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Polarimetric-Spatial Classification of SAR Images
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Abstract—Traditional image classification methods are under-
taken using the pixel as the research unit. These methods cannot
use semantic information, and their classification results may not
always be satisfactory. To solve this problem, objected-oriented
methods have been widely investigated to classify remote sensing
images. In this paper, we propose an innovative objected-oriented
technique that combines pixel-based classification and a segmenta-
tion approach for the classification of polarimetric synthetic aper-
ture radar (PolSAR) images. In the process of the pixel-based clas-
sification, a soft voting strategy is utilized to fuse multiple classi-
fiers, which can, to some extent, overcome the drawback of ma-
jority voting. The experimental results are presented for two quad-
polarimetric SAR images. The proposed classification scheme im-
proves the classification accuracies after assembling the multiple
classifiers, and provides the classification maps with more homo-
geneous regions by integrating the spatial information, when com-
pared with pixel-based classification. By deploying multi-scale seg-
mentation, we get a series of classification results, which again show
that our method is superior to the conventional object-oriented
methods.

Index Terms—Object-oriented, polarimetric-spatial classifica-
tion, polarimetric synthetic aperture radar, voting.

I. INTRODUCTION

N many applications of remote sensing, the identification

of the land-cover type by an image classification technique
plays an important role. Remote sensing data obtained from
different optical sensors have been commonly used to obtain
land use and land cover (LULC) information. However, op-
tical remote sensing is limited by weather conditions, and dif-
ficulties are often encountered in collecting timely LULC in-
formation. The synthetic aperture radar (SAR) system can pro-
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vide a day-or-night, all-weather means of remote sensing and
produces high-resolution images of the land under the illumi-
nation of radar beams. However, in the early years, many or-
bital SAR systems were single-polarization types and could re-
sult in confusion during the separation and mapping of LULC
classes; this confusion stems from the limited information ob-
tained by the single-polarization systems [1]. POISAR is an ad-
vanced form of SAR, which focuses on emitting and receiving
multi-frequency and fully polarized radar waves to characterize
observed land-cover types and targets. Many researchers have
shown that PoISAR has unique advantages in the classification
of land-cover types [2]-[4].

Traditionally, the research unit for image classification has
been the pixel. Many pixel-based algorithms have been de-
veloped for the supervised and unsupervised classification of
PoISAR images in the last two decades. They can be divided
into three major categories [5]: 1) the first type of algorithm
is mainly based on the statistical characteristics of PolSAR
images [6], [7]; 2) the second type of approach focuses on
analyzing the polarimetric scattering mechanisms, which has
the advantage that some prior information about the class
types is provided [8], [9]; and 3) in the third category, both
the analyses of the scattering mechanisms and the statistical
information are combined [10]-[12]. Although the results of
these pixel-based classification methods are generally positive,
they still have some drawbacks. The main shortcoming is that
they cannot use semantic information (texture, shape, etc.),
except for remotely sensed information, which may lead to
unsatisfactory classification results in some cases, especially
for high-resolution images [13].

To solve this problem, objected-oriented classification
methods have been developed. This methodology is imple-
mented at the level of image objects, and uses the property and
the relationship of objects to classify an image. Image objects
correspond to geographic entities of the real world, and each
entity is composed of pixels with the same characteristics [14].
In recent years, numerous object-oriented methods have been
developed to classify SAR images [15]-[17], and they have
achieved noticeable improvements in classification accuracy
over the pixel-based methods. To sum up, in these traditional
methods, classification is carried out at the level of image
objects, using the mean value of all the pixels in a region as a
representation of the object.

Another approach to improving classification accuracy is to
fuse or combine multiple classifiers. The traditional approach
for a pattern recognition problem is to search for the best indi-
vidual classification algorithm. However, according to a large
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number of studies, there is no single algorithm that performs
perfectly in classification, and each classifier has its own com-
plementary benefits. Therefore, fusion strategies for multiple
classifiers have been widely investigated, the aim of which is to
determine an efficient combination that makes use of the com-
plementary benefits of each classifier, while tackling the indi-
vidual drawbacks, to improve the accuracy of the classification
[18]. Classification ensemble methods can be categorized by
the ways that they are built. Majority voting is a decision rule
that selects one of the many alternatives, based on the predicted
class with the most votes; it is easy to operate, and it is one of
the most widely used ensemble methods for multiple classifiers
[19], but its performance is sensitive to the precision of the base
classifiers. Other ensemble strategies include Dempster-Shafer
theory [20], statistical approaches [21], [22], Bayesian formu-
lations [23], and neural networks [24].

