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Hyperspectral Image Denoising Employing a
Spectral–Spatial Adaptive Total Variation Model
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Abstract—The amount of noise included in a hyperspectral
image limits its application and has a negative impact on hy-
perspectral image classification, unmixing, target detection, and
so on. In hyperspectral images, because the noise intensity in
different bands is different, to better suppress the noise in the
high-noise-intensity bands and preserve the detailed information
in the low-noise-intensity bands, the denoising strength should be
adaptively adjusted with the noise intensity in the different bands.
Meanwhile, in the same band, there exist different spatial property
regions, such as homogeneous regions and edge or texture regions;
to better reduce the noise in the homogeneous regions and preserve
the edge and texture information, the denoising strength applied to
pixels in different spatial property regions should also be different.
Therefore, in this paper, we propose a hyperspectral image denois-
ing algorithm employing a spectral–spatial adaptive total varia-
tion (TV) model, in which the spectral noise differences and spatial
information differences are both considered in the process of noise
reduction. To reduce the computational load in the denoising pro-
cess, the split Bregman iteration algorithm is employed to optimize
the spectral–spatial hyperspectral TV model and accelerate the
speed of hyperspectral image denoising. A number of experiments
illustrate that the proposed approach can satisfactorily realize the
spectral–spatial adaptive mechanism in the denoising process, and
superior denoising results are produced.

Index Terms—Hyperspectral image denoising, spatial adaptive,
spectral adaptive, split Bregman iteration.

I. INTRODUCTION

OVER the past decades, hyperspectral image (HIS)
analysis has matured into one of the most powerful and

fastest growing technologies in the field of remote sensing. The
hyperspectral data provide contiguous or noncontiguous 10-nm
bands throughout the 400–2500-nm region of the electro-
magnetic spectrum and, hence, have the potential to precisely
discriminate different land cover types using the abundant spec-
tral information. Such identification is of great significance for
detecting minerals, precision farming, urban planning, etc. [1].

Manuscript received February 22, 2011; revised August 13, 2011 and
November 17, 2011; accepted January 8, 2012. Date of publication March 7,
2012; date of current version September 21, 2012. This work was supported
in part by the National Basic Research Program of China (973 Program)
under Grant 2011CB707103, by the National Natural Science Foundation of
China under Grants 40930532, 41071269, 40971220, and 61102128, and by
the Program for New Century Excellent Talents by the Ministry of Education
(NCET-10-0648).

Q. Yuan and L. Zhang are with the State Key Laboratory of In-
formation Engineering in Surveying, Mapping, and Remote Sensing,
Wuhan University, Wuhan 430079, China (e-mail: yqiang86@gmail.com;
zlp62@public.wh.hb.cn).

H. Shen is with the School of Resource and Environmental Science, Wuhan
University, Wuhan 430079, China (e-mail: shenhf@whu.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TGRS.2012.2185054

Unfortunately, the existence of noise in a hyperspectral im-
age not only influences the visual effect of these images but also
limits the precision of the subsequent processing, for example,
in classification [2], unmixing [3], subpixel mapping [4], target
detection [5], etc. Therefore, it is critical to reduce the noise
in the hyperspectral image and improve its quality before the
subsequent image interpretation processes.

In recent decades, many hyperspectral image denoising al-
gorithms have been proposed. For example, Atkinson et al.
[6] proposed a wavelet-based hyperspectral image denois-
ing algorithm, and Othman and Qian [7] proposed a hybrid
spatial–spectral derivative-domain wavelet shrinkage noise re-
duction (HSSNR) approach. The latter algorithm resorts to the
spectral derivative domain, where the noise level is elevated,
and benefits from the dissimilarity of the signal regularity
in the spatial and the spectral dimensions of hyperspectral
images. Chen and Qian [8], [9] proposed to perform di-
mension reduction and hyperspectral image denoising using
wavelet shrinking and principal component analysis (PCA).
Qian and Lévesque [10] evaluated the HSSNR algorithm on
unmixing-based hyperspectral image target detection. Recently,
Chen et al. [11] proposed a new hyperspectral image denoising
algorithm by adding a PCA transform before using wavelet
shrinkage; first, a PCA transform was implemented on the orig-
inal hyperspectral image, and then, the low-energy PCA output
channel was denoised with wavelet shrinkage denoising pro-
cesses. Another type of filter-based hyperspectral image denois-
ing algorithm is based on a tensor model, which was proposed
by Letexier and Bourennane [12], and has been evaluated in hy-
perspectral image target detection [13] and classification [14].
Recently, a filter-based hyperspectral image denoising approach
using anisotropic diffusion has also been proposed [15]–[17].

As hyperspectral images have dozens or even hundreds of
bands, and the noise intensity in each band is different, the de-
noising strength should be adaptively adjusted with the noise in-
tensity in each band. In another respect, with the improvements
in sensor technology, the development and increasing use of
images with both high spatial and spectral resolutions have re-
ceived more attention. Such high spectral and spatial resolution
data provide both detailed structural and spectral information
[18]. Within the same band, because there is a variety of differ-
ent spatial property regions, the noise reduction strength should
be adaptively adjusted to different spatial property areas. How-
ever, to the best of our knowledge, a suitable hyperspectral im-
age denoising algorithm, which considers this spectral–spatial
adaptive mechanism, has not yet been proposed.

