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Abstract—In this study, the influence of altitude on the rela-
tionship between vegetation and climate was investigated via net
primary productivity (NPP) in the mountainous Yunnan province
of China. In order to undertake a detailed spatial analysis at a long-
term level, a monthly 1-km NPP time series from 1982 to 2014 was
constructed from multisource remote sensing data sets. The altitu-
dinal variation of the relationship between NPP and climatic fac-
tors was disclosed at annual, seasonal, and monthly scales, respec-
tively. The results indicated that the correlation between NPP and
precipitation gradually decreases from positive to negative with the
ascending elevation at an annual scale, which is completely the op-
posite to temperature. The relationships at seasonal and monthly
scales are also consistent, but significant seasonal heterogeneity
was found due to the uneven climate. It was also concluded that
downward run-off is responsible for the altitudinal heterogeneity,
in that high-elevation areas cannot easily retain water, and only
low-elevation areas benefit from the increased precipitation. What
is more, we also found that the impact of climatic drought on
NPP is related to topography. Large river valleys help to facilitate
droughts, but the negative impacts on NPP can be mitigated in the
rugged area with fluctuating slope.

Index Terms—Climate control, drought, elevation transect,
multisource remote sensing, net primary productivity (NPP).

I. INTRODUCTION

N ET primary productivity (NPP) is the biomass increment
of plants in a specified time interval, which means that
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the residual amount of organic matter produced by vegetation
photosynthesis was deducted from autotrophic respiration
[1]–[3]. NPP is an important ecological indicator for the vari-
ation and balance of the terrestrial ecosystem carbon budgets.
With the development of satellite technology, macroscopic and
dynamic NPP can be modeled through remote sensing methods,
and it has been comprehensively applied to the vegetation
monitoring in recent years [4]–[6]. Under the background
of drastic global climate change, the relationship between
NPP and climate has become one of the most important core
issues worldwide [7], [8]. Improved cognition of vegetation
variation and adaptability to climate is essential to advance our
understanding of global climate change and help the policies
developing [9], [10].

Many studies have explored the relationship between the ter-
restrial ecosystem and climatic factors at regional, national, or
global scales, and different conclusions about their spatial and
temporal heterogeneity have been obtained [11]–[15]. Globally,
Nemani et al. [12] suggested that global NPP increased by 6%
from 1982 to 1999 due to climate change easing some of the
critical climatic constraints to plant growth. At the hemisphere
scale, Piao et al. [11] found that autumn warming has led to net
carbon dioxide losses in northern terrestrial ecosystems, offset-
ting 90% of the increment during spring. Nationally, Liang et al.
[13] indicated that the interannual variation of NPP is controlled
by the air temperature throughout China, except for some arid
and semiarid regions, where precipitation is the dominant factor.
Regionally, Chen et al. [14] declared that the warm-wet climate
increased the NPP of alpine grassland over the Qinghai–Tibet
Plateau from 1982 to 2001, but the warm-dry climate decreased
it in the last ten years. What is more, the impacts of extreme
climate phenomena on NPP have also been intensively studied,
including El Niño, heat, droughts, and so on [16]–[18]. With
more and more frequent droughts occurring worldwide, a great
deal of research has addressed the association between NPP
anomalies and droughts in different regions [19]–[21].

However, almost all of the previous findings about the spatial
differences of climate control on NPP are based on longitude,
latitude, and vegetation types, but only a handful of studies that
have paid attention to the altitudinal heterogeneity [22]–[25].
The data employed in most of the related studies were from the
specific sites, and only the impacts of temperature were consid-
ered [26]–[30]. So they could only describe the performances of
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the elevation points with sites distributed, no conclusion along
the continuous elevation transect was obtained. In addition, the
limited remote sensing research has only paid attention to the
distribution of NPP with regard to elevation, slope, and aspect,
but the analysis of its relationship to climate is lacking [22],
[31]. Further study is also limited by the characteristics of the
current satellite data sets, because none of them can provide
both a suitable resolution and a long time span simultaneously
[32]–[34]. In fact, it is also of great significance to explore the
effect of climate on vegetation growth along elevation transects
in complicated mountainous areas [35], [36]. Mountainous areas
host approximately a quarter of the land surface and more than
a third of the terrestrial plant species [35]. They also provide ex-
cellent natural laboratories for understanding the environmental
controls on the ecosystem in various circumstances over short
spatial distances [25]. Due to the complex natural conditions
caused by the varied climatic factors, soil water movement, and
the species change along elevation gradients [31], [37], the re-
lationship between NPP and climate in mountainous areas is
highly complicated. Therefore, cognition for the altitudinal het-
erogeneity of climate control on vegetation NPP is meaningful
but currently lacking, and significant effort is urgently needed
to acquire a better understanding.