In this paper, we propose a polarimetric-spatial classification
method for SAR images, based on the fusion of multiple clas-
sifiers. First, a “soft voting” strategy, which can, to some ex-
tent, overcome the drawback of majority voting, is proposed
for assembling the multiple pixel-based classifiers, and we get
a class label for each pixel and a confidence coefficient of this
class label. Second, we present an object-oriented method called
“polarimetric-spatial classification” to combine the soft voting
and segmentation results to classify the polarimetric SAR im-
ages. Within each image object, all the pixels are assigned to the
class which has the highest weighted sum inside the region. Dif-
fering from the traditional object-based methods, the pixel-wise
classification process that uses remotely sensed polarimetric in-
formation, and the segmentation process that uses contextual
information, which are independent from each other in the pro-
posed method, can take full advantage of both pixel-based anal-
ysis and object-based analysis.

The remainder of this paper is organized as follows. The pro-
posed method is described in Section II. In Section III, the ex-
perimental classification results and analysis of two polarimetric
SAR images are given. Finally, the conclusions are drawn in
Section IV.

II. METHODOLOGY

This research aims at improving the classification accuracy
for PoISAR images by combining the results of multiple classi-
fiers with a segmentation approach. The whole processing chain
(Fig. 1) consists of three major steps, as follows. Firstly, pixel-
based classification of the preprocessed PolSAR data is imple-
mented by three different classifiers, respectively, and a fused
result is then obtained by soft voting. Secondly, independent
of the pixel-based classification, the preprocessed image is seg-
mented by a segmentation approach. Lastly, a polarimetric-spa-
tial classification scheme is employed to get the final classifica-
tion map, based on the fused result and the segmentation image.

A. Base Classifiers

In this study, we employ three base classifiers for the soft
voting: Wishart classification, support vector machine (SVM)
classification, and k-means classification. Wishart and SVM are
supervised classifiers, and k-means is an unsupervised method.

POISAR image

4[ Pixel-based classification ]—

Classification result
of classifier B

Classification result
of classifier A

Classification result
of classifier C

[ Segmentation approach]

Er result
based on soft voting

Segmentation result

Polarimetric-spatial
classification

Final classification result

Fig. 1. Framework of the proposed polarimetric-spatial classification.

In general, the supervised classifiers can provide better classifi-
cation results than the unsupervised classifiers; however, over-
classification often happens in some homogeneous areas. The
unsupervised classifiers can, however, effectively classify these
spectrally homogeneous areas, and they are therefore a good
supplement to the supervised classifiers [25].

1) Wishart Classification: For multilook PoISAR data rep-
resented in coherence or covariance matrices, Lee ef al. [7] ap-
plied the principle of maximum likelihood to SAR and derived
a Wishart distance to classify the PoOISAR data. The main steps
are as follows: initialize the pixel distribution over M clusters
from the training data sets and get the center coherency matrix
of each cluster. For the pixel p, p belongs to class w; if

w; = argmind <[T]| [ZTD

where d(TI[[S]) = W[5 + Tr(S]HTD) is the
so-called Wishart distance. [T'] is the coherency matrix of pixel,
[>,] is the center coherency matrix of the ith cluster, and
Tr(e) denotes the trace of a matrix.

2) Support Vector Machine Classification: Support vector
machine [26] is a machine learning method which uses a certain
distance between samples as the criterion of classification, based
on the principle of structural risk minimization. This method
has been found to be a very efficient method for pattern recog-
nition. In SVM classification for PoISAR data, the selection of
the polarimetric indicators and the kernel function is an impor-
tant step. In this paper, by testing different combinations of in-
dicators, we select the nine elements of the coherency matrix
and the H/A-alpha parameters of Cloude decomposition [27] as
the polarimetric indicators for classification, and we choose the
Gaussian radial basis function (RBF) with optimized parameters
produced by PolSARpro software [28] as the kernel function.

3) K-Means Classification: K-means classification was pro-
posed by Bezdek [29] and has become one of the most popular
clustering methods to date. Wishart k-means clustering has been
successfully applied to polarimetric SAR data [10], [11] and is

(1)
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now considered to be a standard unsupervised classification ap-
proach. The k-means procedure is an iterative optimization al-
gorithm, and is described in the following synopsis. First, ini-
tialize the pixel distribution over M clusters and compute the
center coherency matrix of each cluster. For the pixel p, p be-
longs to class w; if

d([TH {ZD <d<[T]| [ZJD . i=1,2, . M, j#i

A @
where d([T|[>_,]) is the Wishart distance between pixel p and
the center of the ¢th cluster. Then, for all the pixels in each class,
updated class centers are derived and a new class assignment
is performed. Lastly, if the algorithm meets the convergence
criterion, output the result.

B. The Soft Voting Method for Multiple Classifiers

The majority voting rule derives from the hypothesis that the
decision of a group is superior to that of the individual. In the
principle of majority voting, if one pixel is identified as a class
most frequently by the base classifiers, we give this class label
to the pixel [30]. It is an easy-to-operate strategy for the fusion
of multiple classifiers, because it does not assume prior knowl-
edge of the behavior of the individual classifiers, and it does not
require training with large quantities of representative recogni-
tion results [31]. However, this fusion scheme has a drawback
in that each classifier has an equal influence on the final deci-
sion, which may adversely affect the classification efficiency of
the classifier ensemble if some of the classifiers have low pre-
diction accuracies for certain classes. The conflicting decisions
made by these less reliable classifiers may influence the final
decision, and thus overrule the decision made by the minority
classifiers [32]. A more detailed analysis of majority voting can
be found in [31].