In recent years, image denoising based on a total variation
(TV) model [19] has been attracting more attention, and it
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has been proved that the TV algorithm is a very effective
and efficient denoising approach because of its effectiveness in
preserving edge information. Apart from the image denoising
purpose, the TV model has been developed in many other image
processing fields, such as superresolution [20], segmentation
[21], and decomposition [22]. In [23]–[28], the authors have
developed the TV model into a color image restoration problem,
and some color TV (CTV) models have also been proposed.
In addition, some spatially adaptive TV (SATV) models have
been proposed for gray-level image denoising to better deal
with the noise suppression and edge preserving problem [29]–
[32]. However, although the proposed CTV model and SATV
model work well, they have not been used in the hyperspectral
image denoising problem. For the CTV model, it is just used to
solve the color image denoising problem, and the SATV model
is just used on the gray-level image denoising problem. As
described earlier, compared with color images, in hyperspectral
images, because noise intensity varies in the different bands and
the spatial information in each band is abundant, how to deal
with the noise intensity difference in the different bands while
preserving the abundant spatial information is a very important
and challenging problem. Therefore, it is well worthwhile to
extend the TV models to hyperspectral images.

In this paper, we propose a spectral–spatial adaptive hyper-
spectral TV (SSAHTV) denoising algorithm, in which the noise
intensity difference between different bands and spatial prop-
erty differences between different pixels are both considered.
The main ideas and contributions of the proposed approach can
be summarized as follows.

1) A spatially adaptive multichannel TV model is used on
the hyperspectral denoising problem. This model consid-
ers the noise differences between different bands and the
interband spatial information differences, and the band
and spatial adaptive denoising process is automatically
realized.

2) A split Bergman iteration algorithm is used to optimize
the proposed hyperspectral TV denoising model, in which
the optimization of the denoising model is split into two
subproblems, which are very easy to optimize, and a fast
denoising speed is achieved.

3) From the experimental results with both simulated and
real data, it is found that the proposed SSAHTV model
produces good denoising results, and it works very well
not only on a Gaussian noise distribution but also on
striping noise and some other mixed distribution noise.
It may well provide a new idea for hyperspectral image
destriping and dead pixel inpainting.

The remainder of this paper is organized as follows. In
Section II, the degradation model of the hyperspectral im-
age is introduced, and following this, the maximum a pos-
teriori (MAP)-based hyperspectral image denoising model is
presented. The SSAHTV model is specifically introduced in
Section III. In Section IV, the split Bregman iteration is pre-
sented in detail. Some experimental results and discussion are
presented in Section V, and finally, some conclusions are given
in Section VI.

Fig. 1. Noise degradation process of the hyperspectral image.

II. MAP HYPERSPECTRAL IMAGE DENOISING MODEL

A. Hyperspectral Noise Degradation Model

Assuming that we have an original hyperspectral image, and
the degradation noise is assumed to be additive noise, the noise
degradation model of the hyperspectral image can be written as

f = u+ n (1)

where u = [u1, u2, . . . , uj . . . uB ] is the original clear hy-
perspectral image, with the size of M ×N ×B, in which
M represents the samples of the image, N stands for the
lines of the image, and B is the number of bands. f =
[f1, f2, . . . , fj , . . . , fB ] is the noise degradation image, which
is also of size M ×N ×B, and n = [n1, n2, . . . , nj , . . . , nB ]
is the additive noise with the same size as u and f . The
degradation process of the hyperspectral image is shown in
Fig. 1.

B. MAP Denoising Model

In recent years, the MAP estimation theory, which inher-
ently includes prior constraints in the form of prior probability
density functions, has been attracting attention and enjoying
increasing popularity. It has been used to solve many image
processing problems, which can be formed as ill-posed and
inverse problems, such as image denoising [33], destriping and
inpainting [34], superresolution reconstruction [35], [36], and
others. Therefore, because the hyperspectral image denoising
process is an inverse and ill-posed problem, in this paper, the
MAP estimation theory is used to solve it.

Based on the MAP estimation theory, the denoising model
for a hyperspectral image can be represented as the following
constrained least squares problem [34]–[36]:

û = argmin

⎧⎨
⎩

B∑
j=1

‖uj − fj‖22 + λR(u)

⎫⎬
⎭ . (2)

In (2),
∑B

j=1 ‖uj − fj‖22 is the data fidelity item, which stands
for the fidelity between the observed noisy image and the
original clear image, and R(u) is the regularization item, which
gives a prior model of the original clear hyperspectral image.
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Fig. 2. Formulation process of the hyperspectral TV model in (7).

λ is the regularization parameter, which controls the tradeoff
between the data fidelity and regularization item.

III. SSAHTV MODEL

A. TV Model

The TV model was first proposed by Rudin et al. [19] to solve
the gray-level image denoising problem because of its property
of effectively preserving edge information.

For a gray-level image u, the TV model is defined as follows:

TV (u) =
∑
i

√(
∇h

i u
)2

+ (∇v
i u)

2 (3)

where ∇h
i and ∇v

i are linear operators corresponding to the
horizontal and vertical first-order differences, respectively, at
pixel i. ∇h

i u = ui − ur(i) and ∇v
i u = ui − ub(i), where r(i)

and b(i) represent the nearest neighbor to the right and below
the pixel.

B. Spectral Adaptive Hyperspectral TV Model

The simplest way of extending the TV model to hyperspec-
tral images is by a band-by-band manner, which means that, for
every band, the TV model is defined like the gray-level image
TV model in (3), and then, the TV model of each band is added
together. This simple band-by-band hyperspectral TV model is
defined as follows:

HTV (u)1 =

B∑
j=1

TV (uj) (4)

where u is the hyperspectral image, which has the formation of
u = [u1, u2, . . . , uj , . . . , uB ], and uj stands for the jth band of
the hyperspectral image.

