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a  b  s  t  r  a  c  t

The  optimal  estimation  of soil  moisture,  soil  temperature,  and  surface  turbulent  fluxes  in irrigation  fields
is restricted  by  a lack  of  accurate  irrigation  information.  To  resolve  the  input  uncertainty  from  imprecise
irrigation  quantity,  an improved  data  assimilation  scheme  that  is  EnKS  (Ensemble  Kalman  Smoother)
implemented  with  inflation  and  localization  (referred  to as  ESIL)  is  proposed  to estimate  soil moisture,
soil  temperature,  and surface  turbulent  fluxes  for  irrigated  fields  by  assimilating  multi-source  obser-
vations.  The  Daman  station,  which  is located  at  an  irrigated  maize  farmland  in the  middle  reaches  of
the  Heihe  River  Basin  (HRB),  is  selected  in this  study  to  investigate  the  performance  of  the  proposed
assimilation  scheme.  The  measured  land  surface  temperature  (LST)  and  surface  soil moisture  (SSM)  in
the first soil  layer  are  taken  as  observations  to conduct  a series  of data  assimilation  experiments  to  ana-
lyze the  influence  of  a lack  of  irrigation  information  and combinations  of  multi-source  observations  on
urface turbulent fluxes
ommon Land Model

estimations  of soil  moisture,  soil temperature,  and  surface  turbulent  fluxes.  This  study  demonstrates  the
feasibility  of ESIL  in  improving  the  estimation  of  hydrothermal  conditions  under  unknown  irrigation.  The
coefficient  correlation  (R)  with  the  ESIL  method  increases  from  0.342  and  0.703  to  0.877  and  0.830  for
the  soil  moisture  and  soil temperature  in the  first  layer,  respectively.  Meanwhile,  the surface  turbulent
fluxes  are  significantly  improved  and  the  RMSE  decreases  from  173 W/m2 and  186  W/m2 to  97  W/m2 and
111  W/m2 for  the  sensible  and  latent  heat  fluxes,  respectively.
. Introduction

Accurate estimations of the soil moisture, soil temperature,
nd surface turbulent fluxes are crucial to agriculture and water
anagement in irrigated fields. Land surface variables and fluxes

an be acquired by modeling or observations. Modeling provides
he evolution of continuous states in the time-space domain via
arameterizing the inherent physical processes in the geo-sphere.

owever, the uncertainties that exist in forcing data, model param-
ters and model structure adversely affect the model output.
bservations provide relatively accurate information, but the space
aps in in-situ measurements or the time gaps in remote sensing

∗ Corresponding author.
E-mail address: huangcl@lzb.ac.cn (C. Huang).

ttp://dx.doi.org/10.1016/j.agrformet.2016.03.013
168-1923/© 2016 Elsevier B.V. All rights reserved.
© 2016  Elsevier  B.V.  All  rights  reserved.

data cannot fulfill the requirements of practical application. Data
assimilation takes full advantage of imperfect models and limited
observations by merging the information embodied in observations
into a dynamic model to correct the forecast trajectory. Numer-
ous studies have assimilated both the surface soil moisture from
ground-based networks or from microwave sensors and passive
microwave brightness temperature data to improve soil moisture
estimation and assimilate land surface temperatures from ground-
based networks or satellite sensors to obtain more precise soil
temperature profiles (Kumar and Kaleita, 2003; Gao et al., 2007;
Huang et al., 2008a, b; Jia et al., 2009; Chen et al., 2011; Chen et al.,
2015; Chu et al., 2015).
In the framework of a dynamic model, the soil moisture and
soil temperature mutually influence to constitute the water and
energy balance in solums. The soil temperature is a function of the
soil moisture. Subsurface moisture influences the heat conductivity
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ig. 1. Location of the study area in an SRTM 1-km DEM map  and the locations of th

t the interfaces of layers and the heat storage in different lay-
rs. In addition, the soil temperature determines the phase of the
oil water content, including the transformation between frozen
nd unfrozen. Furthermore, the surface temperature affects the
artitioning of incoming radiant energy into the ground (sensible
eat flux and latent heat flux) and thus changes the delivery of
he soil moisture, soil temperature, and surface turbulent fluxes.
ang et al. (2007) validated the feasibility of correcting the sur-

ace temperature and surface energy budget by assimilating soil
oisture. Lakshmi (2000) demonstrated that surface temperature

ssimilation can reduce the effect of errors in precipitation and/or
hortwave radiation data on simulated soil moisture. Given the
nternal positive interactions in the modification of soil moisture
nd soil temperature, simultaneously assimilating temperature
nd moisture observations is important to produce more exact soil
oisture, soil temperature and surface turbulent fluxes.
A vital factor in retrieving accurate soil moisture and tempera-

ure profiles in arid and semi-arid agricultural areas is irrigation.
rrigation, which is a human intrusion into soil systems, alters
he hydrothermal conditions of soil and changes the water trans-
er mechanisms between soil layers. Abundant irrigation rapidly
ncreases the soil moisture and dramatic decreases the soil tem-
erature, even in deeper layers. Moreover, irrigation applications

n agricultural practices normally occur under dry conditions, in
hich the soil moisture is highly sensitive to irrigation applications.
owever, the irrigation schedules (when and how much to irrigate)

hat have been recorded in government departments are usually
ot sufficiently inclusive to be prescribed as model inputs. Several
cientists have emphasized the impact of irrigation on hydrologic
rocesses and relevant variables (Ozdogan and Salvucci, 2004; Ines
t al., 2006; Moiwo  and Tao, 2015; Lawston et al., 2015). Wang and
ai (2007) attempted to investigate the information of irrigation
chedules for specific crops by using predefined empirical criteria
o determine irrigation actions and an optimization algorithm to
nvert the irrigation quantification.

The objective of this article is to investigate how to assimilate
he SSM in the first layer and/or the LST to improve the profiles of

oil moisture and soil temperature and surface turbulent fluxes for
ifferent situations of known and unknown irrigation. We establish

 data assimilation framework that is based on the CoLM (Common
and Model) and consider the SSM in the first layer and/or the LST
hat was measured at Daman station as observations. First, we dis-
 observation stations in an ASTER false color composite map  with bands 3, 2, and 1.

tinguish the influence of assimilating different observations on the
state variables and fluxes to ascertain the capability of combina-
tions of multi-source information (SSM and LST) in improving the
forecast accuracy of model outputs. Second, the aforementioned
experiments are repeated under two  postulations—known irriga-
tion and unknown irrigation. The former is implemented through
substituting the soil moisture and temperature profiles with the in-
situ measurements at the irrigation moments, which are defined by
the mutational volume of the soil water in the deeper layer, while
the latter is implemented without any modifications to soil mois-
ture and temperature profiles. We  compare the discrepancies of the
experimental results from these circumstances to determine the
competence of assimilating observation information in improving
soil moisture, soil temperature, and surface turbulent fluxes under
unknown irrigation circumstances. Finally, considering the applica-
tion of satellite data in the future work, we  retest the combinations
of multi-source information (SSM and LST) with various observa-
tion intervals or standard deviations. In addition, an ESIL that was
modified to retrieve parameters is compared to the original ESIL to
investigate the necessity of parameter estimation.

This article is structurally organized as follows. The land data
assimilation scheme is briefly described in Section 2, including the
hydrothermal process of the CoLM, experimental design and assim-
ilation algorithms. The study area and data are also introduced
in Section 2. Sections 3 and 4 present the results and discussion
regarding the experiments. We finish this paper with some conclu-
sions in Section 5.

2. Land data assimilation scheme

2.1. Model operator

The Common Land Model (CoLM) (Dai et al., 2003) is the
improved version of the Community Land Model (version 2.0) with
one vegetation layer, 10 unevenly spaced vertical soil layers, and
up to 5 snow layers (depending on the total snow depth). Every
surface grid cell can be subdivided into any number of tiles, and

each tile contains a single land cover type. We  employ the CoLM
as a dynamic model (model operator) to maintain prognostic state
variables, such as the soil moisture and soil temperature.

