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The digital elevation model (DEM) is a significant digital representation of a terrain
surface. Although a variety of DEM products are available, they often suffer from
problems varying in spatial coverage, data resolution, and accuracy. However, the
multi-source DEMs often contain supplementary information, which makes it possi-
ble to produce a higher-quality DEM through blending the multi-scale data. Inspired
by super-resolution (SR) methods, we propose a regularized framework for the
production of high-resolution (HR) DEM data with extended coverage. To deal
with the registration error and the horizontal displacement among multi-scale mea-
surements, robust data fidelity with weighted L; norm is employed to measure the
conformance of the reconstructed HR data to the observed data. Furthermore, a
slope-based Markov random field (MRF) regularization is used as the spatial reg-
ularization. The proposed method can simultaneously handle complex terrain fea-
tures, noises, and data voids. Using the proposed method, we can reconstruct a
seamless DEM data with the highest resolution among the input data, and an
extensive spatial coverage. The experiments confirmed the effectiveness of the
proposed method under different cases.

Keywords: multi-scale DEMs; data fusion; regularized framework; super-resolution

1. Introduction

As a popular digital representation of cartographic information, digital elevation
models (DEMs) are grids with regularly spaced elevation values in a raster form.
Due to their simple data structure and widespread availability, DEMs have been
broadly applied in scientific fields such as ecology (Kellndorfer et al. 2004), agricul-
ture (Fu and Rich 2002), and hydrological modeling (Passalacqua et al. 2010, Huang
et al. 2014, Zheng et al. 2015). There are a variety of DEM products available with
different sources. Early DEM data were mainly generated by digitizing existing
topographic maps. However, they can now be directly derived using remote sensing
and photogrammetric techniques (Erdogan 2009). Efforts have been directed toward
generating DEMs from digital stereo images acquired by satellite-based sensor sys-
tems, for example, the advanced space-borne thermal emission and reflection radio-
meter (ASTER) global digital elevation model (GDEM). Nevertheless, remote sensing
images are often sensitive to weather condition and terrain types (Hirano et al. 2003).
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Compared with other satellite-based techniques, the synthetic aperture radar (SAR)
remote sensing technique can provide high-resolution (HR) elevation data in all
weather conditions, both day and night, at a global scale (Chen et al. 2009). The
famous representative product is the Shuttle Radar Topography Mission (SRTM) 90 m
global DEM (Hormann et al. 2003). Additionally, ground-based or air-borne automatic
laser scanners can provide very high resolution elevation data and are suitable for
relatively small areas (Darboux and Huang 2003, Zhou and Zhu 2013).

Variations in quality always exist among different DEM products. For example, DEMs
derived from space-borne sensors generally provide data over broad areas, but the
inadequate spatial resolution may result in a limited application for surface terrain
analysis. Meanwhile, interferometric SAR-derived DEMs acquired from air-borne plat-
forms have prominent advantages in the spatial resolution. Nevertheless, they often suffer
from data voids or heavy noise, in addition to the narrow coverage due to the low altitude
(Jhee et al. 2013).

Generally speaking, DEMs with a very high spatial resolution are usually limited
in their spatial coverage or have data quality problems (e.g., data voids and noises)
without any preprocessing, as well as the high cost of data acquisition; while,
relatively low-resolution (LR) DEMs provide insufficient spatial information due to
their restricted spatial representative ability. Based on these facts, many researchers
have focused on the task of quality improvement of DEMs. A number of interpolation
methods can be used to enhance the spatial information of a DEM on a sparse grid,
for example, the bilinear, inverse distance weighted (IDW), spline, and kriging inter-
polation method based on geo-statistical theory (Liu 2008). However, finite informa-
tion for interpolation will oversmooth the terrain surface, especially over the rough
areas. Among the further studies, auxiliary data have been used to overcome the
oversimplification in DEM densification. Chen et al. (2013) made use of multispectral
information to reveal the actual surface reflection properties, and thus generated a
higher-resolution DEM using the shape-from-shading (SFS) technique. Robinson et al.
(2014) reconstructed a new DEM product called ‘EarthEnv-DEM90’ by combining
multi-scale DEM datasets (90 m and 30 m). The main contribution of this work was to
extend the coverage of current data, and improve the data quality by filling data voids
and suppressing the noise, but the spatial resolution of the final product was
only 90 m.