If we incorporate the band-by-band hyperspectral TV model
in (5) into the regularization model in (2), the denoising model
can be written as

û = argmin

⎧⎨
⎩

B∑
j=1

‖uj − fj‖22 + λ

B∑
j=1

TV (uj)

⎫⎬
⎭ (5)

where uj and fj are the jth bands of the clear and noisy
hyperspectral images, respectively. For (5), the Euler–Lagrange
equation is written as [24]

(uj − fj)− λ∇ · ∇uj

|∇uj |
= 0. (6)

From (6), it means that every band is separately denoised
by the single-band TV model, which will cause the following
drawback. For a hyperspectral image, because the noise in-
tensity of each band is almost always different, the denoising
strength should also be different in each band. However, in
(6), if we use the same regularization parameter λ for all the
bands, which means that the regularization strength of each
band is equal, this arrangement will result in the following:
1) If the high-noise-intensity bands are well denoised using a
large λ, the low-noise-intensity bands will be oversmoothed,
and 2) conversely, when the low-intensity bands are well de-
noised using a small λ, the noise in the high-noise-intensity
bands will not be well suppressed. Although different λ can be
used in different bands to overcome this drawback, manually
adjusting the λ in different bands is very time-consuming.

Therefore, how to define a hyperspectral TV model that can
adaptively adjust the denoising strength of different bands is
a critical problem. To make the denoising process spectrally
adaptive, we extend the CTV model proposed in [27] to de-
fine the hyperspectral TV model, which has the following
formation:

HTV (u)2 =

MN∑
i=1

√√√√ B∑
j=1

(∇iju)2 (7)

(∇iju)
2 =

(
∇h

iju
)2

+
(
∇v

iju
)2

(8)

where MN is the total number of pixels in one hyperspectral
band and B is the total number of bands. ∇h

ij and ∇v
ij are linear

operators corresponding to the horizontal and vertical first-
order differences at the ith pixel in the jth band, respectively.
To more clearly explain the formation of the hyperspectral TV
model, we use Fig. 2 to illustrate it.

The reason why the hyperspectral TV model defined in
(7) can realize the spectral adaptive property in the denoising
process can be explained as follows.
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If we incorporate the hyperspectral TV model in (7) into (2),
it will become

û=argmin

⎧⎨
⎩

B∑
j=1

‖uj−fj‖22+λ

MN∑
i=1

√√√√ B∑
j=1

(∇iju)2

⎫⎬
⎭ . (9)

In (9), if we take the derivative for uj , the Euler–Lagrange
equation of (9) can be written as [24]

(uj − fj)− λ∇ · ∇uj√∑B
j=1(∇uj)2

= 0. (10)

To give a clearer illustration, (10) is written as the following
way:

(uj − fj)− λ∇ · |∇uj |√∑B
j=1 |∇uj |2

· ∇uj

|∇uj |
= 0. (11)

Compared with (6), we can see that an adjustment parame-

ter |∇uj |/
√∑B

j=1 |∇uj |2 is added in (11) to automatically
adjust the denoising strength of each band. For the high-

noise-intensity bands, as |∇uj |/
√∑B

j=1 |∇uj |2 has a large
value, the denoising strength for these bands will be pow-
erful. Inversely, for the bands with low-intensity noise, as

|∇uj |/
√∑B

j=1 |∇uj |2 has a small value, a weak denoising
strength will be used on them.

C. SSAHTV Model

After the spectral adaptive property of the hyperspectral
TV model is analyzed, another important problem is how to
realize the spatial adaptive aspect in the process of denoising,
which means how to adjust the denoising strength in different
pixel locations in the same band, with the spatial structure
distribution. The spatially adaptive mechanism can be described
as follows.

For a hyperspectral image u, we first calculate the gradient
information of every band using the following:

∇uj =

√
(∇huj)

2
+ (∇vuj)

2 (12)

where ∇huj and ∇vuj are the horizontal and vertical first-

order gradients of uj and (∇huj)
2

and (∇vuj)
2 represent the

squares of each element of ∇huj and ∇vuj . Next, the gradient
information of every band is added together, and the square root
is taken of each element of the sum

G =

√√√√ B∑
j=1

(∇uj)2. (13)

Let Gi be the ith element of vector G, and a weight parameter
Wi, which controls the interband denoising strength, is defined
in the following:

τi =
1

1 + μGi
(14)

Wi =
τi
τ
τ =

∑MN
i=1 τi
MN

(15)

where μ is a constant parameter, the range of parameter τ is
between [0, 1], and τ is the mean value of τi.

To make the process of denoising spatially adaptive, the
parameter Wi is added to the hyperspectral TV model in (7),
and the SSAHTV model is defined as

SSAHTV (u) =

MN∑
i=1

Wi

√√√√ B∑
j=1

(∇iju)2 (16)

where Wi represents the spatial weight of the ith pixel in the
hyperspectral TV model.

With the definition in (16), it is clearly seen that, for pixels
in smooth regions, the value of the gradient information Gi

will be small and the spatial weight Wi will have a high value.
Therefore, a powerful denoising strength will be used for these
pixels, and the noise in the smooth areas will be suppressed
better. Conversely, for the pixels in the edge and texture areas,
the value of Gi will be large, and the spatial parameter Wi will
have a small value. Thus, a weak denoising strength will be
used for them, and the edge and detailed information will be
preserved.

With the SSAHTV model, the final MAP denoising model
used in this paper can be written as

û = argmin

⎧⎨
⎩

B∑
j=1

‖uj − fj‖22 + λ

MN∑
i=1

Wi

√√√√ B∑
j=1

(∇iju)2

⎫⎬
⎭ .