The vertical soil moisture transport is governed by infiltration,
runoff, gradient diffusion, gravity, and soil water extraction through
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Fig. 2. Daily-average soil moisture from observations, simulations

oots for canopy transpiration. The equations for liquid soil water
an be written as

�zj
�t

��j = [qj−1 − qj] − froot, j∗ × Etr . (1)

�j is the water change since the last time step in layer j. �zj and
t are the soil thickness of layer j and the time step, respectively.

root, j∗ and Etr are the effective root fraction and transpiration,
espectively. qj is the water flow at the depth of the interface
etween layer j and layer j + 1, which is calculated by Darcy’s law:

 = −K
(
∂ 
∂z

− 1

)
(2)
 and   are the hydraulic conductivity and matric potential of the
oil, respectively, which vary with the soil water content and soil
exture based on the scheme of Clapp and Hornberger (1978). The
et water flux in the surface layer is provided by snowmelt, precip-

tation, and canopy dew, minus the surface runoff and evaporation.
ulti-source observations assimilation under unknown irrigation.

The temperature variation in a soil layer can be described as a
discretization form by the Crank–Nicholson scheme:

cj�zj
Tk+1
j

− Tk
j

�t
= 1

2

(
Fkj − Fkj−1 + Fk+1

j
− Fk+1

j−1

)
, (3)

where cj is the volumetric soil heat capacity in the layer j. Tk
j

is the

layer-average temperature in the layer j at the time k; Fk
j

is heat flux
across the interface between layer j and j + 1 at the time k, which is
computed as follows:

Fj = �
(
zh,j

) Tj+1 − Tj
zj+1 − zj

, (4)

where �
(
zh,j

)
is the thermal conductivity at the interface Zh,j ,
which is derived from the constraint that the heat flux across the
interface is equal to that from the node j to the interface and the
flux from the interface to the node j + 1. The heat flux F at the sur-
face is taken as F = Rn,g − Hg − LEg . Rn,g is the net radiation that
is absorbed by the ground surface. Hq and LEg are the sensible and
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Fig. 3. Scatterplots of the soil temperature from simulations, observat

atent heat fluxes. The heat flux is assumed to be zero at the bottom
f the soil column.

.2. Data assimilation algorithms

.2.1. Ensemble Kalman Filter
The EnKF (Evensen, 1994) is divided into two  steps: forecast and

nalysis. An overview of the EnKF procedure is presented below.
The initial state can be defined as Xa0, and the ith member Xa

i,0
f the initial state ensemble is obtained by adding random noise to
a
0:

a
i,0 = Xa0 + uiui∼N(0, P0) (5)

here ui is the background error vector, which conforms to a Gaus-
ian distribution with a zero mean and the covariance matrix P0.

Forecast: Each member of the state realizations is propagated
ccording to

f
i,k+1 = M(Xai,k, ˛k+1, ˇk+1) + wiwi∼N(0, Q ). (6)
ere, M(•) is a model operator and represents the CoLM in this
ase. The superscripts a and f refer to the analysis and forecast
tates, respectively.  ̨ and  ̌ are atmospheric forcing data and model
arameters, which are used to run the CoLM. The model error is

ndicated by wi with a zero mean and the covariance matrix Q and
nd multi-source observations assimilation under unknown irrigation.

represents all the uncertainties that are related to the forcing data
and model structure.

Analysis: When an observation is available, the observation vec-
tor is assimilated into the model. A linear correction equation is
used according to a standard Kalman filter to update the forecasted
state ensemble members:

Xai,k+1 = Xf
i,k+1 + Kk+1(Yi,K+1 − ∧

Yi,k+1). (7)

Here, Yk+1 is generated by adding the stochastic perturbation into
the actual observation Yk+1 at the time k + 1 with a zero mean and
the covariance matrix R according to the following:

Yi,k+1 = Yk+1 + vivi∼N(0, R). (8)

Ŷ i,k+1 is the projection of the model state in the observational space
via the conversion of the observation operator H(•), which estab-
lishes a relationship between the model states and observations as
∧
Yi,k+1 = H(Xf

i,k+1). vi represents independently and identically dis-
tributed Gaussian observation errors with the covariance matrix

R.

Kk+1 is the Kalman gain matrix at the time k + 1, which is calcu-
lated as

Kk+1 = Pf
k+1H

T (HPf
k+1H

T + R)
−1
. (9)
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ig. 4. Diurnal variation in the surface turbulent fluxes every 15 days from obser-
ations, simulation, and multi-source observations assimilation under unknown
rrigation.

f
k+1 is the forecast error covariance matrix at the time k + 1. Pf

k+1H
T

s the cross covariance between the model state forecasts Xf
k+1 and

heir projections H(Xf
k+1) in the observation space, while HPf

k+1H
T is

he error covariance of H(Xf
k+1).

Finally, the analysis state variable that is estimated at the time
 + 1 is given by the averaged value of the ensemble members.
he analyzed ensemble is then integrated forward until the next
bservation appears, and the process is repeated.

.2.2. Ensemble Kalman Smoother
The EnKS (Evensen and Van Leeuwen, 2000), an extension of the

nKF, maintains the main procedure of the EnKF but examines the
elationship of states or observations that are distributed in time or
pace via a predefined calculation window. The smoother solution
f the EnKS can be found by including the impact of measurements
ackward in time (Evensen, 2003; Lei et al., 2014) which is a func-
ioning means to solving the “sawtooth effect” of state curves from
he EnKF.

The EnKS requires only forward model runs and no back-
ard integrations of the model equations. The CoLM runs once

hroughout the current assimilation window to obtain the over-
ll forecasting states in the smoother window, and the augmented
tate vector X contains states at all time steps as follows:

 = [x1x2· · ·xk]T . (10)

Correspondingly, the augmented observation vector Y contains
ll the observations in the smoother window with the temporally
nd spatially independent hypothesis:
 = [y1y2· · ·yk]T . (11)

The Kalman gain matrix to update the state vector is calculated
y using the same formula as for the above-mentioned EnKF. The

mplementation of the EnKS requires that the ensemble during the
teorology 230–231 (2016) 142–156

prior times must be stored and able to be updated whenever new
observations become available (Dunne and Entekhabi, 2005).

2.2.3. Inflation
The utility of a data assimilation scheme heavily relies on the

evolution of the background error statistics because the inverse
of the specified error covariance determines the weights that
are given to the observations. However, the background error
covariance tends to be underestimated partly because of the inap-
propriate presence of model errors; thus, the filter gives too much
preference to the background field. Moreover, this factor can com-
pound the underestimation in the next cycle, resulting in filter
divergence. Wu et al. (2013) developed an adaptive procedure that
was combined with a second-order least squares method to esti-
mate the inflated forecast and adjust observational error covariance
matrices. In this article, only one step is performed to calculate the
inflation factor without adjusting the observational error covari-
ance, which is displayed as follows:

�k+1 =
Tr

[
HPf

k+1H
T
(
dk+1d

T
k+1 − R

)]

Tr
[
HPf

k+1H
THPf

k+1H
T
] (12)

dk+1 = Yk+1 − H
(
Xf
k+1

)
, (13)

where the over-bar in the equation represents the average over
many cases or statistical expectation, and Tr[·] denotes the trace of
a matrix. Therefore, the forecast error covariance matrix is adjusted
to �k+1 · Pf

k+1.

2.2.4. Localization
The multiplicative inflation factor effectively manages filter

divergence but also induces over-inflation when only sparse and
irregular observations are acquirable or the connection is implicit
among states. We  introduce the localization scheme to avoid this
issue and form a proper relationship from the top soil to the bottom,
which is applied to rectify the horizontal and vertical covariance
in atmospheric data assimilation from Houtekamer and Mitchell
(2001). The correlation function is constructed via a fifth-order
piecewise rational function developed by Gaspari and Stephen
(1999):

� (i, j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−ı
5

4
+ ı4

2
+ 5ı3

8
− 5ı2

3
+ 1, 0 ≤ ı ≤ 1

ı5

12
− ı4

2
+ 5ı3

8
+ 5ı2

3
− 5ı + 4 − 2

3ı
, 1 < ı ≤ 2

0, ı > 2

(14)

ı = Di,j/F (15)

F =
√

3/10 × L, (16)

where L is an influence length scale and set to 3 in this study. Di,j is
the Euclidean distance between two state points xi and xj .