Yunnan province is the most southwestern part of China, with
more than 90% of the region covered by mountainous land-
forms. The elevation ranges from 76 to 6740 m, with very high
vegetation coverage, so it is an ideal laboratory to study the het-
erogeneity of the relationship between NPP and climatic factors
along altitudinal transects [25], [35]. What is more, the region is
an important carbon sink [38], but has frequently suffered from
droughts in recent decades [21], [39]. Although some studies
have focused on the impacts of climatic factors and drought on
NPP in this area, none of them have paid attention to the effect
of elevation. Therefore, the main purpose of this paper is: 1) to
obtain an appropriate long-term NPP time series with a suitable
spatial resolution based on multisource remote sensing data sets
and the multisensor information fusion method; 2) to under-
take an in-depth investigation of the relationship between NPP
and climatic factors along altitudinal gradients, as well as the
seasonal heterogeneity; and 3) to explore as to whether or not
there are effects of complicated topography on the relationship
between NPP and drought in Yunnan.

II. MATERIALS AND METHODS

A. Study Area

Yunnan province, located between 97.52°–106.18°E and
21.13°–29.25°N neighboring the Tibetan Plateau, is the most
southwestern part of China [see Fig. 1(a)]. Mountainous land-
forms are the main terrain type, with highly varied elevation
ranging from 67 to 6740 m only in the total area of 394 000 km2.
As shown in Fig. 1(b), a generally downward tendency in ele-
vation from north to south can be observed. Vegetation covers
approximately 94% of the area, and the complex mountainous
landforms provide ideal conditions for the growth of rich vege-
tation types, varied from tropical species to frigid species [40].
The climate pattern is very diverse, with the synergistic effect

Fig. 1. Study area. (a) Location of Yunnan in China. (b) Spatial distribution
of elevation in Yunnan province.

of different climate types, and the accordant decreasing impact
on temperature by altitude and latitude from south to north ag-
gravates the complexity. In addition, more and more frequent
droughts have occurred in recent decades, and the area suffered
from a continuous four-year extreme drought from 2009 to 2012
[21], [39]. Given that the importance of elevation in vegetation
studies has been emphasized in previous research [25], [35], it is
important to investigate the altitudinal heterogeneity of the cli-
mate control on NPP in Yunnan province, which is an important
carbon sink with complex terrain and frequent droughts.

B. Data Sources

1) Remote Sensing Data: In this study, the advanced very
high resolution radiometer global inventory modeling and map-
ping studies third generation (GIMMS3g) normalized difference
vegetation index (NDVI) product and the moderate resolution
imaging spectroradiometer (MODIS) MOD13A3 data collec-
tion were employed to composite a new NDVI time series,
combining the respective advantages of time span and spatial
resolution. The GIMMS product is the half-monthly NDVI at a
spatial resolution of 8 km from 1982 to 2013, and the MOD13A3
product is 1-km data with a one-month time interval from 2000
to 2014. The two data sets are the most popular NDVI products
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at the present time, and they have been widely applied in many
studies [15], [22], [41].

The land-cover map was derived by the Environmental and
Ecological Science Data Center for West China (WESTDC),
and is named WESTDC2.0. The map integrates the information
of the surveyed 1:100 000 land-resources data and multisource
satellite land-cover data sets [42]. The vegetation types are syn-
thesized into eight classes: evergreen broadleaf forest, deciduous
broadleaf forest, needle-leaf forest, mixed forest, shrub, grass,
crop, and other coverings. The applied digital elevation model
(DEM) was the shuttle radar topography mission data set with
a spatial resolution of 90 m, which was resampled to the scale
of MODIS NDVI.