(17)

IV. SPLIT BREGMAN OPTIMIZATION

A. Split Bregman Optimization

Because of the high-dimension property of hyperspectral im-
ages and the nondifference property of the proposed SSAHTV
model, how to find an efficient way to optimize the hyperspec-
tral denoising model in (17) is a very challenging problem.
Recently, a well-performing optimization method called the
split Bregman algorithm was developed by Tom Goldstein and
Stanley Osher to solve the L1 norm-based regularization [37],
[38], such as the TV model, etc. They concluded that the split
Bregman algorithm could work very efficiently when used to
optimize the TV denoising model. Therefore, in this paper,
the split Bregman method is extended and used to optimize
the SSAHTV denoising model in (17). The basic idea of this
optimization algorithm can be stated as follows.

First, an auxiliary variable d is introduced into the optimiza-
tion process and then added to (17) in the following way:

û = argmin

⎧⎨
⎩‖u− f‖22 + λ

MN∑
i=1

Wi

√√√√ B∑
j=1

(dij)2

⎫⎬
⎭

subject to : d = ∇u. (18)
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The constrained problem in (18) can be changed into an
unconstrained problem with the Bregman iteration method as
follows:

û=argmin⎧⎨
⎩‖u−f‖22+λ

MN∑
i=1

Wi

√√√√ B∑
j=1

(dij)2+β‖d−∇u−b‖22

⎫⎬
⎭ . (19)

In (19), the variable b is also an auxiliary one to accelerate the it-
eration. The minimization of (19) can be performed alternately
with the following two subproblems:

subproblem u : û

= argmin
{
‖u− f‖22 + β‖d−∇u− b‖22

}
(20)

subproblem d : d̂

= argmin

⎧⎨
⎩λ

MN∑
i=1

Wi

√√√√ B∑
j=1

(dij)2 + β‖d−∇u− b‖22

⎫⎬
⎭ .

(21)

In the aforementioned equation, to solve the u subproblem, the
following equation must be solved:

(I − βΔ)uk+1 = f + β∇T (d− b). (22)

For the linear function in (22), because the system is strictly di-
agonal, one of the most efficient methods uses the Gauss–Seidel
iteration algorithm.

The d subproblem equation in (21) can be solved using a
shrinkage operator as follows:

d = shrink

⎛
⎝
√√√√ B∑

j=1

(∇ijuk+1 + bk)2,
λW

β

⎞
⎠

= max

⎛
⎝0,

√√√√ B∑
j=1

(∇ijuk+1 + bk)2 − λW

β

⎞
⎠

× ∇iju
k+1 + b√

B∑
j=1

(∇ijuk+1 + b)2

(23)

where the shrink operator stands for the soft thresholding
method that was proposed in [39]. Finally, for the parameter
b, it should be updated in each iteration in the following way:

bk+1 = bk + (∇uk+1 − dk+1). (24)

From the earlier introduction, it can be seen that the split
Bregman iteration optimization method mainly composites the
solution of the two subproblems: the u and d subproblems.
The advantage of the split Bregman method is that the difficult
optimization problem in (17) is split into the aforementioned
two subproblems, which are very easy to optimize. The op-
timization of the u subproblem is just a fast Gauss–Seidel
iteration algorithm, with a linear computational complexity of

Fig. 3. HYDICE image of Washington DC Mall used in the simulated
experiments.

O(N3), while the optimization of the d subproblem is just a
very efficient soft threshold/shrinkage operator, with a linear
computational complexity of O(N2). That is the reason why
the split Bregman algorithm works very efficiently on the
proposed SSAHTV denoising model.

B. Optimization Procedure

Using the split Bregman optimization algorithm, the opti-
mization procedure of the SSAHTV denoising model in (17)
can be summarized as follows:

optimization procedure:

Initialize: u0 = f and d = 0, b = 0
While ‖uk+1 − uk‖2 ≥ tolerance
Solve the u subproblem using a Gauss–Seidel iteration
algorithm
Solve the d subproblem using a shrinkage operator
as (23)
Update parameter b: bk+1 = bk + (∇uk+1 − dk+1)

End

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Simulated Data Experiments

In the simulated experiments, part of the HYDICE image
of Washington DC Mall of a size 200× 200× 191 is used
to verify the performance of the proposed algorithm. The
experimental data in Fig. 3 were provided by Professor David
Landgrebe and can be downloaded from [40]. Before the simu-
lated process, the gray values of the hyperspectral image were
normalized between [0, 1].

In the simulated process, we simulated the addition of noise
in the following two cases.

Case 1) For different bands, the noise intensity is equal:
The same distribution of zero-mean Gaussian noise,
with a variance of 0.02, is added to all bands. The
mean signal-to-noise-ratio (SNR) value is 22.39.

Case 2) For different bands, the noise intensity is differ-
ent: Different variance zero-mean Gaussian noise is
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Fig. 4. Denoising results in simulated experiment Case 1. (a) Noise band 191, (b) locally adaptive Wiener, (c) wavelet hard thresholding, (d) band-by-band TV,
(e) HTV, and (f) proposed SSAHTV.

added to all bands, with the variance value being
randomly selected from 0 to 0.05. The mean SNR
value is 22.28.

To verify the performance of the proposed SSAHTV model,
it is compared with the locally adaptive Wiener filter (wiener2
function in MATLAB) [41], wavelet hard thresholding denois-
ing [42], the band-by-band TV model in (4), and the hyperspec-
tral TV model in (9).