In this present research, we employ a new approach called
“soft voting” to fuse the base classifiers. The general flowchart
of soft voting is given in Fig. 2. In our soft voting system, two
principles are followed: the decision of the majority is supe-
rior to that of the individual; and a good classifier is superior
to the relatively poor ones. According to many studies [33], the
classification result of SVM will be superior to that of the max-
imum likelihood principle based classifiers if the elements of
the coherency matrix and some other polarimetric parameters
(entropy, span, etc.) are considered. Therefore, the SVM classi-
fier can be considered as the decider when the three base classi-
fiers have different opinions in the voting system. Meanwhile,
considering the aforementioned drawback of the traditional ma-
jority voting rule, we introduce a confidence coefficient “12” to
measure the reliability of the voting result of a certain pixel p.
The soft voting process is described as follows: if the three base
classifiers are unanimous in the class of p (i.e., without a deci-
sion conflict), assign p to this class, and set 12, as 3; if only two
base classifiers have the same opinion as to the class of p, assign
p to the class decided by the majority, and set 12, as 2; and if all
of the base classifiers have different opinions as to the class of p,
assign p to the class decided by the SVM classifier, and set I2,,
as 1. In other words, the higher the 12, is, the more reliable the
voting result of pixel p is. Compared to the traditional majority

(P )
Wishart SVM K-means
Class b Class ¢
Voting ‘
Ifa® b+ ¢ Ifa=b=c, Else,
PeEb, R=1 PEb, R,=3 P &Mode(a,b,c), R=2

Fig. 2. Flowchart of the soft voting strategy.

voting method, the fusion result of our soft voting strategy is a
union of class labels and their confidence coefficients. The use
of R is further described in Section II-D.

C. Image Segmentation

To improve the classification results, the contextual informa-
tion should be considered for incorporation into the classifiers.
One approach to including spatial information in the classifica-
tion consists of performing image segmentation. Many different
segmentation approaches, such as SRM segmentation [34] and
watershed segmentation [35], have been described in the pub-
lished literature. In our study, we employ the fractal net evo-
lution approach (FNEA) algorithm [36] as the segmentation
means. This algorithm consecutively merges pixels or existing
image objects. Essentially, the procedure identifies single image
objects of one pixel in size and merges them with their neigh-
bors, based on a relative homogeneity criterion. This homo-
geneity criterion measures how homogeneous or heterogeneous
an image object is within itself, and consists of the homogeneity
of the image feature information and the shape criteria [37].

1) Heterogeneity of the Image Feature Information: For a
d-dimensional feature space, the heterogeneity of the image fea-
ture information 4, is described as follows:

S()

d Jf 2

h, = 3

where f14 and fa4 represent the dth feature values of two neigh-
boring objects, respectively, and oy, is the standard deviation of
the dth feature.

2) Heterogeneity of the Shape Information: The hetero-
geneity criterion of the shape information consists of the
smoothness heterogeneity h, and the compactness hetero-
geneity h.. They determine the smoothness and compactness
of objects after merging, as follows:

l
hi =7 4
=7 )
&)
where [ and n are the perimeter and pixel number of the object,

respectively, and b is the area of the external rectangle of the
object.
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Giving a weight to each kind of heterogeneity, the total het-
erogeneity of the two adjacent objects is:

[ = weha + Wenape(Wehe + wihy) (6)
where w,, Wehape, We, and w, represent the weights of the
image feature heterogeneity, the shape heterogeneity, the
smoothness heterogeneity, and the compactness heterogeneity,
respectively. Finally, set a threshold to f and merge the two

neighboring objects if the total heterogeneity of them does not
surpass the threshold.

D. Polarimetric-Spatial Classification

As mentioned above, the pixel-based classification methods
for PoISAR images mainly use the remotely sensed polari-
metric information, and are greatly affected by speckle noise,
which may sometimes lead to unsatisfactory classification re-
sults. Consequently, integration of the polarimetric and spatial
information is often a good choice.

Unlike the conventional object-based schemes that classify
images using segments as the process unit, a novel classifi-
cation method was proposed to combine the pixel-based and
spatial-based approaches for image classification in [38]. This
method assigns all the pixels to the most frequent class inside
an image object, which is the so-called “spectral-spatial classi-
fication.” We refer the reader to [39] and [40] for more recent
advances in the spectral-spatial classification of hyperspectral
images. Although this methodology is designed for hyperspec-
tral images, it is general and can be applied to other types of data
as well [41]. Inspired by this, we propose a polarimetric-spatial
classification scheme to integrate the polarimetric and spatial
information for classification.

