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A Fast Globally Optimal Seamline Detection
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Abstract— Seamline detection is one of the most important
issues in mosaicking high-resolution remote sensing images
(HRRSIs). However, it is difficult to make a balance between
efficiency and accuracy. On that account, a shortest matrix
path-based dynamic programming (SMP-DP) algorithm is pro-
posed to find the optimal seamline for HRRSI mosaicking. First,
a pixel cost matrix defined by intensity difference, gradient simi-
larity, and geometric difference is constructed in the overlapping
area. Second, the least average path cost from the starting pixel to
each pixel is calculated and the SMP-DP algorithm is applied to
find the optimal path. Experimental results on HRRSI prove that
the proposed method detects high-quality seamline and crosses
much fewer objects with the highest computational efficiency,
compared with the state-of-the-art method and commercial
software.

Index Terms— Dynamic programming (DP), high-resolution
remote sensing images (HRRSIs), image mosaicking, seamline
detection, shortest matrix path.

I. INTRODUCTION

WITH the development of remote sensing technology,
high-resolution remote sensing images (HRRSIs) have

gradually become the primary source for rapid acquisition of
geographic information data [1], [2]. However, the narrow
geographic range within a single image cannot meet the
requirements of remote sensing applications for large areas.
Therefore, it is necessary to stitch a number of HRRSI into
one single image with a wider field of view. When mosaicking
HRRSI, seamline detection, also known as seamline determi-
nation or seam cutting, has an important impact on the quality
of the final mosaic [3].

In recent years, a large number of seamline detection meth-
ods have been proposed. They aim to find the optimal seam-
line, where the images show the most intensity and texture
similarity [4]. The representative methods include twin-snake
model, Dijkstra’s algorithm (DA), the dynamic programming

Manuscript received 7 December 2022; revised 8 February 2023; accepted
23 February 2023. Date of publication 28 February 2023; date of current
version 10 March 2023. This work was supported by the Open Fund of
Hubei Luojia Laboratory under Grant 220100041 and Grant 220100055.
(Corresponding author: Xinghua Li.)

Huanfeng Shen is with the School of Resource and Environmental Sciences,
Wuhan University, Wuhan 430079, China, and also with the Hubei Luojia
Laboratory, Wuhan 430079, China (e-mail: shenhf@whu.edu.cn).

Wei Zhou is with the School of Resource and Environmental Sciences,
Wuhan University, Wuhan 430079, China (e-mail: rs_zhouwei@whu.edu.cn).

Xinghua Li is with the School of Remote Sensing and Information Engineer-
ing, Wuhan University, Wuhan 430079, China, and also with the Hubei Luojia
Laboratory, Wuhan 430079, China (e-mail: lixinghua5540@whu.edu.cn).

Digital Object Identifier 10.1109/LGRS.2023.3250519

(DP) algorithm, and graph cuts (GCs)-based methods. Twin-
snake model [5] is a classical seamline detection method in
high color and texture similarity areas. There are also many
variants on the popular DA [6]. Chon et al. [7] applied DA
by limiting the level of maximum difference along seamline.
DA was further optimized based on image segmentation [3]
and region change rate (RCR) [8]. The DP [9] algorithm also
attracts a lot of attention for seamline detection. Wen and
Zhou [10] combined DP and gray relational analysis to detect
the optimal seamline. An automatic piecewise DP (APDP)
method [11] with five search directions was proposed to
select the seamline. Recently, GC [12], [13] has been widely
used in this field. A novel foreground segmentation-based
approach [14] was proposed to detect the optimal seamline for
orthoimage mosaicking. Yuan et al. [15] designed a superpixel-
based energy function for optimal seamline detection by
integrating color difference, gradient difference, and texture
complexity information and applied GC. In addition, a new
method of seamline determination based on road probability
map from the D-LinkNet for urban image mosaicking was
presented in [16].

The above methods have their own advantages in different
aspects. However, it is difficult to make a tradeoff between
efficiency and effectiveness in the optimal seamline detection.
For example, although some methods can detect the globally
optimal seamline, the efficiency of which are a little low
for remote sensing images. The traditional DP methods have
significant superiority of the rapid detection, but the selected
seamline is usually not globally optimal. This is because
traditional DP methods only detect a part of seamlines along
three search directions from the first row of pixels and then
select the optimal seamline from them. Toward this end, a
novel shortest matrix path-based DP (SMP-DP) algorithm is
proposed for the efficient and effective seamline detection
from HRRSI. Our proposed method detects all seamlines in
the matrix along four search directions from one endpoint to
another endpoint to find the globally optimal one. The main
contributions are as follows.