The peak SNR (PSNR) index is used to give a quantitative
assessment of the results of the simulated experiment from
the gray-level similarity aspect. Recently, some image quality
assessment indices based on the human vision system have been
proposed, such as the structural similarity (SSIM) index [43],
[44] and the multiscale geometric analysis-based indices [45],
[46]. In this paper, we use the SSIM index to give a quantitative
assessment of the denoising result from a human vision aspect.
For the hyperspectral image, we computed the PSNR and SSIM
values between each clear band and denoised band, and then
averaged them; they are noted as the mean PSNR (MPSNR)
and mean SSIM (MSSIM) indices. The definitions of these
evaluation indices are as follows:

PSNR =10 log10

(
MN

‖û− u‖2
)

(25)

SSIM =
(2μuμû + C1)(2σuû + C2)

(μ2
u + μ2

û + C1) (σ2
u + σ2

û + C2)
(26)

MPSNR =
1

B

B∑
j=1

PSNRj (27)

MSSIM =
1

B

B∑
j=1

SSIMj (28)

where MN is the total number of pixels in one band of
the hyperspectral image and B is the band number of the
hyperspectral image. û and u represent the denoised image
and the original clear image, and μu and μû represent the
average gray values of the original clear and the denoised result,
respectively. σu and σû represent the variances of the original
clear image and the denoised image, respectively. σuû repre-
sents the covariance between the original clear image and the
denoised image. C1 and C2 are two constants, which prevent
unstable results when either μ2

u + μ2
û or σ2

u + σ2
û is very close

to zero.
Because there are too many bands in a hyperspectral image,

we just select two of them to give a presentation. Figs. 4 and
5 show the denoising results using different methods for bands
191 and 132 in simulated Case 1, and Figs. 7 and 8 show the
denoising image using different methods for bands 6 and 108
in simulated Case 2. In Figs. 6 and 9, the PSNR and SSIM
values of the different denoising approaches in different bands
are presented. The MPSNR and MSSIM of the two cases are
presented in Tables I and II, respectively, to give an overall
quantitative assessment of the denoising results.

From Figs. 4 and 5 and Figs. 7 and 8, it is shown that the
proposed SSAHTV algorithm gives better denoising results,
compared to the denoising results of the other four methods. In
the SSAHTV denoising result, not only is the noise suppressed
more thoroughly but also the edge information and the detailed
information are well preserved. However, for the locally adap-
tive Wiener filter, the denoising result is oversmoothed, and
a lot of the detailed information is lost. In the wavelet hard
thresholding denoising result, some “artifacts” are produced in
the image, and the edge information is also not well preserved.
The denoising result using the band-by-band TV model and the
hyperspectral TV model is also not as sharp as the denoised
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Fig. 5. Denoising results in simulated experiment Case 1. (a) Noise band 132, (b) locally adaptive Wiener, (c) wavelet hard thresholding, (d) band-by-band TV,
(e) HTV, and (f) proposed SSAHTV.

Fig. 6. PSNR and SSIM values of the different denoising approaches in each band of the simulated experiment Case 1. (a) PSNR value. (b) SSIM value.

TABLE I
MPSNR AND MSSIM VALUES OF THE DENOISING RESULTS IN

SIMULATED EXPERIMENT CASE 1

image using the proposed SSAHTV model, and some noise still
remains in the smooth regions.

The effectiveness of the proposed SSAHTV hyperspectral
image denoising algorithm can also be illustrated with the

TABLE II
MPSNR AND MSSIM VALUES OF THE DENOISING RESULTS IN

SIMULATED EXPERIMENT CASE 2

quantitative assessment results shown in Figs. 6 and 9 and
Tables I and II. In Figs. 6 and 9, it can be clearly seen that
the PSNR and SSIM values of most of the bands using the
SSAHTV model are higher than the PSNR and SSIM using
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Fig. 7. Denoising results in simulated experiment Case 2. (a) Noise band 6, (b) locally adaptive Wiener, (c) wavelet hard thresholding, (d) band-by-band TV,
(e) HTV, and (f) proposed SSAHTV.

Fig. 8. Denoising results in simulated experiment Case 2. (a) Noise band 108, (b) locally adaptive Wiener, (c) wavelet hard thresholding, (d) band-by-band TV,
(e) HTV, and (f) proposed SSAHTV.

the other four methods. In the overall quantitative assessment
presented in Tables I and II, the proposed SSAHTV model has
the highest MPSNR and MSSIM values of all the algorithms,
which is consistent with the visual effect shown in Figs. 4 and 5
and Figs. 7 and 8.

It is shown from the simulated experimental results in
Case 1 and Case 2 that the proposed SSAHTV method
can provide a better and more robust denoising result, re-

gardless of whether the noise intensity distributed in each
band is equal or not, because of the spectral–spatial adaptive
mechanism.

In Tables I and II, the computation times of the different al-
gorithms are presented, from which it is shown that, of the four
methods, the proposed SSAHTV denoising algorithm works
very efficiently, and the computation time is only slightly longer
than that of the simple locally adaptive Wiener filter, which
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Fig. 9. PSNR and SSIM values of the different denoising approaches in each band of the simulated experiment Case 2. (a) PSNR value. (b) SSIM value.

Fig. 10. AVIRIS Indian Pines data set used in the real data experiment 1. (a) Hyperspectral 3-D cube. (b) Training and test samples used in classification.

reflects the effectiveness of the split Bregman optimization
algorithm.

B. Real Data Experiments

The AVIRIS Indian Pines test data shown in Fig. 10(a)
were used in the first real data experiment. The data size is
145 ∗ 145 pixels, with 220 bands. It was provided by Professor
David Landgrebe and can be downloaded from [40]. Before
the denoising processing, the atmospheric and water absorption
bands from bands 150–163 were removed from the original
hyperspectral image. Therefore, there were only 206 bands used
in the experiment.

The denoising results of three bands of the overall hyperspec-
tral image are presented to give a comparison. The denoising
results of bands 3, 110, and 204 are shown in Figs. 11–13,
respectively. Fig. 14 shows the combination result of the three
bands. From the denoising results, it can be clearly seen that
the proposed SSAHTV model gives better denoising results
than the other three methods. The denoising result using the
locally adaptive Wiener filter appears oversmoothed, and most
of the edge information is lost. In the wavelet hard thresholding
denoising result, because the filter threshold in the wavelet
domain is selected based on the whole image, ignoring the
spatial information variation of the image, most of the detailed
information is lost, and the denoising result is oversmoothed.