2) Meteorological Data: The meteorological data were from
the China Meteorological Administration (CMA), comprising
monthly precipitation, air temperature and daily surface pres-
sure, air temperature, surface air relative humidity, and sunshine
duration for 29 uniformly distributed stations, over the study
period of 1982–2014. Observed solar radiation data from five
radiation stations were also obtained. The ANUSPLIN package
was employed to carefully interpolate the station records to the
same spatial resolution as MODIS NDVI [43].

3) Field-Based NPP Data: The measurement-based
biomass/NPP data set was derived from Luo’s study [44],
which has been extensively applied as validation data in many
studies [45], [46]. The data for the study area were originally
obtained by the Yunnan Ministry of Forestry. The data include
the forest biomass/NPP and part values of various plant com-
ponents, as well as the dominant species, latitude, longitude,
and elevation of each site. However, the records of NPP are
provided with the unit of dry matter (t.DM.ha−1.year−1), so a
conversion factor of 50 was needed to change this into carbon
content (gC.m−2.year−1) [46], [47].

4) Yearbook of Meteorological Disasters: The drought con-
ditions of each district in Yunnan province were obtained from
the Yearbook of Meteorological Disasters in China [48], which
is the official published statistics. The yearbooks have declared
the specific districts that have suffered from droughts every year,
and the drought frequency of every district has been counted
over the past ten years from 2004 to 2013.

C. NPP Estimation

1) Carnegie–Ames–Stanford Approach (CASA) Model: The
CASA model was applied to estimate the monthly NPP in the
study area. This model calculates NPP as the product of absorbed
photosynthetic active radiation (APAR, MJ.m−2) and the light-
use efficiency (ε, gC.MJ−1) [49]–[51], as follows:

NPP (x, t) = APAR (x, t) × ε (x, t) (1)

where NPP(x, t) is the total fixed NPP of pixel x in month
t, APAR(x, t) is the total amount of absorbed photosynthetic
active radiation over the period, and ε(x, t) is the actual light-
use efficiency. The calculation of APAR and ε is shown in (2)

and (3), respectively:

APAR (x, t) = Rs (x, t) × 0.5 × FPAR (x, t) (2)

ε (x, t) = ε∗(x, t) × T (x, t) × W (x, t) (3)

where Rs(x, t) is the total solar radiation, which was precisely
calculated by the improved Yang hybrid model [52]–[54]; the
coefficient 0.5 is the approximate ratio of photosynthetic active
radiation (0.4–0.7 μm) in total solar radiation; and FPAR(x, t)
is the fraction of photosynthetic active radiation absorbed by
the vegetation canopy, which is a function of the NDVI. In (3),
ε∗(x, t) is the maximum light-use efficiency, which varies with
the vegetation type according to the previous studies of ecosys-
tems in China [55]; and T (x, t) and W (x, t) are the temperature
stress factor and water stress factor [56], [57].

2) NDVI Construction: The spatial and temporal resolution
of NPP from the CASA model was determined by the input
NDVI, but a single remote sensing data set cannot provide a
continuous long-term time series with a suitable spatial resolu-
tion. GIMMS3g spans a long period with a sparse resolution of
8 km, so it cannot provide enough spatial details and would lead
to NPP accuracy loss [58], [59]. The MODIS product provides
a suitable resolution range from 250 m to 1 km, but no data
were observed before the year 2000. The spatial and temporal
fusion model is an efficient way to combine the respective ad-
vantages of different remote sensing data sets and improve the
data resolution with good accuracy [32], [60]–[62], and it has
already been successfully applied to many vegetation studies to
help conducting the analysis at a finer scale [33], [63], [64]. As
a result, a multisource data fusion framework was constructed
to obtain a monthly NDVI time series with a spatial resolu-
tion of 1 km from 1982 to 2014 [65]. First of all, the moving
weighted harmonic analysis method was employed to correct
the contaminated values caused by atmospheric contamination
[66], and the pixel-by-pixel linear regressive model was used to
narrow the sensor differences based on the mutually pairwise
data [67]. Afterwards, the spatio-temporal information fusion
method based on a nonlocal means filter was applied to improve
the spatial resolution of the GIMMS3g data before 2000. Mul-
tisensor fusion can predict the fine-resolution (F) NDVI at tk
based on the coarse-resolution (C) data at tk and the F and C
acquired at t0 , expressed as