Moreover, researchers have also tried to introduce fusion ideas into DEM reconstruc-
tion. Karkee er al. (2008) attempted to fuse SRTM and ASTER GDEM data in the
frequency domain to fill the data voids and improve the overall accuracy of the fused
data. Jhee et al. (2013) adopted multi-scale modeling for DEMs to fill the voids in HR
data, while a multi-scale Kalman smoother (MKS) based on the Markov property was
used to remove blocky artifacts. In addition, Jiang et al. (2014) tried to fuse DEMs
derived from two HR InSAR data pairs acquired from the descending and ascending
orbits, employing a maximum likelihood fusion scheme to remove the voids in the fused
data. All the methods mentioned are inadequate for the use of supplementary DEM
information with different resolutions, coverage, and vertical accuracies. Additionally,
they have difficulty in simultaneously processing multiple problems, including noise, data
voids, and resolution enhancement.

To overcome these limitations, we introduce the concept of super-resolution (SR). SR
is a technique which takes resolution limitation and common degradation factors into
consideration at the same time. Image SR can produce an image with higher resolution
using the redundant information among multiple low-resolution images (Park ez al. 2003).
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It was first addressed by Tsai and Huang to improve the spatial resolution of Landsat TM
images with relative sub-pixel motion (Tsai and Huang 1984). Their methods deal with
the problem in the frequency domain, which is extremely sensitive to model errors.
Therefore, methods in the spatial domain have become more popular in recent years,
including iterative back projection (IBP) (Irani and Peleg 1991), projection onto convex
sets (POCS) (Zhang and Zhou 2011), and a group of regularized variational methods
(Park et al. 2003; Ng et al. 2007b; Zhang et al. 2007, Zeng and Yang 2013). Among these
methods, Bulyshev ef al. (2011) attempted to employ a back projection (BP) method for
the processing of multiple three-dimensional Flash LiDAR DEM data. However, this
method has only been tested on simulated data, ignoring the possible inconsistency
between multi-sensor and multi-scale DEMs.

Early SR methods mainly assumed that all the LR images have the identical
spatial resolution. Nevertheless, multi-scale data are common in the real cases. Thus,
multi-scale SR for multiple image reconstruction with different resolutions started to
be focused (Joshi ef al. 2005; Ng et al. 2007a; Tian and Yap 2013, Song et al.
2015). The key point of multi-scale SR is to solve the tradeoff between spatial
resolution and coverage, and obtain an image with high-resolution and wide cover-
age. Inspired by the SR methods, we propose a regularized framework for multi-
source and multi-scale DEM fusion. Despite the spatial resolutions, other factors
such as horizontal displacements, registration errors, data voids, as well as the
relative vertical discrepancies among the multi-source data should also be considered
in DEM fusion (Fisher and Tate 2006).

The motivation behind the proposed multi-scale fusion algorithm is to obtain a
seamless integration of data from DEMs with multiple resolutions, and thus recon-
struct the desired data with the highest resolution and extensive coverage among the
input data, as shown in Figure 1. The result was reconstructed using the LR data with
maximum coverage as fundamental information and partially HR information as a
constraint.

In view of this, there are three main problems we need to settle. First, the
proposed method conducted DEM fusion using the highest-resolution dataset as
the referenced coordinate datum. Although different DEM datasets have overlapped
areas, there will be relative horizontal displacements between them (Robinson ef al.
2014). Moreover, the errors in the registration process will be included in the
proposed model. However, the horizontal errors are complicated and hard to
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Figure 1. Fusion of DEM data with different scales and different spatial coverage.
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measure. Considering inaccurate error estimation will bring unmanageable distur-
bance to our model, sub-pixel horizontal errors are not considered separately, but
included as the influence of vertical errors in the article. Thus, the proposed algo-
rithm adopts L; norm (Farsiu et al. 2004) for the data fidelity in the objective
function. Furthermore, using the relative residuals between the input multi-scale
data and the desired data (the reconstructed result), we compute the contribution
of each data to construct the weighted objective function, according to the quality of
the multi-scale data. Second, data voids and anomalies (pixels with gross error)
caused by radar shadowing, unwrapping errors, and low-backscattering targets are
always challenges for the data users (Reuter et al. 2007). This algorithm is capable
of filling data voids by detecting the invalid pixels, including the missing values and
the anomalies caused by production differences and terrain changes. Lastly, regular-
ization should be designed especially for DEMs to represent their intrinsic charac-
teristics. Markov random field (MRF) regularization is employed to preserve the
spatial neighborhood continuity of the reconstructed DEM. To better describe the
terrain surface, slope information was utilized to analyze the spatial distribution of
the landscapes, thereby handling the flat regions and the edges in a spatially adaptive
manner, both for inconsistent pixels detection and regularization construction. Unlike
the traditional methods for DEM enhancement, we integrate resolution enhancement,
noise suppression, and data voids filling into a universal framework.