Fig. 11. Denoising results in the real data experiment 1. (a) Original noise
band 3, (b) locally adaptive Wiener, (c) wavelet hard thresholding, (d) band-by-
band TV, (e) HTV, and (f) proposed SSAHTV.

In the denoising results using the band-by-band TV model,
because the noise intensity difference between different bands
and the spatial information differences between different pixels
are not considered, an equal denoising strength is used in all
bands and all pixels; the denoising image is oversmoothed, and
some detailed information, such as edges and texture, is lost.
In the denoising results using the HTV model in (7), because
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Fig. 12. Denoising results in the real data experiment 1. (a) Original noise
band 110, (b) locally adaptive Wiener, (c) wavelet hard thresholding, (d) band-
by-band TV, (e) HTV, and (f) proposed SSAHTV.

Fig. 13. Denoising results in the real data experiment 1. (a) Original noise
band 204, (b) locally adaptive Wiener, (c) wavelet hard thresholding, (d) band-
by-band TV, (e) HTV, and (f) proposed SSAHTV.

the spatial information difference between different pixels is
not considered, the edge information appears a little blurred.
However, in the denoising results of the proposed SSAHTV
model, because the spectral and spatial adaptive processes are
considered in the denoising and different denoising strengths
are used in different bands and pixels, it is seen that the noise
in the smooth area is sufficiently suppressed, while the edge
information is well preserved. In particular, for the bands 110
and 204, because the signal in these two bands is so weak and
the noise intensity appears so high, the denoising results using
the band-by-band TV model appear so smooth that a majority
of the edge and texture information is lost. However, in the
denoising results using the proposed SSAHTV model, the edge
information is well maintained, and the noise information is
suppressed very well.

To further verify the effectiveness of the proposed denoising
approach, the classification results of the hyperspectral image
before and after denoising are given for comparison purposes.
The training and test samples of the classification are shown

Fig. 14. Denoising results in the real data experiment 1. (a) Original band
combination of the noise bands 3, 110, and 204, (b) locally adaptive Wiener,
(c) wavelet hard thresholding, (d) band-by-band TV, (e) HTV, and (f) proposed
SSAHTV.

TABLE III
NUMBER OF TRAINING AND TEST SAMPLES USED IN THE

CLASSIFICATION OF THE AVIRIS INDIAN PINES DATA SET

in Fig. 13(b), and the number of training and test samples
is presented in Table III. To show that the classification im-
provement after image denoising is statistically significant, we
first randomly select a few samples from the total samples as
training samples, and we then use the support vector machine
(SVM) classification method [47] to do a supervised classi-
fication for the image. Finally, the classification accuracy is
tested with the remaining samples. The classification process is
repeated ten times in our paper, and the mean overall accuracy
(OA) and kappa coefficient are noted as the final classification
assessment results. The classification results using SVM on
the whole hyperspectral image are shown in Fig. 15(a)–(e). In
Fig. 16(a)–(e), we also show the classification results using
SVM after PCA, and the PC number in our experiment is
selected to be ten. The classification accuracy evaluation results
using OA and kappa coefficient are shown in Tables IV and V.

It is clearly seen that the classification result has been greatly
improved after the denoising process. In the original noisy
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Fig. 15. Classification results using SVM before and after denoising of
the real data experiment 1. (a) Classification result of the original image.
(b) Classification result after locally adaptive Wiener denoising. (c) Classi-
fication result after wavelet hard thresholding denoising. (d) Classification
result after band-by-band TV model denoising. (e) Classification result after
HTV model denoising. (f) Classification result after proposed SSAHTV model
denoising.

Fig. 16. Classification results using PCA+SVM before and after denoising
in the real data experiment 1. (a) Classification result of the original image.
(b) Classification result after locally adaptive Wiener denoising. (c) Classi-
fication result after wavelet hard thresholding denoising. (d) Classification
result after band-by-band TV model denoising. (e) Classification result after
HTV model denoising. (f) Classification result after proposed SSAHTV model
denoising.

TABLE IV
SVM CLASSIFICATION ACCURACY EVALUATION RESULTS

ON THE ORIGINAL IMAGE AFTER DENOISING

OF THE REAL DATA EXPERIMENT 1

classification result, the classification appears fragmentary, be-
cause of the effect of the strong noise information in most of
the bands, and the OA and kappa coefficient are only 77.01%
and 0.7341 in the whole image classification result and 80.58%

TABLE V
PCA+SVM CLASSIFICATION ACCURACY EVALUATION RESULTS

ON THE ORIGINAL IMAGE AFTER DENOISING

OF THE REAL DATA EXPERIMENT 1

Fig. 17. HYDICE urban data sets used in the real data experiment 2.
(a) Hyperspectral cube. (b) Training samples used in classification.

Fig. 18. Striping-noise and mixed-noise bands included in the HYDICE urban
data sets in the real data experiment 2. (a) Striping-noise band. (b) Mixed-noise
band (more than one type of noise).

and 0.7750 in the classification result after PCA, respectively.
However, in the denoised image classification result, the frag-
mentary effect is well reduced because the noise is suppressed.
Of the four classification results from the different denoising
methods, it is shown that the proposed approach gives the
best classification result; it gives the highest OA and kappa
coefficient values of 96.99% and 0.9646 in the whole image
classification result and 97.40% and 0.9695 in the classification
result after PCA, respectively.