1) Inspired by the shortest path problem in matrix, the
proposed method transforms optimal seamline detection
into a path-seam issue from starting point to endpoint
in the overlapping area. Therefore, the detected optimal
seamline is globally optimal.

2) SMP-DP method not only takes intensity difference, gra-
dient similarity, and geometric difference into account
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Fig. 1. Flowchart of the proposed seamline detection for HRRSI.

but also inherits the advantages of the traditional DP
methods for rapid detection.

The rest of this letter is organized as follows. Section II
provides a detailed description on our proposed SMP-DP
method for seamline detection. The experimental results are
presented in Section III, and the conclusions are made in
Section IV.

II. METHODS

As we all know, a high-quality seamline should pass through
the most similar part in the overlapping area of two images to
result in the least inconsistency. A short segment of seamline
with significant mismatch is more visible than a lengthy one
with small differences [7]. Based on the shortest path problem
in matrix, the optimal seamline detection can be regarded as
finding a path with the least average cost in the overlapping
area. Fig. 1 shows the flowchart of our proposed seamline
detection method for HRRSI. It is worth mentioning that if
the color differences between two images are too obvious,
it is essential to perform color correction [17], [18] before
seamline detection. The cost function is calculated by intensity
difference, gradient similarity, and geometric difference. Each
pixel with a different cost forms a pixel cost matrix. Then,
SMP-DP algorithm is applied to detect the optimal seamline
in the overlapping area of two images.

A. Shortest Path Problem in Matrix

The shortest path problem in matrix is a classical problem
in route planning. It can be described as follows: Given an

n × m matrix with nonnegative elements, it is to find a path
from the upper left corner to the lower right corner, so that the
sum of the elements on the path is the smallest. The search
direction can only be right or down, and the search distance
can only be one element.

Inspired by it, we can transform optimal seamline detection
into the shortest path problem in matrix. Then, we can detect
a globally optimal seamline as the shortest path. An n × m
cost matrix is composed of pixels in the overlapping areas
of adjacent images. n and m represent the height and the
width of the overlapping areas, respectively. Each pixel has
a nonnegative cost and high-cost pixels should be excluded
by the optimal seamline. Since a long section of seamline
with low cost shows better consistency than a short one with
high cost, the shortest path problem is further transformed into
finding the path with the least average cost. Different from
three search directions of traditional DP methods, the search
direction can be expanded to four directions according to the
overlapping relationship.

B. Cost Function

The cost function is set to construct the pixel cost matrix
and the cost of each pixel reflects the similarity between the
overlapping areas of two images. According to Duplaquet’s
criteria [9], the intensity difference of pixels on the optimal
seamline and the geometric difference along the optimal
seamline is minimal. In this letter, the intensity difference,
gradient similarity, and geometric difference are imposed to
calculate the cost function. For two images I f and Ig , the cost
function C(x, y) is defined as

C(x, y) = Cd(x, y) + αCe(x, y) + βCk(x, y) (1)

where (x, y) denotes the pixel located at (x, y), and Cd(x, y),
Ce(x, y), and Ck(x, y) represent the intensity difference, gra-
dient similarity, and geometric difference of the pixel (x, y),
respectively. α and β are the adjustable parameters between
intensity difference, gradient similarity, and geometric differ-
ence. Empirically, α and β are set to 1.0 in the experiment.

Since HSI color space (H refers to hue, S denotes satu-
ration, and I denotes intensity) is more in line with human
visual characteristics than red, green, blue (RGB) color space,
its brightness and chromaticity are separable. The intensity
difference Cd(x, y) of the pixel (x, y) is computed in the HSI
color space, which is defined as

Cd(x, y) =
∣∣I HSI

f (x, y) − I HSI
g (x, y)

∣∣ (2)

where I HSI
f (x, y) and I HSI

g (x, y) denote the intensities of the
pixel (x, y) of I f and Ig in HSI color space, respectively.
| · | represents the absolute value.

Ce(x, y) represents the gradient similarity between the
pixel (x, y) and four adjacent pixels (xm, ym) in the search
directions, which is defined as

Ce(x, y) =

4∑
m=1

Min
(
grad f (xm, ym), gradg(xm, ym)

)
(3)

where grad f (xm, ym) and gradg(xm, ym) are the first-order
gradients between the pixel (x, y) and the next adjacent pixel
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Fig. 2. Overlapping relationship between the two images. (a) Upper left -
lower right. (b) Lower left - upper right.

(xm, ym) in I f and Ig , respectively. m denotes the search
direction and Min(a, b) represents the smaller one between
a and b.