The rest of this paper is organized as follows. Section 2 gives a specific and
detailed description of the proposed method. The experiments in multi-scale DEM
fusion, including two simulated and three real data experiments, are presented in
Section 3. This section also includes an analysis of the constructed data. Lastly,
Section 4 is the conclusion.

2. Method
2.1. The generative model

To get the desired reconstructed DEM from input multi-scale DEM data using a regular-
ized method, we should first describe the relationship among them. We assume that the
input DEMs can be acquired from the desired HR data with extensive coverage through a
degradation process. It has been mentioned that we want to obtain HR data with the same
coverage as the lowest-resolution input data (N; x N,) and the same resolution as the
highest-resolution input data. Therefore, the size of the reconstructed HR DEM
(HN; x HN,) can be calculated as

HN, = N; x &Y HNy = N, x &L )
8k 8k

where g; and gx represent the lowest and highest resolutions, respectively, among the
total K data participating in the fusion. For example, if we want to fuse three overlapped
DEM datasets with resolutions of 10 m (70 x 70), 20 m (60 x 60), and 30 m (50 x 50),
then the reconstructed dataset is a seamless DEM with a 10 m resolution and a size of
150 x 150.

According to the DEM generation process, the different data scales are determined by
the sampling intervals. Moreover, the values in a gridded DEM are assumed to be the
height of a certain area on the earth’s surface above a defined datum. Based on this
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concept, it is possible to revisit each point and repeat the measurement (Fisher and Tate
2006). All the measurements are usually subject to errors, which appear as noise in the
elevation data. In this paper, we consider the error model as random with gross errors
excluded (Fisher and Tate 2006, Wechsler 2007, Gallant 2011). Thus, we define the
generation model for a multi-scale DEM as

Vi = OyDiMyu + n; 2

As Ny X Ny is defined as the size of the kth input data, HN; x HN, is set as the
size of the reconstructed HR data defined in Equation (1). In Equation (2), u is the
vector form of the reconstructed DEM with a size of HN,HN, x 1, whereas y, is the
vector form of the kth input data with size of NNy x 1. After registering # and
the corresponding degraded data to the reference coordinate datum, My
(HNHN, x HN1HN,) describes the translation matrix. As shown in Figure 2, the
resampled LR data sometimes had sub-pixel misalignment with the referenced HR
grid. To avoid the extra errors brought by the geometric sampling, it was better to
directly move its pixels into the HR grid. By multiplying M by u, we slightly adjust
the HR grid for alignment with the input data with the highest spatial resolution. Dy
(N1xNyr x HN1HNj) is the down-sampling matrix, and n; (NN X 1) represents the
random error. Given that the coverage for each observed dataset differs, we
define the cropping operator Op (NixNax X NixNox) as a diagonal matrix with
the zero elements if the corresponding pixel was invalid or unobservable in the
kth input data. It crops out the unobservable pixels from the HR data at an appro-
priate position after registration and re-sampling. Furthermore, invalid values,
including voids and anomalies in the DEM, are also included in the unobservable
matrix Oy.

