) (0.263)

UHI 2.1 2.518 2.117 2.1 2.542 1.89 2.09 2.52 1.85
(0) (0) (0) (0) (0) (0) (0) (0) (0)

LL −989.37 −992.53 – −983.179 −980.94 – −967.791 −969.02 – −968.178 −969.4 –

Note: Values in bold are significant at 0.1 level.
Only GMM estimation is used in SDM in GeoDaSpace, and there is no log-likelihood value.
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5. Conclusions and implications

Haze pollution has become a serious challenge for China, and a
better understanding of the effect of urban form on haze pollution can
help guide urban planning and development policy. Using remote
sensing monitoring data of PM2.5 concentrations, this study explored
the association between urban form and PM2.5 concentrations for 269
prefectural-level cities in China using spatial regression models, and the
main conclusions are as follows: (1) There is a significant spatial au-
tocorrelation of PM2.5 concentrations, and regional pollution trans-
mission should be considered when exploring the driving forces of haze
pollution; (2) Urban form can affect PM2.5 concentrations through ve-
hicle use, green land regulation, pollutant diffusion, and the heat island
effect; (3) The effects of population density, degree of centering, and
compactness will vary with city size, and different planning policies
should therefore be formulated for cities of varying size.

The results of this study have the following policy implications for
reducing haze pollution in Chinese cities. The association between
urban form and PM2.5 concentrations is not universal, and it is neces-
sary to develop different development policies based on city size. For
small- and medium-sized cities, the population density should be ap-
propriately increased, and it is better to develop a compact, single-
center urban structure. For large cities, a multi-center structure should
be developed to decrease excessive population density in the urban
center. This approach will contribute to reducing commuting distance
and traffic congestion as well as alleviating negative environmental
externalities. In addition to increasing the green land area, the spatial
balancing of green land should be also be improved, which may help to

reduce PM2.5 concentrations and urban heat island effects. Regional
pollution transmission is one of the important sources of haze pollution
in Chinese cities, and it is necessary to promote the concepts of “joint
prevention and control” and cooperation for cities in heavily polluted
areas in order to tackle this issue.
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