The scheme of polarimetric-spatial classification is displayed
in Fig. 3. This figure is similar to the flowchart of the spec-
tral-spatial classification scheme in [38], but the pixel-based
classification result is obtained by soft voting, and a confidence
coefficient is considered in the scheme. To begin with, three
base classifiers—Wishart classification, SVM classification,
and k-means classification—are utilized to classify the image,
and their ensemble result is obtained by soft voting. In Fig. 3,
the different colors refer to different class labels, and the
numbers “17, “2”, and “3” represent the confidence coefficient
of each pixel. In the meantime, independent of the pixel-based
classification, FNEA segmentation is also implemented on the
original image, and “a”, “b”, and “c” are the object labels of
the segmentation. Once the results of the above two approaches
are obtained, they can then be integrated to accomplish an
object-oriented classification. In the conventional schemes
[38], [41], each pixel within an image object is considered to
be of equal importance in determining the class of the segment.
In this study, pixels are considered to be of varying impor-
tance, and we set the confidence coefficient 17, obtained by
soft voting as the weight of pixel p in the polarimetric-spatial
classification. As described in Section II-B, the higher the I?,
is, the more reliable the voting result of pixel p is, and the more
important pixel p is to determining the class of the segment.
Finally, within each image object, all the pixels are assigned to

Class labels obtained by soft voting Segmentation map

ala|b|b
a|lb|b|b
KR b|b|b
alc|c|c
cle]lc]ec

& g

Combination of above results Confidence coefficients obtained by soft voting

1]1]2]3]3

wl=alw|n

1 2|3
1 211
1 112
313 1

0 3

Polarimetric-spatial classification result

I

Fig. 3. The scheme for integrating the polarimetric and spatial information.

the class which has the highest weighted sum inside the region.
A mathematical model of this scheme is described as follows:
inside an image object O, we can obtain the pixels that belong
to a certain class w; and their confidence coefficients F,c.,,
and then all the pixels of this object are assigned to class w;, if

w; = argmax sum (Rye..,) . (7

One point should be made clear. In our polarimetric-spatial
classification, for a pixel p, when a decision conflict happens in
the process of soft voting, only the class label decided by the
majority, or the SVM classifier and its confidence coefficient,
are considered. One may argue that, for each pixel, the classifi-
cation results of all the classifiers should be considered and be
involved in determining the class of the object. We found, how-
ever, that our method could achieve a better result if the classifi-
cation results of the minority or relatively poor classifiers were
discarded. Due to abandoning these unreliable classification re-
sults and considering the inequality of each pixel in an object,
we alleviate the influence of the relatively poor classifiers, and
ensure that the more reliable classifiers play a more important
role in the polarimetric-spatial classification.

III. EXPERIMENTAL RESULTS AND ANALYSIS

Two PoISAR data sets with different spatial resolutions are
used for the experiments (Table I). The first data set, from
Flevoland in the Netherlands, was acquired by the Airborne
Synthetic Aperture Radar (AIRSAR) project of the National
Aeronautics and Space Administration/Jet Propulsion Labora-
tory in 1989, and is distributed by the European Space Agency
(ESA) as multilook processed data. The second data set was
acquired by the X-Band Synthetic Aperture Radar (XSAR)
airborne platform of the Thirty-Eighth Research Institute of
the China Electronics Technology Group Corporation in 2011.
Before the experiments, the refined Lee filter [42] was applied
to the original data sets to reduce speckle noise, since it is
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TABLE I
BASIC PARAMETERS OF THE DATA SETS

N Spatial Number

Data set (Platform| Polarization resolution| Band of looks
Flevoland |AIRSAR [Quad-polarization| 10m*10m | L-Band | 4-look
Haikou | XSAR [Quad-polarization| Im*1m | X-Band | 1-look

Fig. 4. The Flevoland data set: (a) Pauli RGB image, and (b) the segmentation
map.

able to preserve the polarimetric properties and the statistical
correlations between channels.

A. Classification of the Flevoland Image

The image of Flevoland is a quad-polarimetric SAR data set.
This L-Band data set was acquired by the AIRSAR airborne
platform. Fig. 4 displays the Pauli RGB image of the data, which
is formed with intensities of | Sy — Sy v | (red), |Sav + Sv |
(green), and | Sy + Svy| (blue). By selecting the training
samples of the image, we can obtain the initialization of the
pixel distribution over the clusters for the supervised Wishart
classification and the SVM classification. For the k-means clas-
sification, the initialization of the pixel distribution over the
clusters is accomplished in a random way. The tested samples
of each class are also selected to assess the classification per-
formance in the following experiments. The image segmenta-
tion result of the FNEA algorithm is displayed in Fig. 4(b).
In this paper, we choose the red-green-blue color components
( Sgg—Svy |, |SHV +Svu |7 |SHH +Svv |) of the Puali RGB
picture as the image features in the FNEA segmentation. The
other parameters of segmentation are set as follows: w, = 0.9,
Wehape = 0.1, and w, = w, = 0.5. By setting different thresh-
olds to the total heterogeneity f, multi-scale segmentation can
be realized. In this experiment, by testing a series of segmen-
tation scales, we set 50 as the best segmentation scale for the
considered image, and obtain the optimal image segmentation
result. The image, which previously consisted of pixels, is seg-
mented into objects, and those continuous areas, which are the
same physical class from a visual interpretation, are segmented
into a few patches, which is more in line with reality. Compared
with the pixel-based classification, the segmentation process
considers more semantic/spatial information.