F (xw/2 , yw/2 , tk ) =
w∑

i=1

w∑

j=1

Wij × F (xi, yj , t0)

+ C(xi, yj , tk ) − C(xi, yj , t0)) (4)

where w is the size of the moving window; (x, y) denote the pixel
location; and Wij is the spatial weighting function, the more
reasonable calculation of which is the applied fusion algorithm.
The 1 km monthly NDVI data from 1982 to 1999 were fused
referring to the pairwise data of corresponding month in the
nearest year. The reliability of the NDVI construction processes
was proved in our previous study, with root-mean-square error
around 0.07 stably [68].
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Fig. 2. Validation of the estimated NPP against field measurements (r = 0.79,
p < 0.001, N = 59).

D. Altitudinal Statistics

A simple equal division of elevation was employed to inves-
tigate the altitudinal heterogeneity of the relationship between
NPP and climatic factors, which is an approach that has been
commonly used in previous studies [22]. Synthetically consid-
ering the accuracy of the DEM data, the wide range of elevation,
and the spatial resolution of the NPP time series, the step size
of the elevation was set at 50 m [69]. According to previous
research, permanent snow exists in the study area above the el-
evation of 4500 m [70]. Therefore, considering the vegetation
coverage, only the region below the snow line was analyzed in
this study, and totally 90 elevation segments were obtained. The
Pearson correlation coefficient (r) was applied to represent the
relationship between NPP and climatic factors.

III. RESULTS AND ANALYSIS

In this section, the accuracy of the NPP time series was first
validated before it was applied to analyze the altitudinal impacts
on NPP distribution and variation. The heterogeneity of the re-
lationship between NPP and climatic factors along the elevation
transects was then explored at different time scales. Finally, the
impact of elevation on the frequency of droughts in Yunnan was
analyzed through the use of zonal statistics.

A. NPP Validation

In order to verify the reliability of the CASA model, the
estimated NPP was validated against the field measurements of
the Yunnan Ministry of Forestry from Luo’s study [44]. In total,
59 records for the year 1983 were picked through matching
the vegetation type with the land-cover map, and were then
compared with the estimated NPP of the corresponding pixels.
The verification result is shown as a scatterplot in Fig. 2, where
the linear correlation coefficient between the estimated NPP and
the field measurements reaches 0.79 (p < 0.001). This means

Fig. 3. Spatial distribution of NPP in Yunnan province.

that the estimated NPP by the CASA model can be deemed as
reliable to study the carbon cycle in the study area.

B. NPP Variation Along Elevation Transect

In order to determine the altitudinal impact on NPP distri-
bution and variation, the mean annual NPP for the different
elevation zones was calculated and analyzed. Furthermore, the
altitudinal difference of the NPP interannual variation is also
visualized using a three-dimensional (3-D) diagram.

1) NPP Spatial Distribution: The spatial distribution of NPP
in Yunnan province is shown in Fig. 3, where it can be seen that
the overall tendency of NPP decreases from south to north,
which is completely the opposite to the distribution of eleva-
tion shown in Fig. 1. This means that NPP is relatively low in
the high mountain regions, and high NPP can be found in the
low-elevation areas. To allow a detailed interpretation, the mean
NPP for the different elevation zones with an isometric interval
of 50 m was calculated. As shown in Fig. 4(a), it can be clearly
observed that NPP decreases as the elevation increases, and the
decreased trend (the slope) is greater and greater. The mean an-
nual NPP is greater than 800 gC.m−2.year−1 in the low-elevation
areas, but is less than 600 gC.m−2.year−1 when the elevation is
higher than 4000 m. This is a result of the decrease in precip-
itation and temperature when the elevation becomes higher, as
shown in Fig. 4(b). The abnormal trough in the NPP variation
around the elevation of 1800 m conforms to the variation of
precipitation. The precipitation reaches peak at the elevation
around 1000 m and decreases in the higher area, which means
the maximum precipitation height in the region. There is an
abnormal U-sharped variation of NPP within the elevation of
0–600 m, where the vegetation is synergistic affected by the in-
creased surface water and decreased temperature. Furthermore,
statistical and representative error could also exist within this
elevation range, because only a few pixels are covered, with a
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Fig. 4. Statistics of NPP and climatic factors in different elevations. (a) NPP. (b) Climatic factors.

total percentage of 1.25%. As shown in Fig. 4(a), 52.47% of
Yunnan lies within the elevation range of 1500–2500 m, while
the proportions with elevations higher than 3500 m and lower
than 1000 m are very small. In general, the NPP overall de-
creases from the low-elevation grounds to the high-elevation
mountains and agrees to both decline of precipitation and tem-
perature.