Thus, the Kalman gain K is subsequently refreshed:

K = [
(� ◦ P)HT

] [
H(� ◦ P)HT + R

]−1 (17)

where the notation ◦ denotes element-by-element matrix mul-
tiplication (also called the Schur product). The EnKS applied in

this study includes states in different time points that are tightly
connected with adjacent ones. However, this type of relationship
gradually vanishes with an increasing time interval. Thus, local-
ization is also employed to readjust the temporal scale’s impact
between states and filter out redundant or invalid correlations.
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Fig. 5. Daily-average soil moisture from observations, simulation

.3. Study area and data

.3.1. Description of the study area
The study area is located in an artificial oasis in the mid-

le stream of the Heihe River Basin (100◦14′E–100◦32′E and
8◦42′N–39◦0′N), which is the second largest inland river basin in
he arid region of northwestern China. This region has a typical
ontinental climate, with an annual mean air temperature from
.8 to 7.6 ◦C. The annual precipitation in this region is approxi-
ately 100–250 mm,  but the potential evaporation is as high as

200–1800 mm.  The land cover in the study area is complex. Most
f the study area consists of irrigated farmland, which primarily
ncludes cultivated maize and wheat, and depends on irrigation

ater that is extracted from the Heihe River and groundwater. A
ighly developed irrigation system was constructed in this artificial

asis over the last few decades. Water bodies, sandy desert, desert
teppes, and the Gobi Desert surround the oasis region. The aver-
ge altitude of this region is approximately 1550 m,  slightly higher
n the southwest and lower in the northeast. In recent years, com-
 multi-source observations assimilation under known irrigation.

prehensive eco-hydrological experiments such as the Watershed
Allied Telemetry Experimental Research (WATER, Li et al., 2009)
and the Heihe Watershed Allied Telemetry Experimental Research
(HiWATER, Li et al., 2013a,b) have been successfully performed in
the Heihe River Basin. The primary meteorological and hydrological
parameters and the land surface variables in the study area were
obtained through these projects.

2.3.2. Ground-based measurements
The in-situ measurements used in this study were collected at

two observation stations in the study area: Yingke station from
WATER and the Daman superstation from HiWATER. Furthermore,
we processed the relevant data from ground stations as hourly
inputs for the CoLM.
The WATER project was applied to the study area to research
the ecological and hydrological processes of agricultural systems.
Yingke station was  installed in the central area of the oasis and
covered with maize (100◦24′37.2′′E/38◦51′25.7′′N, Fig. 1). An auto-
matic meteorological station (AMS) mounted on flux tower was
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Fig. 6. Scatterplots of the soil temperature from observations, simula

pplied to measure the wind speed/direction, air temperature and
umidity at heights of 2 m and 10 m.  In addition, the AMS  included
ensors for air pressure, precipitation and the four components of
adiation, which were installed on the flux tower at heights of 0.5 m,

 m and 4 m,  respectively. The meteorological data were processed
n 30-min intervals from November 2007 to December 2011 during
he WATER experiment.

HiWATER is a comprehensive eco-hydrological experiment
nder the framework of the Heihe Plan, which is based on the
iverse needs of interdisciplinary research and existing obser-
ational infrastructures in the Heihe River Basin. A multi-scale
bservational experiment on evapotranspiration over heteroge-
eous land surfaces (MUSOEXE), the first thematic experiment in
he HiWATER project, was conducted in the study area from May
o September 2012 (Li et al., 2013a,b; Liu et al., 2013). The Daman
uperstation, a 40-m boundary layer tower, was located in an irri-
ated farmland in the artificial oasis that was covered with maize
100◦22′20.09′′E/38◦51′20.04′′N, Fig. 1). Wind speed/direction, air
emperature, and humidity sensors were installed at seven lev-
ls (3 m,  5 m,  10 m,  15 m,  20 m,  30 m,  and 40 m)  on the tower.

he meteorological data included air pressure, precipitation and
he four components of radiation were measured by the sensors
n the tower at heights of 2 m,  2.5 m,  and 12 m,  respectively. The
oil moisture profiles (0.02 m,  0.04 m,  0.1 m,  0.2 m,  0.4 m,  0.8 m,
.2 m,  and 1.6 m)  and soil temperature profiles (0 m,  0.02 m,  0.04 m,
 and multi-source observations assimilation under known irrigation.

0.1 m,  0.2 m,  0.4 m,  0.8 m,  1.2 m,  and 1.6 m)  were measured by soil
moisture sensors and soil temperature probes, which were buried
south of the tower at a depth of 2 m.  The surface temperature was
recorded by an infrared thermometer mounted at a height of 12 m
on the flux tower. The meteorological data and the surface flux data
were processed in 10-min and 30-min intervals, respectively.

2.3.3. Satellite-based measurements
The Heihe Leaf Area Index (LAI) production, produced by Fan

(2014), was  applied in this study to replace the default value from
the CoLM. The Heihe LAI production is produced based on a canopy
Bidirectional Reflectance Distribution Function (BRDF) model that
characterizes the surface reflectance as a function of a series of
parameters (Liao et al., 2013) and is available at the Ecological
and Environmental Science Data Center for Western China (http://

westdc.westgis.ac.cn). The LAI images were processed at 1000-m
spatial resolution and 8-day temporal resolution, with a Univer-
sal Transverse Mercator (UTM) Projection based on the WGS84
datum by Fan. We used ArcGIS to extract the LAI at the Daman
superstation.
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.4. Assimilation experiments

.4.1. Experimental design
One target of this study was to explore the influence of irrigation

nformation on assimilation; thus, we focused on the crop growth
eriod and conducted the assimilation experiment over 120 days
ommencing on May  27, 2012 (Julian day 148). The Daman super-
tation was chosen as the experimental site because of its more
dequate measurement data among all the AWSs in the HiWATER
roject with an underlying crop surface. Considering the short tem-
oral coverage of the HiWATER experiment, the most proximate
ne-year meteorological data (from May  27, 2010 to May  26, 2011)
rom Yingke station were used to spin-up the CoLM. The soil lay-
rs of the model were redistricted to conform to the observation
epths at Daman station before the assimilation experiments (new
oil nodes: 0.02, 0.04, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, and 1.6; unit:
).
In-situ SSM in the first layer and/or LST were introduced as

bservations to determine the functions of single and multi-source
bservations on some specific variables. The observation ensem-
les were acquired by disturbing the in-situ measured values with
% multiplicative error for the SSM and 2 K additive error for the LST.
he observation frequencies of the SSM and LST were set as once
 day and twice a day respectively, according to the accessibility
f the acquisition of different variables in reality. The three assim-
lation experiments (assimilation of the SSM in the first layer, the
simulations, and multi-source observations assimilation under known irrigation.

LST, and both types of observations) were implemented under two
circumstances (unknown irrigation and known irrigation) to inves-
tigate the influence of irrigation information. Assuming known
irrigation, we identified the irrigation moment based on the muta-
tional volume of soil water in the deeper layer and substituted the
soil moisture profile and soil temperature profile with the in-situ
measurements at the irrigation moment.

Both the SSM in the first layer and the LST were assimilated
into the CoLM to examine the influence of the observation interval
and standard deviation. The assimilation frequencies were 0.5 days,
1 day, 3 days, 5 days and 8 days with a fixed 3% multiplicative stan-
dard deviation for the SSM and 0.25 days, 0.5 days, 1 day, 2 days and
3 days with a fixed 2 K additive standard deviation for the LST. In
addition, the standard deviations were 1%, 3%, 5%, 7% and 9% multi-
plicative error with a fixed 1-day observation interval for the SSM
and 1 K, 2 K, 3 K, 4 K and 5 K additive errors with a fixed 0.5-day
observation interval for the LST.