1) Polarimetric-Spatial Classification Results: Fig. 5 shows
the classification results of the three base classifiers and their
fusion results, and Tables II, III, and IV list the confusion ma-
trices of the three base classifiers. Eleven categories of interest
are considered, namely: C1, stem beans; C2, forest; C3, water;
C4, potatoes; C5, Lucerne; C6, wheat; C7, bare soil; C8, beet;
C9, rapeseed; C10, peas; and C11, grass (Fig. 5(a)).

mmstenveans gmlucerne N Rapeseed
- Forest heat  WPeis
-later Baresoil  MGrass

Potatoes  mmBeet

Fig.5. Classification results of the Flevoland data set: (a) the ground truth map;
(b) the Wishart classification result; (c) the SVM classification result; (d) the
k-means classification result; (e) the majority voting result of multiple classi-
fiers; (f) the P-S classification result based on traditional majority voting; and
(g) the P-S classification result based on soft voting.

From Table II, we can see that the Wishart classification algo-
rithm performs well in many aspects (Fig. 5(b)); however, some
water pixels are misclassified as bare soil, which also have a
weak back-scattering intensity. The cause of this problem may
be that the distance measure of this algorithm is based largely
on the value of the Pauli decomposition elements (diagonal el-
ements of the coherency matrix) and, to a lesser extent, the
off-diagonal matrix elements, which means that the assignment
of pixels to clusters does depend on the SAR intensity [43].
The classification accuracy of wheat is also low, as reflected in
Table II.

Table III indicates that SVM performs best among the three
base classifiers, with a global accuracy (GA) of 84.0%, but mis-
classification between forest and potatoes, and rapeseed and
bare soil still exists, which directly leads to the low user’s accu-
racies of potatoes, bare soil, and rapeseed. As per the descrip-
tions in [44] and [45], the procedure of applying SVM to SAR
image classification is still uncertain, and how to select the op-
timum polarimetric indicators and optimize the kernel function
of SVM for SAR data is still an open problem. In addition,
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TABLE 11
CONFUSION MATRIX FOR THE WISHART CLASSIFICATION OF THE FLEVOLAND DATA SET
Sample pixels Wishart classification
Train Test Cl1 C2 C3 C4 C5 C6 C7 C8 C9 Cl10 Cl11 User’s accuracy (%)
Stem beans 420 455 445 o o0 4 0 6 0 0 0 0 O 97.8
Forest 551 818 12 776 0 17 13 0 0O O O O O 94.9
Water 634 966 0 0 594 0 0 0 324 0 48 0 O 61.5
Potatoes 501 674 0 8 0 526 16 0 O O O O 50 78.0
Lucerne 427 475 0 0O 0 0 437 0 O O O 0 38 92.0
Wheat 646 1023 0 0 0 0 0 633 0 56 202 24 108 61.9
Bare soil 428 544 4 o 0 0O 0 0 492 0 30 0 18 90.4
Beet 393 457 8 18 0 11 0 0 0 403 0 10 7 88.2
Rapeseed 515 741 16 0o 0 0 0 31 0 5 68 0 5 92.3
Peas 446 690 0 2 0 3 22 0 0 31 10 622 0 90.1
Grass 384 499 33 20 0 11 28 3 0 0 0 0 404 81.0
Producer’s accuracy (%) 86.0 86.4 100 92.0 84.7 94.1 60.3 814 702 94.8 64.1 Global a?l”;acy (o) -

TABLE III
CONFUSION MATRIX FOR THE SVM CLASSIFICATION OF THE FLEVOLAND DATA SET
Sample pixels SVM classification
Train Test Cl1 C2 C3 C4 C5 C6 C7 C8 (C9 Cl10 Cl11 User’s accuracy (%)
Stem beans 420 455 455 o o0 o o0 o o0 o0 0 0 O 100.0
Forest 551 818 0 760 0 0 21 0 17 0 16 4 0 92.9
Water 634 966 0 0 911 22 0 O 3 0 0 0 O 94.3
Potatoes 501 674 0 244 0 421 0 O O O O O 9 62.5
Lucerne 427 475 0 0 0 0 3% o 0 o0 0 0 85 82.1
Wheat 646 1023 0 25 0 18 0 97 0 11 52 10 0 88.7
Bare soil 428 544 0 0 131 0 0O O 373 0 40 0 O 68.6
Beet 393 457 0 0 0 0 0 21 0 387 32 0 17 84.7
Rapeseed 515 741 0 0O 0 0 0 34 204 0 503 0 0 67.9
Peas 446 690 0 0O 0 0 23 62 0 0 0 605 0 87.7
Grass 384 499 8 o 9 11 16 0 0 0 0 0 45 91.2
Producer’s accuracy (%) 983 73.9 86.7 892 86.7 88.6 59.5 97.2 782 97.7 804 Clobdl a;j“gacy (%%):

the number of support vectors sharply increases when the class
number is large and the discrepancy between classes is small,
which may degrade the performance of the SVM classifier.