The reason why the PCA-based classification result is im-
proved after the process of denoising can be explained as
follows. Because the PCA process ranked the PCs using the
data variance, it is obvious that both signal and noise can con-
tribute to data variance. Therefore, it is possible that some noise
information may be included in the high-rank PCs, and this
has a negative effect on the classification results. Consequently,
with denoising processing before the PCA, because the noise
information is suppressed, the classification result is improved.
As the noise information is better suppressed with our proposed
algorithm, a better classification result is produced.

In Table VI, to show the spectral fidelity, we also give some
blind image quality assessment results using the mean spectral
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Fig. 19. Denoising results in the real data experiment 2. (a) Original noise band 2, (b) locally adaptive Wiener, (c) wavelet hard thresholding, (d) band-by-band
TV, (e) HTV, and (f) proposed SSAHTV.

TABLE VI
BLIND QUALITY ASSESSMENT USING THE Q-METRIC

IN REAL DATA EXPERIMENT 1

angle (SA-mean) between the denoised image and the original
noisy image. A recent blind image content measurement index
called the Q-metric [48] is used to evaluate the spatial infor-
mation preservation. In the same way as with the MPSNR and
SSIM indices in the simulated experiment, we first compute
the Q-metric value of each band, and the mean value of the
Q-metric is set as the final evaluation result.

From the evaluation results using the mean spectral an-
gle, it is shown that the proposed SSAHTV model produces
the smallest mean spectral angle, which illustrates that the
SSAHTV provides the smallest spectral distortion. In the spatial
preserving evaluation result using the Q-metric, it is seen that
although the wavelet hard thresholding method gives a slighter
higher Q-metric value, we think that the excellent performance
of the SSAHTV denoising method is sufficiently reflected in
the visual and classification results mentioned earlier, and the
proposed method also has a higher processing speed than the
wavelet method and band-by-band TV model.

In the second real data experiment, the HYDICE urban image
shown in Fig. 17 is used as the test data set. It is a size
of 200 ∗ 200 pixels and 205 bands. This experimental data
set is available from [49]. We used this data set as there are
considerable high-intensity striping- and mixed-noise (more

TABLE VII
NUMBER OF TRAINING SAMPLES USED IN THE CLASSIFICATION

OF THE HYDICE URBAN DATA SETS

than one type of noise) bands included in the data, examples
of which are shown in Fig. 18. In Fig. 18(a), significant striping
noise is included in the band, and a large amount of mixed noise
is included in Fig. 19(b). Before the denoising processing, the
atmospheric and water absorption bands from bands 140–151
have been removed from the original hyperspectral image.
Therefore, there are only 193 bands used in the experiment.
The training and test samples of the classification are shown
in Fig. 17(b), and the numbers of the training and test samples
are presented in Table VII.

Three bands of the hyperspectral image, bands 2, 103, and
193, are presented to illustrate the effectiveness of the proposed
algorithm. The denoising results of these bands are shown
in Figs. 19–21. The band combination result before and af-
ter denoising is shown in Fig. 22. The classification results
using SVM for the whole hyperspectral image are shown in
Fig. 23(a)–(e). Fig. 24(a)–(e) shows the SVM classification
results after a PCA process on the hyperspectral image. The PC
number is also selected to be ten. The classification accuracy
and quantitative evaluation results are shown in Tables VIII–X.
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Fig. 20. Denoising results in the real data experiment 2. (a) Original noise band 103, (b) locally adaptive Wiener (c), wavelet hard thresholding, (d) band-by-band
TV, (e) HTV, and (f) proposed SSAHTV.

Fig. 21. Denoising results in the real data experiment 2. (a) Original noise band 193, (b) locally adaptive Wiener (c), wavelet hard thresholding, (d) band-by-band
TV, (e) HTV, and (f) proposed SSAHTV.

From the denoising results shown in Figs. 19–22, it can
be clearly seen that the proposed SSAHTV denoising ap-
proach performs better and provides a better striping- and
mixed-noise removing effect than the other three methods.
In Figs. 19(e) and 20(e), the striping noise that exists in
the original image shown in Figs. 19(a) and 20(a) is better
suppressed, without losing the edge and detailed informa-
tion. For the mixed noise shown in Fig. 21(a), the proposed
approach also produces promising results. In Fig. 21(e), it

can be clearly seen that almost all the noise is removed
completely, without losing the edge information. However,
for the other four denoising results, the striping noise is not
well removed, either the denoising result is over smooth or
the striping noise is not completely removed. It should be
noted in Fig. 21 that a dead pixel line existed in the original
image. With the proposed SSAHTV method, the dead pixel
line can be easily removed. From the aforementioned obser-
vations, we think that the proposed model may well provide
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Fig. 22. Denoising results in the real data experiment 2. (a) Original band combination of the noise bands 2, 103, and 192, (b) combination after locally adaptive
Wiener, (c) combination after wavelet hard thresholding, (d) combination after band-by-band TV, (e) combination after HTV, and (f) combination after proposed
SSAHTV.

Fig. 23. Classification results using SVM before and after denoising of the real experiment 2. (a) Classification result of the original image. (b) Classification
result after locally adaptive Wiener denoising. (c) Classification result after wavelet hard thresholding denoising. (d) Classification result after band-by-band TV
model denoising. (e) Classification result after HTV model denoising. (f) Classification result after proposed SSAHTV model denoising.

a new idea for hyperspectral image destriping and dead pixel
inpainting.

The classification results shown in Figs. 23 and 24 also reflect
the effectiveness of the proposed approach. In these two figures,
the proposed SSAHTV model denoised image produces a better
classification image, which is reflected in the OA and kappa
coefficient presented in Tables VIII and IX.