The smoother window of the EnKS was  set to be 10 days in all
the assimilation experiments to assure that at least one observa-
tion exists in a smoother window when testing the influence of
the observation interval. The observations were designed to update
the corresponding states: the soil moisture in ten soil layers com-
prised a state vector only when the SSM in the first layer served as

an observation, and the soil temperature in ten layers comprised
a state vector only when the LST served as an observation. This
approach guarantees the explicit relationship between states vari-
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F  the RMSE of the soil moisture in the first soil layer from EnKF and ESIL, respectively; (c)
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Table 1
Summary of the perturbation parameters for the atmospheric forcing data and the
cross correlation coefficients that were used to generate random perturbations for
the different variables.

Variables Noise type Standard deviation Cross correlation

Precipitation Multiplicative 0.5 [1.0 −0.8 0.5 0.0,
Shortwave radiation Multiplicative 0.3 −0.8 1.0 −0.5 0.4,
ig. 8. RMSE distributions with varying observation intervals. (a) and (b) represent
nd  (d) represent the RMSE of the soil temperature in the first soil layer from EnKF

bles and observations and the updated states from assimilation
eedback into the CoLM to impact other variables.

.4.2. Ensemble generation
One-year forcing data from Yingke station were repeated in a 20-

ear period to spin-up the CoLM to obtain a stable and reasonable
istribution of the initial state ensemble. Three important param-
ters (percentage of sand, percentage of clay and porosity) for soil
oisture and soil temperature were uniformly resampled in a spe-

ific range according to their uncertainty, which was determined
rom values that fluctuated approximately 10% from the default val-
es in the CoLM, to ensure a sufficiently dispersed state ensemble
ithout excessively underestimating the background error.

The meteorological data imported into the CoLM is one vital
actor that greatly influences the output variables. Normally
istributed additive perturbations or log-normally distributed mul-
iplicative perturbations were applied depending on the variable to
ccount for errors from the forcing data. Thus, a positive perturba-
ion of the downward shortwave radiation tends to be associated
ith negative perturbations to the longwave radiation and the pre-
ipitation, and vice versa. Table 1 displays the standard deviations
nd cross-correlations for the perturbations in precipitation, short-
ave radiation, longwave radiation and air temperature. The mean

alues for the perturbed factors were equal to zero for the additive
ase and one for the multiplicative case.
Longwave radiation Additive 30 W/m2 0.5 −0.5 1.00.4,
Air temperature Additive 2 K 0.00.4 0.4 1.0]

2.4.3. Evaluation metrics
To assess the performance of the soil moisture and/or soil tem-

perature assimilation, we defined several evaluation measures,
including the root mean square error (RMSE), the mean bias error
(MBE), the correlation coefficient (R), and the normalized error
reduction (NER), which are described as follows:

RMSE =

√√√√1
T

T∑
t=1

(Xt − Xtrue,t)
2 (18)
MBE = 1
T

T∑
t=1

(Xt − Xtrue,t) (19)
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F resent the RMSE of the soil moisture in the first soil layer from EnKF and ESIL, respectively;
( KF and ESIL, respectively.
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Table 2
Statistical error metrics for the simulation/assimilation results of the soil moisture
in  the upper four layers with different observations under unknown irrigation.

SM1  SM2  SM3 SM4

MBE  RMSE R RMSE RMSE RMSE

EnOL −0.091 0.115 0.342 0.150 0.157 0.230
OBS  T EnKF −0.091 0.115 0.356 0.151 0.157 0.229

ESIL −0.092 0.116 0.348 0.151 0.157 0.229
OBS  M EnKF −0.034 0.06 0.686 0.098 0.097 0.158
ig. 9. RMSE distributions with assumed different observation errors. (a) and (b) rep
c)  and (d) represent the RMSE of the soil temperature in the first soil layer from En

 =

T∑
t=1

(Xt − X)(Xtrue,t − Xtrue)

√
(Xt − X)

2
(Xtrue,t − Xtrue)

2
(20)

ER = 1 − RMSEa
RMSEo

, (21)

here T is the total number of steps and Xt and Xtrue,t represent the
imulation or assimilation values of states in different cases and
he true values at step t, respectively. The horizontal line above the
xpression indicates the mean value. RMSE0 and RMSEa represent
he RMSE of the simulation and assimilation scenarios, respectively.

. Results

The EnKS applied in this research was combined with infla-
ion and localization to validly estimate the background error and
xpand the observational influence in the time domain and verti-
al space, which is referred to as ‘ESIL’ hereafter. Additionally, the

nsemble mean value of the open loop simulations is referred to
s ‘EnOL’. The standard ‘EnKF’ is employed as a reference object to
llustrate the effectiveness of ‘ESIL’ in different scenarios. All the
imulation/assimilation results are compared to the in-situ hourly
easurements.
ESIL −0.005 0.035 0.875 0.089 0.088 0.148
OBS  B EnKF −0.032 0.062 0.693 0.095 0.095 0.156

ESIL −0.005 0.034 0.877 0.090 0.090 0.149

3.1. Soil moisture

Table 2 presents the statistical error metrics of the soil moisture
in the upper four layers (2 cm,  4 cm,  10 cm and 20 cm), which are
labelled as SM1, SM2, SM3  and SM4  and were obtained from the
EnOL, EnKF and ESIL under the condition of unknown irrigation.
OBS T, OBS M and OBS B indicate the three scenarios of only the LST
assimilation, only the SSM assimilation and both types of observa-
tions assimilation, respectively. As shown in Table 2, both EnKF and
ESIL fail to improve the soil moisture estimation in all four layers

when only the LST is assimilated into the CoLM. In this scenario, the
soil moisture is not the member of the state vector, and changes
in the soil moisture only depend on the feedback into the CoLM
for updating the soil temperature according to the experimental
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ig. 10. Measurements of the improvements from EnOL via ESILP (implemented 

nknown irrigation; (b): known irrigation).

esign. However, the implied functional relationship between the
oil temperature and soil moisture in the CoLM is unidirectional,
hich indicates that the soil moisture is almost immune to soil

emperature modifications and results in an unapparent improve-
ent in soil moisture. In the other two scenarios, the MBE  and
MSE for the soil moisture in the first layer from the EnKF drop

rom −0.091 and 0.115 (ensemble simulation) to −0.034 and 0.063
OBS M)  and to −0.032 and 0.062 (OBS B). The ESIL further reduces
he corresponding statistical metrics to approximately −0.005 and
.034, which demonstrates vast superiority to the EnKF. The assim-

lation of both the SSM and LST improves the algorithm accuracy of
nKF to a certain extent, which also reflects the positive impact of
he observation quantity and the positive interaction between the
oil moisture and soil temperature. In terms of the ESIL, a minimal

ifference exists between OBS M and OBS B, which is mainly due to
he excellent performance with OBS M and the bare contribution
rom LST assimilation. Moreover, the R values for soil moisture in
he first layer from the EnKF and ESIL double from 0.342 to approx-
arameter estimation) and ESIL from multi-source observations assimilation. ((a):

imately 0.69 and 0.87, respectively, in both OBS M and OBS B. The
RMSE values for the soil moisture in deeper layers (SM2, SM3  and
SM4) from the EnKF and ESIL also dramatically decrease by more
than 40 percent from 0.150, 0.157 and 0.230, and the ESIL performs
slightly better in all three layers. A comparison of the influence of
all three assimilation scenarios on the soil moisture in deeper layers
shows similar trends to those in the first layer.

The assimilation results of the soil moisture for all eight obser-
vations depths compares to the CoLM simulations and in-situ
measurements (OBS) in the third scenario (OBS B) are presented
in Fig. 2. Fig. 2(a)–(f) indicate the curve graphs for different nodes
(2, 4, 10, 20, 40, 80, 120 and 160 cm). The estimated soil moisture
in the first layer from the EnKF and ESIL enhances the features cap-
ture with the black curve and maintains good agreement with the

true values (Fig. 2(a)). In particular, the ESIL revises both the under-
estimated and overestimated portions and coincides well with the
OBS.
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Table  3
Statistical error metrics for the simulation/assimilation results of the soil tempera-
ture in the upper four layers with different observations under unknown irrigation.