For the k-means classification result, it can be clearly seen
that there is severe misclassification between rapeseed and
bare soil (Fig. 5(d)), and the classification results of some other
classes, such as lucerne and beet, are also less reliable than the
above two methods (Table IV), which results in a relatively low
degree of GA. This problem can be ascribed to the shortcoming
of the k-means classification in that the classification result of
this algorithm is to some extent affected by the initial center
of the clusters [46]. The initialization of the pixel distribution
over the clusters in the present research is accomplished in
a random way, which is not ideal, and therefore leads to this
inefficiency.

The majority voting result (Fig. 5(e)) based on the above
three classification methods is obtained. However, as shown in
Table V, only a subtle advance in the classification accuracy
of 0.8% is achieved after assembling the classifiers by majority
voting, compared with SVM. This can be attributed to the short-
coming of the majority voting that we mentioned in Section II.
Noting the low class-specific accuracies of potatoes, lucerne,
and rapeseed, we find that these three classes have all been clas-
sified poorly by one or two of the base classifiers, without any
exception. This phenomenon demonstrates the aforementioned
view that, in the traditional majority voting rule, the conflicting
decisions made by the less reliable classifiers may sometimes

influence the final decision, and can overrule the decision made
by the minority classifiers.

The polarimetric-spatial classification scheme is processed
based on the ensemble result of multiple pixel-wise classifiers
and the segmentation result. To begin with, we undertake an
experiment for polarimetric-spatial classification based on tra-
ditional majority voting (Fig. 5(f)), i.e., without considering
the confidence coefficient R of each pixel. From Table V, we
can see that an advance in the classification accuracy of 3.7%
is achieved after integrating the spatial information, compared
with the majority voting result. In addition, as the segmenta-
tion process considers more spatial information, the object-ori-
ented method provides the classification maps with more ho-
mogeneous regions, which is more in line with reality. This ex-
periment shows that integrating spatial information by polari-
metric-spatial classification can help to refine a pixel-based clas-
sification result.

Another phenomenon shown in Table V should also be
pointed out: generally speaking, for polarimetric-spatial clas-
sification based on majority voting, the classification precision
of a certain class is improved when the class obtained by
majority voting has a relatively high class-specific accuracy;
however, the classification precision of a certain class is de-
creased when the class obtained by majority voting has a
relatively low class-specific accuracy, as with lucerne and rape-
seed. This phenomenon indirectly validates that a relatively
precise pixel-based classification result is necessary in polari-
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TABLE IV
CONFUSION MATRIX FOR THE K-MEANS CLASSIFICATION OF THE FLEVOLAND DATA SET
Test pixels K-means classification
Cl C2 C3 C4 C5 C6 C7 C8 (C9 Cl10 Cl11 User’s accuracy (%)
Stem beans 455 436 0 0O o0 11 0 0 0o 0 0 8 95.8
Forest 818 6 724 0 81 7 0 o 0 0 0 O 88.5
Water 966 0 4 90 0 0 0 22 0 0 0 0 97.3
Potatoes 674 0 41 0 603 18 0O O O 0 0 12 89.5
Lucerne 475 128 0 0 0 316 0 0 IS 0 O 16 66.5
Wheat 1023 0 0 0 0 0 887 0 0 120 16 0 86.7
Bare soil 544 0 0 125 0 0 0 35 29 0 31 O 66.0
Beet 457 0 0 0 53 10 13 0 320 61 0 O 70.0
Rapeseed 741 0 0 8 0 0 0 443 0 270 0 20 36.4
Peas 690 0 0 0 0 8 0 0 15 44 542 0 78.6
Grass 499 5 0 0 20 61 0 0 10 0 0 403 80.8
Producer’s accuracy (%)  75.8 94.1 87.6 79.7 61.7 98.6 43.6 82.3 54.5 92.0 87.8 Clobal a;f)”(r)acy (o) -

metric-spatial classification. For the current research, an ideal
segmentation algorithm is supposed to obtain image objects
without under-segmentation, and mild over-segmentation is not
amajor problem, since the final goal is not to obtain the segmen-
tation result but to classify the image. Thus, we are searching
for the spatial regions of pixels that belong to the same physical
object class. In such a case, if the classification results of pixels
inside an image segment are not reliable enough, misclassifica-
tion of all the pixels in this object will happen when integrating
the spatial information by polarimetric-spatial classification,
which will reduce the classification accuracy of that class.

After considering 12, the classification result of polarimetric-
spatial classification based on soft voting is obtained (Fig. 5(g)).
As revealed in Table V, a further improvement in the GA of
4.1% is achieved, and some image objects belonging to wheat
and rapeseed (marked by the red ellipses in the figure), which
were misclassified in the last experiment, are classified cor-
rectly. This improvement is due to the fact that we consider the
reliability or the weight of the voting result of pixels in the po-
larimetric-spatial classification, thus mitigating the influence of
the less reliable classifiers. This experiment validates that, by
employing the soft voting strategy, our method can get a better
result.