2) NPP Annual Variation: The 3-D variation of NPP with
regard to elevation and year is shown in Fig. 5. For the longi-
tudinal profile of each year, the variation of NPP with elevation
is very similar for the different years, except for the years from
2009 to 2012, when the area suffered persist severe drought.
During these four years, the NPP of the low-elevation area does
not show the U-sharped variation, but shows a continuously flat
surface at a very low value. Furthermore, similar troughs are also
found for all the other elevation zones in these four years. This
indicates that NPP was seriously influenced by the severe four-
year drought, which is much more apparent in the low-elevation
area. Meanwhile, for the transverse profiles, which represent
the interannual variation of NPP for the elevation zones, they
are quite different with the increase of elevation. This indicates
that the variation trends of NPP also show huge differences for
different elevations.

C. Quantitative Analysis of the Altitudinal Heterogeneity of
Climate Control on NPP

In this section, quantitative correlation analysis is applied
to explore the altitudinal variation of the relationship between
NPP and climatic factors. The huge seasonal heterogeneity is
carefully considered, and the issue is investigated at annual,
seasonal, and monthly scales, respectively.

1) Annual Scale: The altitudinal variation of the climate
control on NPP is first discussed at an annual scale. The Pearson
correlation coefficient (r) between the annual NPP time series
and climatic factors (i.e., annual mean temperature and annual

Fig. 5. Interannual variation of NPP in different elevations.

cumulative precipitation) for the different elevation zones are
shown in Fig. 6, where RP and RT denote the the Pearson cor-
relation coefficient for precipitation and temperature, respec-
tively. It can be clearly seen that the altitudinal variation of
RP is almost the opposite of RT . Specifically, the correlation
between NPP and precipitation shows a declining tendency as
the elevation increases, from significantly positive to signifi-
cantly negative. In contrast, the correlation between NPP and
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Fig. 6. Altitudinal variation of the correlation between annual NPP and cli-
matic factors; RP and RT denote the correlation coefficients for precipitation
and temperature, respectively.

temperature increases from the level of weakly negative to sig-
nificantly positive. This is a result of the altitudinal distribution
of precipitation and temperature, as well as the heterogeneous
allocation of precipitation over the course of a year. In the low-
elevation areas, temperature is appropriate for the photosyn-
thesis of vegetation, but a warmer climate cannot always pro-
mote vegetation growth, and might have a negative effect on it.
Thus, temperature shows a weak negative correlation with NPP.
Meanwhile, temperature linearly decreases with the increase of
elevation, and the negative impact is gradually replaced by a
more and more strongly positive effect. An abnormal drop in
the altitudinal variation of RT occurs around the elevation of
3300 m, where there is the fog-prone area and the transition re-
gion with complex vegetation types. Fog prevents the transmis-
sion of solar radiation, which is the energy source of vegetation
photosynthesis, and higher temperature can result in more fog.
Thus, the positive correlation with NPP is weakened around the
elevation.

According to our previous study [68], the significant nega-
tive correlation in the growing season (from May to October)
dominates a weak annually negative correlation between NPP
with precipitation in Yunnan province, due to the heteroge-
neous intraannual allocation of precipitation. In the growing
season, there is abundant rainfall for vegetation photosynthe-
sis, but the increased precipitation lessens the total solar ra-
diation and instead suppresses vegetation growth. Moreover,
the run-off of surface water flows from high-elevation areas
to low-elevation areas, also resulting in the overall weak neg-
ative correlation between NPP and precipitation. Since most
of the run-off gathers in the low-elevation areas, more precip-
itation increases the moisture in the low-elevation areas and
further promotes the growth of vegetation. However, increased
precipitation in the high-elevation areas can only add limited
water, because of the water loss, but suppresses the vegetation
growth as a result of the immediately reduced radiation. What
is more, rain usually means lower temperature, which is the
significant positive factor for vegetation in the high-elevation
areas. As a result, the correlation between precipitation and