ST1 ST2 ST3 ST4

MBE  RMSE R RMSE RMSE RMSE

EnOL 3.522 5.322 0.703 4.741 4.388 4.287
OBS T EnKF 2.520 4.9573 0.738 3.885 3.313 3.002

ESIL 2.026 4.652 0.751 3.580 3.097 3.011
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OBS  M EnKF 0.006 3.560 0.748 3.212 2.711 2.493
ESIL 1.920 4.231 0.774 3.276 2.885 2.772

OBS  B EnKF −0.071 3.310 0.793 2.798 2.298 2.163
ESIL 1.038 3.507 0.830 2.393 1.975 1.909

In the intermediate layers, the soil moisture curves from the
nKF and ESIL are affected by improvements in the surface soil
oisture and appropriately reflect the trajectories of OBS, espe-

ially when there is rare variety existing in the EnOL (Fig. 2(b)–(e)).
udging from the hourly in-situ measurement data, the peaks in
eeper layers (Fig. 2(f)–(h)) respond to irrigation actions rather
han precipitation processes. Meanwhile, the steady tendency of
he simulation curves (EnOL) reveal that the inherent water flow
elivery mechanism of the CoLM in this area for deeper layers is
nreasonable. The soil moisture in the deeper layers may  be insus-
eptible to water quantity changes from natural processes in the
pper layers. In addition, irrigation exacerbates the original under-
stimation phenomenon of the soil moisture. Although unable to
rasp the peak values, the EnKF and ESIL still make a few improve-
ents.

.2. Soil temperature

Table 3 describes the statistical error metrics of the soil tem-
erature corresponding to Table 2. ST1, ST2, ST3 and ST4 refer to
uantitative analysis data for the soil temperature at 2 cm,  4 cm,
0 cm and 20 cm.  The ESIL (EnKF) reduces the RMSE for the soil tem-
erature in the first layer to 4.65 (4.65) from 5.32 (EnOL), and the
eeper layers show more encouraging RMSE reduction (more than
0%) in the OBS T scenario. The unnoticeable improvement can be
scribed to the discrepancy of land surface temperature and soil
emperature in the first layer in arid and semi-arid regions, espe-
ially during early crop growth periods. The RMSE values display
ore obvious decreases once the SSM in the first layer is included

s an observation. The considerable RMSE reduction in the ESIL
EnKF) ranges from over 20% (30%) for ST1 to over 35% (50%) for
T4 in both OBS M and OBS B. The MBE  and R values confirm the
MSE evaluation, while the extraordinarily minor MBE  values of

he EnKF in OBS M and OBS B are an expression of positive and
egative cancellation according to the corresponding RMSE value,
hich also indicates the correction of deviation. This achievement
ay  be induced by revisions in the soil moisture profile when

he SSM in the first layer is assimilated. Unsurprisingly, the soil
oisture has a positive impact on the soil temperature because of

he implied functional relationship between the soil moisture and
oil temperature in the CoLM. The soil moisture as an input ele-
ent for formulas decides the value of the heat capacity, thermal

onductivity and Kersten number in each soil layer, which affects
he calculation of soil temperature. Under the experimental design
ith an SSM observation for one day, the EnKF feedbacks a modi-
ed soil moisture profile once a day, while the ESIL feedbacks every
en days at the end of every smoother window. Thus, the ESIL does
ot consider the absolute predominance to the EnKF because of

he amelioration of the soil temperature in OBS M.  According to
he combination assimilation of two types of observations, both
he EnKF and ESIL inevitably reach the best position compared to
he other two scenarios. The ESIL is still slightly inferior to the
nKF, which also reveals that the correction of soil moisture pro-
teorology 230–231 (2016) 142–156 153

files plays a somewhat more significant role than LST assimilation
in the improvement of soil temperature estimation.

Fig. 3 depicts scatterplots that compare assimilated/simulated
soil temperatures with observations (in-situ measurements) in the
third scenario (OBS B). The straight lines from the EnOL, EnKF and
ESIL are derived from linear regression with observations. Simi-
larly, Fig. 3(a)–(f) indicate the curve graphs for different nodes (2,
4, 10, 20, 40, 80, 120 and 160 cm). The point clouds in Fig. 3(a)–(d)
show that the fluctuation in soil temperature in the top four lay-
ers and the correlation coefficient (R) with observations is 0.703,
0.774, 0.718 and 0.571 for the EnOL. The EnKF (ESIL) inordinately
raises the corresponding R values to 0.793, 0.829, 0.807 and 0.708
(0.830, 0.899, 0.889 and 0.833) by relieving overestimated soil tem-
peratures. The discrete points produced by the EnOL concentrate
around and approach the black line (1:1 line) via the implementa-
tion of the EnKF and ESIL, especially the latter. The concentrated
points in Fig. 3(e)–(h), which almost assemble into lines, indicate
the stability of soil moisture in deeper layers during the experi-
mental period. In Fig. 3(e)–(g), the ESIL points draw closer to the
1:1 line than the EnOL points, as well as the fitting lines. The R values
dramatically increase from 0.271, 0.006, 0.670 and 0.981 to 0.661,
0.295, 0.811 and 0.991 for the ESIL. The EnKF only shows improve-
ment in Fig. 3(e), with a growth of 0.13 for R, and diverges from the
observations to an underestimated position in Fig. 3(e)–(h).

3.3. Surface turbulent fluxes

In the land surface model, the soil moisture is positively corre-
lated with the latent heat flux and negatively correlated with the
sensible heat flux and surface temperature. The combination assim-
ilation of SSM and LST effectively improves the estimation accuracy
of both the sensible and latent heat fluxes, as shown in Fig. 4.

Fig. 4 displays the diurnal variation every 15 days of the sur-
face turbulent fluxes derived by simulation and assimilation of both
the SSM and LST under unknown irrigation. Compared to the black
curves (in-situ measurements), the evident underestimated latent
heat flux and overestimated sensible heat flux are responses to the
underestimated soil moisture and overestimated soil temperature
in the first layer. The ESIL reduces the RMSE values of the sensible
and latent heat fluxes to 97 W/m2 and 111 W/m2 from 173 W/m2

and 186 W/m2, respectively. The EnKF produces more remarkable
improvements in both the sensible and latent heat fluxes, as seen in
Fig. 4, with the corresponding RMSE values decreasing to 65 W/m2

and 77 W/m2. The advantage of the EnKF in terms of correcting
both the sensible and latent heat fluxes can be ascribed to the
higher feedback frequency of the soil moisture and temperature
profile compared to the ESIL, which resembles the previous argu-
ment. The feasibility of assimilating the land surface temperature
and soil moisture to revise the surface turbulent fluxes is consis-
tent with the conclusions drawn by Xu et al. (2011) and Hain et al.
(2012).

4. Discussion

4.1. Influence of irrigation information

We duplicated the above experiments, including OBS T, OBS M
and OBS B, under the condition of known irrigation to explore the
influence of irrigation information. The soil moisture and soil tem-
perature profiles were substituted with the in-situ measurements

at irrigation moments, which were determined by steep rises in the
water content in deeper layers. Table 4 and Fig. 5 show the experi-
mental results for the soil moisture. First, the intake of irrigation
information tremendously improves the utility of LST assimila-
tion. Unlike the invalid performance in Table 2, the EnKF and ESIL
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Table 4
Statistical error metrics for the simulation/assimilation results of the soil moisture
in  the upper four layers with different observations under known irrigation.