2) A Comparison Between Polarimetric-Spatial Classifica-
tion and Other Object-Oriented Methods: To further validate
the advantage of our method, we also undertake a group of
experiments to compare polarimetric-spatial classification
with other object-oriented schemes. The first experiment is
conducted to compare our method with conventional object-ori-
ented methods, which classify the image using the segment as
the process unit, and use the mean value of all the pixels in a
region as a representation of the segment. In this experiment, an
alternative way to accomplish the conventional object-oriented
classification is to classify the image segments by the three base
classifiers, respectively, and then combine the object-based
classification results by majority voting. However, in practice,
we found that the result of the aforementioned combination
was even inferior to the object-based SVM classification
result, since both the object-based Wishart classifier and the
object-based k-means classifier had a poor classification per-
formance. Thus, in this part, we choose the SVM classifier for
classifying the image objects [16]. By setting a multi-scale for

the segmentation, we get a series of classification accuracies
for both polarimetric-spatial classification and object-oriented
SVM classification, which are shown in Fig. 6.

The polarimetric-spatial classification achieves the optimal
global accuracy, 92.6%, when the segmentation scale is set to
50; the object-oriented SVM classification achieves its optimal
GA, 88.9%, when the segmentation scale is set to 90. This ex-
periment verifies that our method is superior to the traditional
object-based methods. It must be pointed out that a proper seg-
mentation scale is important in object-oriented classification. As
revealed in Fig. 6, the classification efficiency of both methods
declines with the process of over-segmentation and under-seg-
mentation. However, we have to face a dilemma, in that the au-
tomatic determination of the optimal segmentation scale is still
a stern challenge for object-oriented classification.

Since the Flevoland image is a widely used agricultural data
set for object-based classification, we conduct another experi-
ment to compare our classification method with other published
methods. This data set has several published ground truth maps,
with different levels of detail and different category systems. In
this part, we choose the work of Kaan Ersahin et al. [47], which
is an object-oriented classification approach based on spectral
graph partitioning for PoOISAR data, to undertake a comparison.
The results presented in [47] are obtained from a subset (200 x
320) of the Flevoland data set (Fig. 7(a)), and the ground truth
map (Fig. 7(b)) from [47] consists of nine different land-cover
types. To ensure the credibility of the polarimetric-spatial clas-
sification result, we re-collect the training samples for the two
supervised base classifiers from areas outside of the subset. The
global accuracies of the polarimetric-spatial classification and
the spectral graph partitioning based classification are 87.5%
and 81.2%, respectively, which clearly shows the superiority of
our scheme.

B. Classification of the Haikou Image

The Haikou image is quad-polarimetric SAR data, which was
obtained from an X-band airborne sensor, and the experimental
results presented in this section are from a subset (311x391)
of this data set. Fig. 8 displays the Pauli RGB image and the
segmentation map of the data.

Fig. 9 shows the classification results. Five classes are con-
sidered: C1, grass land; C2, synthetic surface track; C3, house;
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TABLE V
CLASSIFICATION ACCURACIES (%) FOR THE FLEVOLAND DATA SET
Class-specific Wishart SVM K-means Majorlty P-S class.lﬁc‘atlon l‘)ased P-S clasmflcatlo.n based
accuracy voting result on majority voting on soft voting

Stem beans 97.8 100.0 95.8 100 100 100

Forest 94.9 929 88.5 92.3 95.5 95.5

Water 61.5 94.3 97.3 96.6 98.2 100

Potatoes 78.0 62.5 89.5 70.4 99.3 99.3

Lucerne 92.0 82.1 66.5 65.7 43.4 43.4

Wheat 61.9 88.7 86.7 88.2 91.5 98.0

Bare soil 90.4 68.6 66.0 75.6 97.4 96.9

Beet 88.2 84.7 70.0 84.7 89.9 89.9

Rapeseed 923 67.9 36.4 68.3 66.7 928

Peas 90.1 87.7 78.6 89.9 82.8 85.9

Grass 81.0 912 80.8 942 100 100

Global accuracy 81.9 84.0 79.0 84.8 88.5 92.6

100 T T T T T T T
95 Optimal GA:92.6% T
Optimal GA:88.9%

=
<L
o

—+— Polarimetric-spatial classification
—&— Object-oriented SVM classification
1

1 1 1
30 40 50 60 70 80 90
Segmentation scale

3

70 ' :

T
100 110

Fig. 6. The multi-scale classification results of the polarimetric-spatial classi-
fication and object-oriented SVM classification of the Flevoland data set.

() Baresal
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@ Gass
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@ rotatoss
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@ stembeans
Q) Wheat 1

Fig.7. Classification results of the Flevoland subset: (a) subset of the Flevoland
data set; (b) ground truth map; (c) the classification result from [47]; (d) the
classification result of the polarimetric-spatial classification method; and (e) the
classification result with a void mask of (d).