C. Discussion

1) Sensitivity Analysis of the Parameter μ: In (14), to define
the spatially weighted parameter of each pixel in the denoising
process, we use the parameter u to control the contribution
of the spatial information on the spatial weight τi. To show
its effect on the final denoising performance, using simulated
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Fig. 24. Classification results using PCA+SVM before and after denoising in the real data experiment 2. (a) Classification result of the original image.
(b) Classification result after locally adaptive Wiener denoising. (c) Classification result after wavelet hard thresholding denoising. (d) Classification result
after band-by-band TV model denoising. (e) Classification result after proposed HTV model denoising. (f) Classification result after proposed SSAHTV model
denoising.

TABLE VIII
SVM CLASSIFICATION ACCURACY EVALUATION RESULTS ON THE

ORIGINAL IMAGE AFTER DENOISING OF THE REAL DATA EXPERIMENT 2

TABLE IX
PCA+SVM CLASSIFICATION ACCURACY EVALUATION RESULTS ON THE

ORIGINAL IMAGE AFTER DENOISING OF THE REAL DATA EXPERIMENT 2

TABLE X
BLIND QUALITY ASSESSMENT USING THE Q-METRIC

IN REAL DATA EXPERIMENT 2

experiment Case 1 as an example, we give a sensitivity analysis
for this parameter, which is shown in Figs. 25 and 26.

Fig. 25 shows the change of the MPSNR and MSSIM values
with the change of the parameter μ from 1 to 200, and Fig. 26
shows the change of the PSNR and SSIM values for different

bands when the parameter μ is respectively set with a small
value (10) and a large value (200).

From these figures, it is shown that the denoising results
maintain robustness with changes in parameter μ. In Fig. 25,
the MPSNR and MSSIM values show little change with the
change of parameter μ from 1 to 200. In Fig. 26(a) and (b),
the PSNR and SSIM change curves with a small μ and large
μ are almost overlapped, and the difference between them is
close to zero [Fig. 26(c) and (d)], which sufficiently illustrates
the robustness of the denoising result with the parameter μ.

The reason why the denoising result can maintain robustness
with changes of this parameter can be explained as follows:
In our paper, we first define a parameter τi with the spatial
gradient information in (14), and then, the spatially weighted
parameter Wi is defined in (15). From the definition, it is shown
that, although the change parameter μ impacts the parameter τi,
after the processing in (15), for the spatially weighted parameter
Wi, the impact is much reduced and limited. For example, for
(15), if the parameter τi becomes small with the change of μ,
the mean value τ of τi also becomes small; this arrangement
ensures that parameter Wi shows little change, particularly
when the parameter μGi is larger than one.

2) Noise Robustness and Computation Time Analysis: To
show the noise robustness of the proposed method, in Fig. 27,
using simulated experiment 1 as an example, the performance
changes of the different denoising methods with different SNR
values are presented. From the figures, it is clearly shown that
the proposed SSAHTV model maintains robustness and always
performs better than the other methods with changes in noise
intensity.

For the computation time, it is seen from Fig. 27(c) that
the computation time of the proposed algorithm increases as
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Fig. 25. Sensitivity analysis of parameter μ (μ from 1 to 200). (a) Change of the MPSNR value with the parameter μ. (b) Change of the MSSIM value with the
parameter μ.

Fig. 26 Comparison of the PSNR and SSIM values in different bands with a small and large μ value (μ = 10 and μ = 200). (a) and (b) PSNR and SSIM value
comparison. (c) and (d) PSNR and SSIM value difference of different bands with a small and large μ value.

noise intensity increases. In low-intensity conditions, it has
a longer computation time than the simple locally adaptive
Wiener filter. As the SNR value increases, the computation time
also increases, and is close to the time of the wavelet denoising
method and band-by-band TV denoising method, because the
optimal iteration time is increasing. Although it may need a lit-
tle longer computation time in high-noise-intensity conditions,

the denoising effect of the proposed method is the best of all
four algorithms.

VI. CONCLUSION

In this paper, we have proposed a spectral–spatial adaptive
TV hyperspectral image denoising algorithm, in which the
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Fig. 27 Change of the denoising result of different denoising algorithms with different noise level (SNR). (a) PSNR value change. (b) MSSIM value change.
(c) Computation time change.

noise distribution difference between different bands and the
spatial information difference between different pixels are both
considered in the process of denoising. First, a MAP-based
hyperspectral denoising model is constructed, which consists
of two items: the data fidelity item and the regularization
item. Then, for the regularization item, an SSAHTV model is
proposed, which can control the denoising strength between
different bands and pixels with different spatial properties. In
different bands, a large denoising strength is enforced in a band
with high noise intensity, and conversely, a small denoising
strength is used in bands with low-intensity noise. At the same
time, in different spatial property regions in the hyperspectral
image, a large denoising strength is used in smooth areas to
completely suppress noise, and a small denoising strength is
used in the edge areas to preserve detailed information. Finally,
the split Bergman iteration algorithm is used to optimize the
spectral–spatial adaptive TV hyperspectral image denoising
model in order to reduce the high computation load in the
process of hyperspectral image denoising. Several simulated
and real data sets were employed in experiments presented
in Section V to illustrate that the proposed algorithm can
satisfactorily balance the denoising strength in different hyper-
spectral bands and different spatial pixel locations, and produce
a denoising result with noise well suppressed, but without loss
of edge and detailed information. It is important to emphasize
that the proposed approach also works well on high-intensity
striping- and mixed-noise images, and it may well provide a
new idea for hyperspectral image destriping and dead pixel
inpainting.

Although the proposed SSAHTV model works well on the
hyperspectral image denoising problem, it can still be further
improved in some aspects. Our future work will focus on also
considering the gradient in the spectral dimension in the model
construction process in order to develop a real 3-D TV model.
In addition, it may be possible to use the 3-D segmentation
or clustering result to constrain the denoising process from
a region perspective, rather than the pixel perspective in the
present paper.
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