NPP decreases along with increasing elevation, from positive
to negative. Given that Yunnan province is mostly covered by
lands around 2000 m, where precipitation is weakly correlated
with NPP, the overall relationship of the region is also weakly
negative. In conclusion, the correlation between NPP and pre-
cipitation decreases from positive to negative with ascending el-
evation, but the tendency is completely the opposite for temper-
ature, which is a result of the uneven seasonal allocation of pre-
cipitation and the topographically downward run-off of surface
water.

2) Seasonal Scale: Given that the uneven seasonal precipi-
tation allocation has a huge impact on the relationship between
climate and NPP, it is necessary to discuss these altitudinal vari-
ations at a seasonal scale. In order to examine the differences,
the relationships are divided into four categories according to
the the Pearson correlation coefficient (r) and P-value (p), re-
spectively, are: significantly positive (SP, r > 0, p < 0.05);
positive but not significant (NSP, r > 0, p > 0.05); significantly
negative (SN, r < 0, p < 0.05); and negative but not signifi-
cant (NSN, r < 0, p > 0.05). The percentage of area for each
category in the different elevations in each season is shown in
Fig. 7 (for RP ). For the relationship between seasonal NPP and
precipitation, more areas show a positive relationship in the low-
elevation region, and more areas show a negative relationship
in the high-elevation region, for all the four seasons. In summer
and autumn, positive correlation is the majority only in area with
elevation lower than 600 m. Especially in summer, more than
90% of the area shows a negative correlation when elevation
is higher than 1000 m, and more than half are the significant
negative. Meanwhile, rare regions show a significant negative
relationship in the spring and winter. Especially in winter, the
positive relationship occupies the majority in the entire region
with elevations lower than 2000 m. Furthermore, a high percent-
age of areas showing a positive correlation can be observed in all
the elevation zones in spring. This is also a result of the uneven
seasonal allocation of precipitation and the influence of topog-
raphy. In summer and autumn, when precipitation is abundant,
only the low-elevation areas can benefit from increased precip-
itation, because of the surface water run-off. At the same time,
the high-elevation areas cannot retain the water from increased
precipitation, and vegetation growth is suppressed by the re-
duced radiation and lower temperature. Meanwhile, in spring
and winter, precipitation is much reduced and becomes the main
limitation for vegetation growth in most of the areas. However,
as temperature gradually turns into the main controlling factor
for vegetation growth with the increase of elevation, so the pos-
itive impact of precipitation becomes much weaker and finally
becomes negative, because more precipitation means lower
temperature.

For the correlation between temperature and NPP, as shown
in Fig. 8, areas with positive correlation are obviously the dom-
ination in all four seasons. Especially in winter, the area with
significantly positive correlation occupies more than half of
the area in most of the elevation zones. In summer, the large
area showing negative correlation is due to the temperature be-
ing warm enough for vegetation growth, but significant nega-
tive correlation is also occasionally found. The weak negative
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Fig. 7. Correlation between NPP and precipitation (RP ) for each season. (a) Spring. (b) Summer. (c) Autumn. (d) Winter. (SN: significantly negative; NSN:
negative but not significant; NSP: positive but not significant; SP: significantly positive).

correlation in the low-elevation area at annual scale could also
be the result of the correlation in summer. The abnormal drop in
the relationship between NPP and temperature around 3300 m
is also reflected in the figure, mostly in the seasons of autumn
and winter. This phenomenon supports the reason given before,
because the two seasons are the fog-prone period. Generally
speaking, the correlation between NPP and precipitation shows
a positive correlation in more areas in the low-elevation zones,
and this phenomenon is maintained until much higher eleva-
tions in spring and winter. The positive correlation between
NPP and temperature is almost the domination for all four sea-
sons and all elevation area, except for some elevation zones
in summer. This is consistent with the variation at an annual
scale.