C4, shadow; and C5, road. Table VI lists the classification ac-
curacies for the Haikou data set.

We can see from Table VI that, among the three base clas-
sifiers, SVM (Fig. 9(b)) performs best, generally speaking, but
does not perform very well when classifying the house class.
The Wishart classifier (Fig. 9(a)) misclassifies many pixels of
synthetic surface track that have a weak back-scattering inten-

Q grassind

| @ house

| O road

@ shadow

@ synthetic surface track

Fig. 8. The Haikou data set: (a) Pauli RGB image; (b) the segmentation map;
and (c) the ground truth map.

sity as road, for the reason we mentioned in the previous exper-
iments, but it performs better with the house class than SVM. In
general, the unsupervised classifiers can effectively classify the
spectrally homogeneous areas; hence, k-means (Fig. 9(c)) yields
a good classification performance on areas of the sports field, but
it is still the most inferior classifier, with a GA of 73.2%, due to
its imperfect initial center of clusters. After fusing these three
classifiers, the majority voting result (Fig. 9(d)), which has an
increase in accuracy of 1.5% over SVM, is obtained, and we get
the R of each pixel in the soft voting process.

We also undertake a group of polarimetric-spatial classifica-
tions based on majority voting and soft voting. Their classifica-
tion accuracies are 87.2% and 89.0%, respectively, which fur-
ther demonstrates that, by employing the soft voting strategy,
our method can get a better result, and a notable improvement
in accuracy, ranging from 5.1% to 15.8%, is achieved, compared
with the pixel-based methods.

By comparing the multi-scale classification results of polari-
metric-spatial classification and object-oriented SVM classifi-
cation (Fig. 10), we can see that, despite some fluctuations, the
classification accuracies of the two methods show a downward
trend with the process of over-segmentation and under-segmen-
tation, which again verifies the significance of a proper segmen-
tation scale, as with the last data set. Fig. 10 also shows that,
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TABLE VI
CLASSIFICATION ACCURACIES (%) FOR THE HAIKOU DATA SET

IClass-speciﬁc accurac)’si‘rm[-)le pixelS '\ ichart  SVM Kemeans Majority —P-S classification based P-S classification based
rain  Test voting result on majority voting on soft voting
Grass land 420 1053 83.2 87.2 70.2 88.0 90.1 91.7
Synthetic surface track 398 708 70.1 89.0 98.9 80.6 92.7 95.3
House 354 717 88.8 72.2 91.4 87.4 87.9 894
Shadow 222 505 73.5 77.6 3.6 73.3 79.2 80.2
Road 307 536 88.2 82.6 86.8 853 84.1 84.1
Global accuracy 81.1 824 73.2 83.9 87.2 89.0
90 T T T T T T T T T T T
Optimal GA: 89.0%
88 .

(a) (b)

(e) (f)

Fig. 9. Classification results for the Haikou data set: (a) Wishart classification;
(b) SVM; (c) k-means; (d) the majority voting result of the multiple classifiers;
(e) P-S classification based on traditional majority voting; and (f) P-S classifi-
cation based on soft voting.

for this data set, excessive over-segmentation and under-seg-
mentation severely corrupts the classification accuracies, and
these two methods have different degrees of susceptibility to
the segmentation scale. Therefore, a proper way of undertaking
the comparison is that only the relatively high accuracies of
each method in Fig. 10 are utilized to assess their classifica-
tion performance. Our method, which is better than object-based
SVM and has a higher optimal accuracy, once again shows its
superiority.

IV. CONCLUSION

In this paper, an object-oriented classification technique that
combines a pixel-based classification and a segmentation ap-
proach is presented. The innovation of our work is that we de-
velop a soft voting strategy to assemble the multiple classi-
fiers, and investigate a new technique called “polarimetric-spa-
tial classification” for the classification of PoISAR images. By
conducting experiments on two quad-polarimetric SAR images,
it was found that our classification scheme resulted in classifica-
tion maps with more homogeneous regions, and achieved higher

OptimahGA: 86.7%

86

GA (%)

—+— Polanimetric-spatial classification
—é&— Object-oriented SVM classification

76 1 | L 1 L | 1 L L | 1 L
35 40 45 50 55 60 65 70 75 80 8 90 95 100

Segmentation scale

Fig. 10. The multi-scale classification results of the polarimetric-spatial clas-
sification and the object-oriented SVM classification of the Haikou data set.

classification accuracies than the pixel-based methods. Multi-
scale classification results of the polarimetric-spatial scheme
were obtained, and comparisons of our method and other ob-
ject-oriented methods were made, which further verify the ad-
vantage of our method in the classification of PolSAR data.
However, further parameter optimization may be required for
the operational use of the technique. Our future work will focus
on developing a more efficient segmentation algorithm for SAR
data, and further investigation of the interactive connection be-
tween pixel-based classification and the segmentation process
will be undertaken.
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