The geometric difference Ck(x, y) of each pixel is calcu-
lated by an eight-direction Sobel gradient operator to detect
the edge information, which is defined as

Ck(x, y) =

8∑
t=1

|G t (x, y)| (4)

G t (x, y) =

3∑
n=1

( f n(x, y) − gn(x, y)) × St (5)

where G t (x, y) is the Sobel gradient of the pixel (x, y) in
the t th-direction. f n(x, y) and gn(x, y) denote the intensity
of the pixel (x, y) in the nth band of I f and Ig in RGB color
space, respectively. St is the Sobel operator used in the eight
directions [19].

C. SMP-DP Algorithm for Seamline Detection

After constructing the cost matrix for pixels in the overlap-
ping area, SMP-DP is applied to find the optimal seamline. The
globally optimal seamline is a path from the starting pixel to
the end pixel with the least average cost. C(x, y) and PC(x, y)

represent the cost of the pixel (x, y) and the least average
cost of the path from the starting pixel to the pixel (x, y),
respectively. L(x, y) represents the length of the optimal path
from the starting pixel to the pixel (x, y). In fact, SMP-DP
is slightly different in the search direction depending on the
overlapping relationship of adjacent images. There are usually
two main overlapping relationships for the images of the same
sensor in Fig. 2, so do other cases. In this letter, our proposed
method is presented as in Fig. 2(a).

The SMP-DP algorithm is detailed as follows.
1) According to the overlapping relationship between two

images, we determine the upper right pixel as the starting
pixel and the lower left pixel as the end pixel of the
seamline in the overlapping area.

2) Detect the optimal path from the starting pixel to each
pixel (x, y) in turn. For convenience, F(x + i, y + j) is
introduced to simplify the formula

F(x + i, y + j) =
PC(x + i, y + j) + C(x, y)

L(x + i, y + j) + 1
(6)

where F(x + i, y + j) denotes the cost of the optimal
path from the starting pixel to the pixel (x, y) passing

Fig. 3. (a) Different search directions of pixels. (b) Process of searching for
the globally optimal seamline.

through the pixel (x +i, y+ j). L(x +i, y+ j) represents
the length of the optimal path from the starting pixel to
the pixel (x + i, y + j).

3) First of all, each pixel in the first row can only be
detected by the pixel to its right. So, PC(x, y) is defined
as

PC(x, y) = F(x, y + 1). (7)

4) Pixels in the last column can be detected by the upper
left and upper pixels. PC(x, y) is defined as

PC(x, y) = Min(F(x − 1, y − 1), F(x − 1, y)). (8)

5) Pixels in the first column can be detected by the upper,
upper right, and right pixels. PC(x, y) is defined as

PC(x, y) = Min(F(x − 1, y),

F(x − 1, y + 1), F(x, y + 1)). (9)

6) The remaining pixels are detected by the pixels in the
upper left, upper, upper right, and right. PC(x, y) is
defined as

PC(x, y) = Min(F(x − 1, y − 1), F(x − 1, y),

F(x − 1, y + 1)F(x, y + 1)). (10)

7) Since PC(0, width − 1) = C(0, width − 1) and each
C(x, y) is known, each PC(x, y) can be calculated in the
matrix. Obviously, we can get PC(height − 1, 0), which
represents the least average cost of the path from the
starting pixel to the end pixel. Then, we can start from
the end pixel (height − 1, 0) to search for the previous
pixel in turn by reversing formulas (6)–(10).

8) Connecting all pixels from pixel (height − 1, 0) to pixel
(0, width − 1) in sequence, we can find a path from
the end pixel to the starting pixel, which is the globally
optimal seamline in the overlapping area.

Fig. 3(a) shows different search directions of pixels in
different areas of the matrix. Pixels 1–4 represent the pixel
located in the first row, last column, first column, and the mid-
dle, respectively. Fig. 3(b) shows the process of the globally
optimal seamline detection. It can be seen that the globally
optimal seamline is determined from the end pixel to the
previous pixel until the starting pixel.

Authorized licensed use limited to: Wuhan University. Downloaded on April 02,2023 at 13:52:45 UTC from IEEE Xplore.  Restrictions apply. 



6003305 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 20, 2023

Fig. 4. Visual judgment of the optimal seamline detected by (a) ERDAS, (b) APDP, (c) OrthoVista, and (d) SMP-DP on the first dataset.

Fig. 5. Visual judgment of the optimal seamline detected by (a) ERDAS, (b) APDP, (c) OrthoVista, and (d) SMP-DP on the second dataset.