3) Monthly Scale: In order to further study the intraannual
variation of the relationship between NPP and climatic factors,
the RP and RT for each month were calculated along with
the altitudinal gradient. As shown in Fig. 9, the variation of
RP by month and elevation shows a dustpan-shaped tendency.
NPP shows a positive correlation with precipitation in almost
all months in the low-elevation area, while completely the op-
posite relationship is found in the high-elevation area, with a
totally negative correlation. Nevertheless, for the middle ele-
vation zones, huge heterogeneity is observed for the different

months. For the spring and winter months on the two sides, the
continuously positive correlation is sustained until the elevation
reaches 3000 m, and then gradually decreases into a negative
relationship in the higher region. In contrast, for the summer
months in the middle, the correlation becomes sharply negative
after the elevation is higher than 500 m. This phenomenon could
also be explained by the reason declared in the seasonal section,
and further supports the fact that topography has an apparent im-
pact on the climate control of NPP. Because of the downwards
run-off of surface water, the water from rainfall cannot be easily
retained in the high-elevation areas, and only vegetation in the
low-elevation areas benefits more from it. As a result, in the
summer months when precipitation is abundant, only the very
low elevation region is positively correlated with precipitation,
and the correlation immediately becomes negative in the higher
areas. When precipitation is much reduced in the winter months
and is insufficient for vegetation growth, the positive correlation
lasts in the areas with very high elevation, until the replacement
of temperature being the main limitation. In summary, the al-
titudinal heterogeneity of precipitation control on NPP is even
more obvious at the monthly scale, with the positive corre-
lation sharply turning into a negative correlation in the sum-
mer months, but persistently maintained until high elevations
in the winter months. However, the altitudinal variation for the
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Fig. 8. Correlation between NPP and temperature (RT ) for each season. (a) Spring. (b) Summer. (c) Autumn. (d) Winter. (SN: significantly negative; NSN:
negative but not significant; NSP: positive but not significant; SP: significantly positive).

Fig. 9. Altitudinal variation of the relationship between monthly NPP and precipitation.

relationship between NPP and temperature is much messier, and
needs further analysis.

D. Topographic Heterogeneity of the Drought Effect on NPP

Droughts have had severe impacts on the NPP in Yunnan [21].
Although the drought effect was usually supposed to vary with

drought severity and vegetation types [71], [72], the regional
topography should also be the factor because topographic water
loss usually leads to droughts. So it is reasonable and necessary
to discuss the topographic impacts on NPP from the aspect of cli-
matic droughts. The drought frequency in the past ten years for
each district was counted according to the disasters yearbook.
Furthermore, a variety of factors was also calculated, including
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TABLE I
STATISTICS OF THE DROUGHT FREQUENCY AND POTENTIAL FACTORS FOR EACH DISTRICT IN THE PAST DECADE

Notes: P_mean and T_mean denote the mean precipitation and temperature in the past 10 years; NPP_diff is the difference between the
NPP in drought years and non-drought years; a negative value means that the drought reduced the NPP, and a positive value means that
the NPP increased in drought years.

the mean elevation, slope, temperature (T_mean), annual precip-
itation (P_mean), annual NPP in the past ten years, and the NPP
difference (NPP_diff) between drought years and nondrought
years. The results are shown in Table I, in descending order of
drought frequency. In some districts that have suffered from fre-
quent droughts, i.e., Lincang, Honghe, and Yuxi, the precipita-
tion is abundant with high NPP. This indicates that precipitation
is not the only determinant for droughts. From the overlay of
the drought frequency and low-elevation areas in Fig. 10, it can
be seen that large river valleys run through the three districts.
These huge river valleys help to facilitate the frequent regional
droughts, because the surface water flows down from the higher
ground into the valleys. Therefore, droughts prefer to take place
in the high-elevation areas when the precipitation declines.