SM1 SM2  SM3  SM4

MBE  RMSE R RMSE RMSE RMSE

EnOL −0.091 0.115 0.342 0.150 0.157 0.230
OBS T EnKF 0.006 0.051 0.872 0.060 0.056 0.113

ESIL 0.007 0.051 0.873 0.059 0.055 0.113
OBS  M EnKF −0.014 0.037 0.921 0.072 0.069 0.134

ESIL −0.005 0.018 0.970 0.075 0.076 0.137
OBS  B EnKF −0.017 0.038 0.920 0.0711 0.069 0.133

ESIL −0.005 0.018 0.970 0.075 0.076 0.137

Table 5
Statistical error metrics for the simulation/assimilation results of the soil tempera-
ture in the upper four layers with different observations under known irrigation.

ST1 ST2 ST3 ST4

MBE  RMSE R RMSE RMSE RMSE

EnOL 3.5220 5.322 0.703 4.741 4.388 4.287
OBS  T EnKF 0.4748 3.173 0.821 2.474 1.995 1.754

ESIL 0.5723 3.166 0.836 2.373 1.850 1.659
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OBS M EnKF −0.2344 3.433 0.763 3.060 2.462 2.102
ESIL 0.5572 3.465 0.779 2.811 2.292 1.964

OBS  B EnKF −0.0544 3.266 0.797 2.749 2.176 1.929
ESIL 0.5308 3.130 0.842 2.348 1.829 1.642

educe the RMSE (MBE) to 0.051 (0.006) and 0.051 (0.007) in OBS T,
hile the performance of the EnKF in OBS T unexpectedly surpasses

hat in OBS B with unknown irrigation. Moreover, the improve-
ents in the RMSE from the EnKF and ESIL in deeper layers exceed

0%, reaching 65%. Second, the assimilation of soil moisture fur-
her boosted the effectiveness of the EnKF and ESIL. Remarkably,
he discrepancies in the statistical error metrics are still negli-
ible in OBS M and OBS B for the same assimilation algorithm.
he EnKF (ESIL) enhances the surface soil moisture estimations
y reducing the RMSE to approximately 0.037 (0.017) and raising
he R to approximately 0.92 (0.96). However, the improvements
n the RMSE values in deeper layers are inferior to those in OBS T
ecause LST assimilation has very little impact on the soil mois-
ure; thus, the improvement in OBS T is mainly related to the
ntroduction of irrigation information. However, irrigation action
lters the hydrothermal conditions and disrupts the water transfer
echanisms between soil layers, which complicates the process of

sing surface observations to improve deep estimation. Thus, the
mprovements in the SSM are far superior in OBS T, while those in
he deeper soil moisture are not. The RMSE values of SM2, SM3,
nd SM4  from the EnKF and ESIL decline to various degrees and all
urpass the corresponding values in any scenario with unknown
rrigation. The comparisons of the soil moisture profile estima-
ions (both unknown irrigation and known irrigation) from the
ifferent algorithms suggest that the ESIL had a dominant advan-
age over the EnKF. Fig. 5(a) shows the high coincidence degree
etween the blue curve (ESIL) and the black curve (OBS), while the
reen curve (EnKF) approaches closer to OBS compared to Fig. 2(a).
he soil moisture curves in deeper layers approximate both the
lack curve and its variation trajectory (Fig. 5(b)–(h)). The mainte-
ance of water content from irrigation moments in the time domain
ubstantially improves the severe underestimation of the soil mois-
ure and reflects the peaks that are created by irrigation actions in
eeper layers.

Table 5 and Fig. 6 show the experimental results for the soil tem-

erature. All the statistical error metrics for the EnKF and ESIL in the
hree scenarios surpass the corresponding values in Table 3. Irriga-
ion actions alters the hydrothermal conditions, which increases
he water amount and decreases the soil temperature in the solum.
he soil temperature and soil moisture information is corrected by
teorology 230–231 (2016) 142–156

replacing the profiles with in-situ measurements, which success-
fully facilitates the effectiveness of the assimilation. The EnKF and
ESIL exhibit similar performance in a given scenario according to
Table 5. A comparison of the MBE  and RMSE values of the EnKF and
ESIL (0.475 and 3.173, 0.572 and 3.166) in OBS T shows the diminu-
tion of deviation error in the soil temperature, which is not seen
in Table 3. Hence, the introduction of irrigation information has a
homologous impact on the soil temperature through the feedback
of SSM assimilation into the CoLM (seen in Table 3), which may  have
weakened the contribution of SSM assimilation and comparatively
degraded the performance by excessively correcting the deviation
error in OBS B. This phenomenon occurs in the EnKF, but the ESIL
produces the best results with OBS B because of the different feed-
back frequencies of the soil moisture when assimilating the SSM.
Meanwhile, the EnKF induces minor changes in OBS M and OBS B,
in contrast to the unknown irrigation condition, while the ESIL
slightly upgrades the RMSE values. Thus, the irrigation informa-
tion boosts the performance of the ESIL more remarkably than that
of the EnKF. Fig. 6(a)–(d) show the scatter points of the soil temper-
ature in the upper four layers. Distinguishing improvements from
Fig. 3(a)–(d) are difficult; the correlation coefficients increased by
no more than 0.03. However, compared to Fig. 3(e)–(h), Fig. 6(e)–(h)
show obviously aggregated scatter points that do not diverge from
the 1:1 line, as with the EnOL. In particular, the correlation coef-
ficients of the EnKF and ESIL for Fig. 6(f) increase by more than
0.2 based on the corresponding R under unknown irrigation, while
those for the other three plots increase unequally by less than 0.1.

The estimated sensible and latent heat fluxes from the assim-
ilation of both the SSM and LST after the addition of irrigation
information are displayed in Fig. 7. The mismatch between the
simulations and measurements of the two  surface turbulent fluxes
further decreased for unknown irrigation. The RMSE values of the
sensible and latent heat fluxes for the EnKF decline to 57 W/m2

and 72 W/m2, while the ESIL show more noticeable progress with a
reduction to 66 W/m2 and 79 W/m2. Although assimilations via the
EnKF and ESIL under unknown irrigation decrease the MBE  values
of the two surface turbulent fluxes to approximately 50 percent
from 116 W/m2 and −121 W/m2, the addition of irrigation reduces
these values by over 75%.

4.2. Influence of observation intervals

Fig. 8 presents the RMSE distributions for the surface soil mois-
ture from the EnKF and ESIL with changing observation intervals
under the condition of unknown irrigation, while the bottom two
panels are for the surface soil temperature. The labelled points on
the coordinate axes comprise the observation interval vectors from
experiments with a fixed 0.03 multiplicative standard deviation
for the SSM and a fixed 2 K additive standard deviation for the
LST. The remainder in the two-dimensional space is replenished
via interpolation.

As seen in Fig. 8(a) and (b), the surface soil moisture seems to
be impervious to the observation frequency of the LST. The limited
capability of LST assimilation to improve soil moisture estimation
is also shown in Table 2. For the observation intervals of the SSM,
the decrease in observation quantity degrades the assimilation per-
formance but influences the EnKF and ESIL to different extents.
The ESIL outperforms the EnKF for all combinations of observation
intervals in terms of the surface soil moisture. Despite only one
observation available in the smoother window as the observation
interval expanded to 8 days, the ESIL takes the preferential posi-

tion with a smaller worst RMSE (0.08 for the ESIL and 0.96 for the
EnKF). The variation in the RMSE values from the EnKF drastically
increases, along with a reduction in the SSM quantity, and tends to
stabilize as the observation interval of the SSM exceeded more than
five days. The ESIL shows a similar variation pattern with more slug-
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ish processes and produces a more satisfying RMSE values than the
nKF.

The influence of the observation interval on the surface soil
emperature is complicated, as shown in Fig. 8(c) and (d). LST
ssimilation eliminates the stochastic error of the soil tempera-
ure, and SSM assimilation removes the deviation error of the soil
emperature via correcting the soil moisture profile. The instanta-
eous correction property of the EnKF improves the interactions
f the deviation error corrections, which produces a slight advan-
age compared to the ESIL in terms of estimating the surface soil
emperature with an increasing observation interval. This result
lso reveals that correcting the deviation error plays a more signif-
cant role than the stochastic error when observations are sparse.
hus, the RMSE values of the EnKF show little discrepancy with
arying observational intervals and visibly rise along the bottom
nd top-right corners. The relatively larger RMSE values with dense
bservations illustrate that the observation quantity is not always
ositively correlated to the algorithm performance. The RMSE val-
es of the ESIL for the surface soil temperature present a typical
hange trend, with the lowest value in the bottom-left corner and
he highest value in the top-right corner, which indicates that an
ncrease in the RMSE value accompanies the mutual growth of the
bservation interval of LST and SSM.