III. EXPERIMENTAL RESULTS

Two sets of HRRSI are employed to validate the proposed
method. The first dataset is aerial images from an urban area
with a ground resolution of 0.1 m, and the spectral bands are
infrared, red, and green. The sizes of the two aerial images are
6401 × 8951 and 6701 × 8851, respectively. The buildings
in aerial images are apparently oblique. The second dataset
is selected from the Vaihingen1 dataset with the resolution of
0.1 m, and the spectral bands are red, green, and blue. The
sizes of the two aerial images are 7680 × 13 270 and 7830 ×

13 017, respectively. There are many individual buildings and
trees surrounding the buildings in the images. It is worth
noting that these two datasets are not orthoimages, and the first
dataset has been color corrected by Global Tilting Adjustment
in OrthoVista.2

1https://www2.isprs.org/commissions/comm2/wg4/benchmark/2d-sem-
label-vaihingen/

2http://www.trimble.com/

To verify the effectiveness and efficiency of our proposed
method, we compared SMP-DP with APDP [9] and two
commercial software OrthoVista and ERDAS in terms of
visual judgment and quantitative assessment.

A. Visual Judgment

Fig. 4 shows the optimal seamline detected by different
methods on the first data set. Some details of the red box
are shown in the small grid in the following. The fewer
buildings the optimal seamline passes through, the better the
result. It can be clearly seen that the optimal seamline detected
by SMP-DP successfully avoids going through buildings and
maintains the consistency and continuity of aerial images.
APDP, OrthoVista, and ERDAS cross many buildings and
cause significant dislocations, as shown in Fig. 4(b)–(d), espe-
cially in the enlarged red box. In addition, SMP-DP always
detects and takes full advantage of the road to generate the
seamline in the first dataset with many oblique buildings.
However, APDP only bypasses the building well in the middle

Authorized licensed use limited to: Wuhan University. Downloaded on April 02,2023 at 13:52:45 UTC from IEEE Xplore.  Restrictions apply. 



SHEN et al.: FAST GLOBALLY OPTIMAL SEAMLINE DETECTION METHOD FOR HRRSIs 6003305

TABLE I
QUANTITATIVE COMPARISON WITH DIFFERENT METHODS

section and crosses many buildings in the upper and lower sec-
tions. OrthoVista detects the seamline along the road in most
cases, but performs poorly in densely distributed buildings.
The results of ERDAS are relatively poor and pass through the
most buildings compared with other methods. Fig. 5 shows
the results of the above four methods on the second dataset.
SMP-DP can make the seamline along the road and avoid
dense buildings and trees. The other three methods inevitably
cross a number of buildings. Notably, since these two datasets
are not completely aligned, our method will also pass through
the building in some area, where other methods pass through
the building. From the above experiments, we can draw the
conclusion that SMP-DP can generate a high-quality seamline,
which passes through a flat area and bypass the buildings and
trees.

B. Quantitative Assessment

A quantitative comparison was made to further prove the
effectiveness and efficiency of our method. As shown in
Table I, it is obvious from the third column that our pro-
posed SMP-DP method passes through much fewer obvious
objects than other methods. SMP-DP is very robust on dif-
ferent datasets, only passing through a very small number
of buildings. Both OrthoVista and APDP pass through quite
a few buildings. ERDAS goes through the largest number
of buildings and is the least robust. It can be seen that our
proposed SMP-DP method has significantly reduced time cost
compared with other three methods. SMP-DP only takes 6 s
on the first dataset and 12 s on the second dataset. It is three
to five times more efficient than other three methods. This is
mainly because DP algorithms have lower time complexity
than other algorithms. In addition, different from traditional
DP methods to find the optimal seamline from all the pixels
in the first row, our proposed method only needs to start from a
vertex pixel to detect the optimal seamline, which saves more
time.

IV. CONCLUSION

In this letter, we proposed an efficient and effective seamline
detection method for HRRSI via a novel SMP-DP algorithm.
Referring to the shortest path problem in matrix, a pixel cost
matrix that considers intensity difference, gradient similarity,

and geometric difference is constructed in the overlapping
area. Then, the least average cost of the path from the starting
pixel to each pixel is determined. Finally, SMP-DP algorithm
is applied to find the optimal seamline with different search
directions. By comparing with state-of-the-art method and
two kinds of commercial software, it can be proved that our
proposed method gets the highest quality seamline in the
shortest time. Moreover, if HRRSI is well registered, the result
of the mosaic will be better. Color correction is also a very
important part of image mosaicking. In the future, we will
focus on applying our method to multiple HRRSI mosaicking.
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