The downward surface water loss causes the apparent altitudi-
nal heterogeneity of the relationship between NPP and climate.
Therefore, topography not only impacts the drought frequency,
but also affects the NPP changes caused by droughts. The indi-
cator of NPP_diff is used to evaluate the drought impact on NPP,
and is defined as the difference in the NPP between drought and
nondrought years. A negative NPP_diff means that drought re-
duced the NPP in the district, and a positive value means that
NPP is increased. From Table I, it can be observed that the
droughts in most areas have reduced the NPP in the past ten
years, except for Simao, Lincang, and Chuxiong. The flat re-
gions such as Wenshan, Qujing, and Kunming generally show
high NPP_diff, which means that regional NPP has been dramat-
ically reduced by droughts. Comparing the hierarchical graph of
NPP_diff in Fig. 10 and the slope distribution in Fig. 11, an ob-
vious consistency can be found between them. In east Yunnan,

Fig. 10. Drought frequency and its impact on NPP for each district in Yunnan
province. NPP_diff denotes the difference between the mean NPP in years
without drought and in drought years, where a positive value means that the
droughts decreased NPP. The blank blocks in Xishuangbanna, Dehong, and
Nujiang mean that no droughts occurred.

where the terrain is extraordinary flat with entirely low slope,
droughts have greatly reduced the NPP in all districts, with val-
ues larger than 20 gC.m–2.year–1. Nevertheless, for the districts
where droughts have slightly reduced NPP or even increased it,
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Fig. 11. Distribution of slope in Yunnan province.

the terrain is usually very rugged and fragmentized, especially
for Simao and Lincang, where both mountainous and flat land
is interspersed.

The reason for the impact of drought on NPP being related
to topography could also be the result of the downward run-off
of surface water. In the previous section, it was noted that the
water flow from high mountains to low ground greatly enhances
the possibilities of drought taking place in high-elevation areas.
Therefore, in many droughts, although there is obvious water
shortage in the high-elevation areas, water sources can also be
abundant in the low-elevation areas. Under such circumstances,
the NPP in the low-elevation areas does not decrease a lot, and
may even increase due to the sufficient water and the much
warmer climate during a drought period. For the high-elevation
areas, the water shortage may not impact the vegetation growth
as it would in other areas, because of the fine drought toler-
ance of the plants. Due to the perennially harsh environments
in high-elevation areas with less water, the vegetation adapts to
such conditions. Thus, in a region with complicated and frag-
mentized topography, drought may not evidently decrease the
NPP, in both the low-elevation and high-elevation areas. Typi-
cally, as in Simao and Lincang, where mountains and flat land
are interspersed, the droughts have had little impact on vegeta-
tion growth. However, for an area with overall flat topography,
drought means that there is a severe water shortage in the whole
region, so the drought enormously impacted NPP.

IV. CONCLUSION

In this paper, the heterogeneity of the relationship between
NPP and climatic factors along altitudinal gradients was in-
depth studied at a long-term level, in the mountainous Yunnan
province of China. In order to provide more detailed spatial
information, multisource remote sensing data were applied to

obtain a 1-km NPP time series from 1982 to 2014. Analysis
indicated that the climate control on NPP showed obvious al-
titudinal differences, either from the aspect of correlation or
from the aspect of drought. It was found that the correlation
between NPP and climatic factors evidently changed along el-
evation transect, and which greatly varied in different seasons.
With the elevation increasing, the RP continuously changed
from significantly positive to significantly negative, but the RT

was completely the opposite. While, the seasonal heterogeneity
showed that the positive RP majority maintained until much
higher elevations in spring and winter, when water was the
main limitation for vegetation growth. The downward run-off
of surface water should be responsible for the altitudinal het-
erogeneity, which resulted in that high-elevation areas cannot
hold water, and only the low-elevation regions benefited from
the precipitation. What is more, from the aspect of the drought
impacts on NPP, we also found that the topography have certain
effects on either the drought frequency or its impacts on NPP.
On the one hand, the large river valleys facilitated the frequent
droughts. On the other hand, the rugged topography with fluc-
tuating slope helped lessening the negative influence of drought
on NPP.

Since research into the heterogeneity of climate control on
vegetation along altitudinal transects is lacking, this study con-
centrated on this topic and obtained interesting conclusions,
which will be beneficial for the systematic understanding of
global climate change. However, only the altitudinal impact was
taken into consideration, and other topographic factors should
be considered in further study, such as slope, aspect, vegeta-
tion species, and so on. Furthermore, the impact of elevation on
frequent droughts should be further investigated quantitatively,
using drought indexes with a suitable resolution.
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