.3. Influence of observation errors

Fig. 9 plots the RMSE distributions with changing observation
rrors under the condition of unknown irrigation. The standard
eviations that are labelled on the coordinate axes were tested in
xperiments with one observation a day for the SSM and two obser-
ations a day for the LST. The remainder in the two-dimensional
pace was replenished via interpolation. Fig. 9(a) and (b) shows
hat the RMSE values for the surface soil moisture obtained by EnKF

onotonically increased along with the standard deviation of the
SM, while the growth trend slows down with increasing standard
eviation. Similar to Fig. 8, the varying standard deviations of the
ST show definite contributions to the soil moisture estimation. The
MSE distribution of the ESIL for the surface soil moisture is nearly
esistant to the variation in the standard deviation of observation,
hich can be ascribed to the sufficient quantity of observations

nd the superiority of implementing the EnKS with inflation and
ocalization in the maximum usage of observation information. A
omparison of the two top plots shows an accelerated discrepancy
etween the EnKF and ESIL with increasing standard deviation. The
ertical strips in the bottom-left plot indicate that the EnKF is prone
o changes in the standard deviation of the LST and that the RMSE
alues of the EnKF for the surface soil temperature progressively
onverge to a minimum point as the standard deviation of the LST
ecreases. In addition, the RMSE values of the ESIL for the surface
oil temperature exhibit little variation with changing standard
eviations for both the LST and SSM, while the negligible diver-
ence is possibly caused by the sampling error of the observations,
hich makes valid instructive information difficult to determine.

.4. Influence of parameter estimation

Parameter uncertainty can easily create systematic deviations in
odel states; thus, two parallel filters were designed to recursively

stimate both states and parameters (Chen et al., 2015). The EnKF
as employed to estimate parameters while the ESIL was used to
pdate states. Four parameters (minimum soil suction, saturated

ydraulic conductivity, porosity, and the “b” parameter) were cho-
en according to the parameter sensitivity analysis manipulated
y Li et al. (2013a,b). The initial parameter sets were uniformly
ampled in specific ranges that were defined by Li et al. (2013a,b).
he NER used to measure the magnitude of improvement from the
teorology 230–231 (2016) 142–156 155

EnOL via ESILP (implemented with parameter estimation) and ESIL
are plotted in Fig. 10. SM1-SM8 and ST1-ST8 represent the results
of soil moisture and temperature profiles, while H and LE stand for
the sensible heat flux and latent heat flux, respectively.

Fig. 10(a) shows a comparison of NER values that are derived
from both SSM and LST assimilation under unknown irrigation.
Notwithstanding the promising results observed from soil temper-
ature estimation, only trivial improvements in the soil moisture in
the first layer are produced with parameter estimation. Moreover,
obvious deterioration occurs in the NER values of soil moisture in
deeper layers and surface turbulent fluxes. Equally unsurprisingly,
the parameters that are retrieved by the assimilation of surface
observations are not expected to always improve the state accuracy
in deeper layers, especially with the vertical heterogeneity of the
solum and model structure error. The retrieved parameters, called
“effective parameters”, contribute to the consistency between the
surface states with the observations but rarely confirm the simul-
taneous improvement of multiple states. In addition, unknown
irrigation aggravates this phenomenon because the bias caused by
irrigation is compensated by the parameters. The results of ESILP
and ESIL from assimilating the SSM and LST under known irrigation
are displayed in Fig. 10(b). No improvement in the surface states is
produced, mainly because of the extremely small bias indicated by
MBE  values in Tables 4 and 5 after adding irrigation information.
Irrigation information enormously modifies the system deviation;
thus, such unapparent bias limits the function of parameter esti-
mation for the surface states. The soil moisture and temperature in
deeper layers and the two  surface turbulent fluxes performed dif-
ferently. The updated parameters are imported into the CoLM and
replaced the original values to verify the validity of these parame-
ters. The RMSE values of the surface soil moisture and temperature
simulated by the new parameters decreased by approximately 25%
and 5%, which confirms the definition of effective parameters.

5. Conclusions

We conducted a series of experiments to demonstrate the
influence of the assimilation of multi-source observations, irriga-
tion information, observation intervals, the standard deviations
of observations and parameter estimation on various states. First,
the assimilation of multi-source observations improves multiple
variables, surpassing the performance of the assimilation of single
observations. Second, adding irrigation information can improve
the estimation accuracy of the soil moisture, soil temperature,
and sensible and latent heat fluxes derived from the EnKF and
ESIL, especially the soil moisture and temperature in deeper lay-
ers. However, the ESIL produces quite encouraging outcomes under
unknown irrigation, especially in shallow layers, which expands the
prospect of retrieving the soil moisture and temperature profiles
and surface turbulent fluxes without detailed irrigation records.
The inflation and localization implemented in the original EnKS
improves the estimation of the background error matrix and the
extension of the observation information, which are vital to account
for the limited ensemble size, inaccurate model error specifications,
and deficient observations. Finally, the stabilized and promising
effectiveness of the ESIL with varying observation intervals and
standard deviations broadens its reliability in practical applica-
tions. Compared to the parameter estimation results, the ESIL
provides comprehensive improvements when we  examine the esti-
mation accuracy of multiple states.
With the successful launch of diverse satellites, remote sens-
ing has turned into a widespread approach to monitor the earth
environment and resource in global region. Data acquired by sen-
sors such as AMSR-E (Advanced Microwave Scanning Radiometer
for Earth Observing System), MODIS, ASTER (Advanced Space-
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orne Thermal Emission and Reflection Radiometer) and ASCAT
Advanced Scatterometer) extremely enrich soil moisture and land
urface temperature observations. The ESIL, tested with various
bservation intervals and standard deviations, demonstrates supe-
iority when dealing with some sparse satellite data or different
bservation errors from satellite data. Thus, our work in the next
tage will take full advantage of such plentiful remote sensing data
nder the data assimilation framework of the ESIL.

cknowledgements

This work is supported by the National Science Foundation of
hina under Grants 91325106 and 41271358, the Major State Basic
esearch Development Program under Grant 2011CB707103, the
undred Talent Program of the Chinese Academy of Sciences under
rant 29Y127D01, and the Cross-disciplinary Collaborative Teams
rogram for Science, Technology and Innovation of the Chinese
cademy of Sciences.

eferences

hen, F., Crow, W.T., Starks, P.J., Moriasi, D.N., 2011. Improving hydrologic
predictions of a catchment model via assimilation of surface soil moisture.
Adv. Water Resour. 34 (4), 526–536, http://dx.doi.org/10.1016/j.advwatres.
2011.01.011.

hen, W.J., Huang, C.L., Shen, H.F., Li, X., 2015. Comparison of ensemble-based state
and  parameter estimation methods for soil moisture data assimilation. Adv.
Water Resour. 86, 425–438, http://dx.doi.org/10.1016/j.advwatres.2015.08.
003.

hu, N., Huang, C.L., Li, X., Du, P.J., 2015. Simultaneous estimation of surface soil
moisture and soil properties with a dual ensemble Kalman smoother. Sci.
China Earth Sci. 58, 2327–2339, http://dx.doi.org/10.1007/s11430-015-5175-6.

lapp, R.B., Hornberger, G.M., 1978. Empirical equations for some soil hydraulic
properties. Water Resour. Res. 14 (4), 601–604, http://dx.doi.org/10.1029/
WR014i004p00601.

ai, Y., Zeng, X., Dickinson, R.E., Baker, I., Bonan, G.B., Bosilovich, M.G., et al., 2003.
The common land model. Bull. Am.  Meteorol. Soc. 84, 1013–1023, http://dx.
doi.org/10.1175/BAMS-84-8-1013.

unne, S., Entekhabi, D., 2005. An ensemble-based reanalysis approach to land
data  assimilation. Water Resour. Res. 41 (2), W02013 http://dx.doi.org/10.
1029/2004WR003449.

vensen, G., Van Leeuwen, P.J., 2000. An ensemble Kalman smoother for nonlinear
dynamics. Mon. Weather Rev. 128 (6), 1852–1867, http://dx.doi.org/10.1175/
1520-0493(2000)128<1852:AEKSFN>2.0.CO;2.

vensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics. J. Geophys. Res.
99  (C5), 10143–10162, http://dx.doi.org/10.1029/94jc00572htt://dx.org/.

vensen, G., 2003. The ensemble Kalman filter: theoretical formulation and
practical implementation. Ocean Dyn. 53 (4), 343–367, http://dx.doi.org/10.
1007/s10236-003-0036-9.

an, W.,  2014. Heihe 1 Km LAI Production. Heihe Plan Science Data Center.
ao, H., Wood, E.F., Drusch, M.,  McCabe, M.F., 2007. Copula-derived observation

operators for assimilating TMI  and AMSR-E retrieved soil moisture into land
surface models. J. Hydrometeorol. 8 (3), 413–429, http://dx.doi.org/10.1175/
JHM570.1.

aspari, G., Stephen, E.C., 1999. Construction of correlation functions in two  and

three dimensions. Q. J. R. Meteorol. Soc. 125 (554), 723–757, http://dx.doi.org/
10.1002/qj.49712555417.

ain, C.R., Crow, W.T., Anderson, M.C., Mecikalski, J.R., 2012. An ensemble Kalman
filter dual assimilation of thermal infrared and microwave satellite
observations of soil moisture into the Noah land surface model. Water Resour.
Res.  48 (11), http://dx.doi.org/10.1029/2011wr011268, W11517.
teorology 230–231 (2016) 142–156

Houtekamer, P.L., Mitchell, H.L., 2001. A sequential ensemble Kalman filter for
atmospheric data assimilation. Mon. Weather Rev. 129 (1), 123–137, http://dx.
doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2.

Huang, C.L., Li, X., Lu, L., 2008a. Retrieving soil temperature profile by assimilating
MODIS LST products with ensemble Kalman filter. Remote Sens. Environ. 112
(4),  1320–1336, http://dx.doi.org/10.1016/j.rse.2007.03.028.

Huang, C.L., Li, X., Lu, L., Gu, J., 2008b. Experiments of one-dimensional soil
moisture assimilation system based on ensemble Kalman filter. Remote Sens.
Environ. 112 (3), 888–900, http://dx.doi.org/10.1016/j.rse.2007.06.026.

Ines, A.V.M., Honda, K., DasGupta, A., Droogers, P., Clemente, R.S., 2006. Combining
remote sensing-simulation modeling and genetic algorithm optimization to
explore water management options in irrigated agriculture. Agric. Water
Manage. 83 (3), 221–232, http://dx.doi.org/10.1016/j.agwat.2005.12.006.

Jia, B., Xie, Z., Tian, X., Shi, C., 2009. A soil moisture assimilation scheme based on
the ensemble Kalman filter using microwave brightness temperature. Sci.
China Ser. D Earth Sci. 52 (11), 1835–1848, http://dx.doi.org/10.1007/s11430-
009-0122-z.

Kumar, P., Kaleita, A.L., 2003. Assimilation of near-surface temperature using
extended Kalman filter. Adv. Water Resour. 26 (1), 79–93, http://dx.doi.org/10.
1016/S0309-1708(02)00098-2.

Lakshmi, V., 2000. A simple surface temperature assimilation scheme for use in
land surface models. Water Resour. Res. 36 (12), 3687–3700, http://dx.doi.org/
10.1029/2000WR900204.

Lawston, P.M., Santanello Jr., J.A., Zaitchik, B.F., Rodell, M.,  2015. Impact of
irrigation methods on land surface model spinup and initialization of WRF
forecasts. J. Hydrometeorol. 16 (3), 1135–1154, http://dx.doi.org/10.1175/
JHM-D-14-0203.1.

Lei, F.N., Huang, C.L., Shen, H.F., Li, X., 2014. Improving the estimation of
hydrological states in the SWAT model via the ensemble Kalman smoother:
synthetic experiments for the Heihe River Basin in northwest China. Adv.
Water Resour. 67, 32–45, http://dx.doi.org/10.1016/j.advwatres.2014.02.008.

Li,  X., Li, X., Li, Z., Ma,  M.,  Wang, J., et al., 2009. Watershed allied telemetry
experimental research. J. Geophys. Res. 114, D22103, http://dx.doi.org/10.
1029/2008JD011590.

Li, X., Cheng, G., Liu, S., Xiao, Q., Ma,  M.,  Jin, R., et al., 2013a. Heihe watershed allied
telemetry experimental research (HiWATER): Scientific objectives and
experimental design. Bull. Am. Meteor. Soc. 94 (8), 1145–1160, http://dx.doi.
org/10.1175/BAMS-D-12-00154.1.

Li, J., Duan, Q.Y., Gong, W.,  Ye, A., Dai, Y., Miao, C., et al., 2013b. Assessing parameter
importance of the Common Land Model based on qualitative and quantitative
sensitivity analysis. Hydrol Earth Syst Sci 17 (8), 3279–3293, http://dx.doi.org/
10.5194/hess-17-3279-2013.

Liao, Y., Fan, W.,  Xu, X., 2013. Algorithm of Leaf Area Index Product for HJ-CCD over
Heihe River Basin , Geoscience and Remote Sensing Symposium (IGARSS),
2013 IEEE International, pp. 169–172.

Liu, S., Xu, Z., Zhu, Z., Jia, Z., Zhu, M.,  2013. Measurements of evapotranspiration
from eddy-covariance systems and large aperture scintillometers in the Hai
River Basin. China. J Hydrol. 487, 24–38, http://dx.doi.org/10.1016/j.jhydrol.
2013.02.025.

Moiwo, J.P., Tao, F.L., 2015. Contributions of precipitation, irrigation and soil water
to  evapotranspiration in (semi)-arid regions. Intel. J. Climat. 35 (6), 1079–1089,
http://dx.doi.org/10.1002/joc.4040.

Ozdogan, M., Salvucci, G.D., 2004. Irrigation-induced changes in potential
evapotranspiration in southeastern Turkey: test and application of Bouchet’s
complementary hypothesis. Water Resour. Res. 40 (4), W04301, http://dx.doi.
org/10.1029/2003WR002822.

Wang, D., Cai, X., 2007. Optimal estimation of irrigation schedule—an example of
quantifying human interferences to hydrologic processes. Adv. Water Resour.
30  (8), 1844–1857, http://dx.doi.org/10.1016/j.advwatres.2007.02.006.

Wu,  G., Zheng, X., Wang, L., Zhang, S., Liang, X., Li, Y., 2013. A new structure for
error covariance matrices and their adaptive estimation in EnKF assimilation.
Q.  J. R. Meteorol. Soc. 139 (672), 795–804, http://dx.doi.org/10.1002/qj.2002.

Xu,  T., Liu, S., Liang, S., Qin, J., 2011. Improving predictions of water and heat fluxes
by  assimilating MODIS land surface temperature products into the common

land model. J. Hydrometeorol. 12 (2), 227–244, http://dx.doi.org/10.1175/
2010JHM1300.1.

Yang, K., Watanabe, T., Koike, T., Li, X., FUJII, H., Tamagawa, K., et al., 2007.
Auto-calibration system developed to assimilate AMSR-E data into a land
surface model for estimating soil moisture and the surface energy budget. J.
Meteorol. Soc. Jpn. 85 (A), 229–242, http://dx.doi.org/10.2151/jmsj.85a.229.