L ]
L

b e p— o — —— — e 2——

(a) (b)

Figure 2. The translational relationship between the LR data and HR data. The blue grids (low
resolution, wide spatial range) and green grids (referenced high resolution data grid with relatively
narrow spatial coverage) represent the input data, whereas the gray dotted mesh indicate the
reconstructed HR data.
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2.2. The adaptive-weighted multi-scale regularized framework

Given the input multi-scale DEM data (known variables), we want to obtain a recon-
structed HR DEM (unknown variable). Once the generative model is fixed, we can set the
problem as an inverse process. To solve the ill-posed inverse problem, we choose the
regularized framework for its advantages in adding prior information and simultaneously
handling multiple degradation problems. Using the regularization techniques, the desired
DEM data can be obtained by solving the following minimization function:

K
i = argmin Z‘P(yk — Au) + \R(u) 3)
k

where Ay = OyD; M. In this objective function, the first fidelity term W¥(-) provides a
constraint for the conformance of the reconstructed HR data to the observed LR data, in
accordance with the model in Equation (2). The second term R(-) is the regularization, and
we can keep the balance between the two competing terms by tuning the regularization
parameter A. Usually, a larger A will cause a smoother terrain surface. A smaller 1 can
preserve the details better, but noise and other errors will also be kept.

2.2.1. The robust adaptive-weighted norm fidelity for DEM fusion

This section describes the fidelity model for the proposed framework. The main task is to
determine the ¥(-) in Equation (3). First, geometric registration should be implemented
for datasets with different coordinate systems, and the specific registration strategy will be
described in the experiments (Section 3.3). The motion vector for calculating the transla-
tion matrix M can then be easily acquired after registration, and the cropping region can
also be obtained according to the coordinates. We should then detect the inconsistent
pixels, which are common in DEM data. In general, data voids can be easily detected.
However, sometimes severe pixels with gross errors whose information is completely
invalid should also be regarded as missing values. Therefore, we detect these inconsistent
pixels using a threshold for the difference between the corresponding values at pixel i in
the multi-scale DEMs after geometric registration:

(i) =y ()| < T 4)

Here, y} is the reference data after geometrically matching and re-sampling to y;.
Generally speaking, DEMs with a higher vertical accuracy and better data integrity will
be chosen as the reference data in Equation (4). The threshold T is usually set to be large
enough, to guarantee that the invalid pixels are detected. Nevertheless, it is sometimes
hard to achieve a balance between excluding the anomalies and preserving the useful HR
information. We consider spatial information into this procedure, and the expression is
modified to

k(i) = (0)| < T xS 5)

where S (N1xNai x 1) is the slope vector for y;. Then S; represents the pixel’s normalized
slope value at pixel i with the location (m, n) in the corresponding DEM data in the form
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of matrix, where i = (n — 1) X Ny; + m. Slope is one of the most significant surface
morphological parameters, and there are a variety of algorithms for slope calculation
(Zhou and Liu 2004). Considering the popularity and robustness to noise, we choose the
third-order finite-difference weighted by reciprocal of squared distance (3FDWRSD)
algorithm to calculate the slope information. Given z (NxNy x 1) as the DEM data
vector, the slope value at pixel (m,n) can then be defined as

S; = arctan | /f2 + f?

S = (Zi—N”,—l — Zi Nyt + V2(zii1 = zig1) + Ziwy -1 — Zi+N|k+1>/(4 + Zﬁ)gk

f}‘) = | Zi+Ny+1 — Zi—Ny+1 T \/E(ZiJerk - Zi*le) + ZitNy—-1 — Zi*lefl)/(4 + Zﬁ)gk

(6)

where g; is the DEM resolution, and the pixel location i = (n — 1) X Ny + m.

After excluding the effect of the invalid pixels, there are two other problems that
we need to settle. One of the issues is the horizontal errors. Errors occur in the planar
(XY) coordinates due to the registration error. In addition, horizontal displacement is
inevitable, even for data with the same coordinate datum. This will affect the vertical
accuracy during the fusion process, because neighboring information will be used in
the fusion process. It has been proved that the L, — norm fidelity model results in a
pixel-wise mean, while the L; model results in a pixel-wise median of all the
measurements after motion compensation (Farsiu et al. 2004). For this reason, we
adopt the L; norm rather than the L, norm for the fidelity, and thus deal with
horizontal errors more robustly.

Another significant concern is the discrepancy between multi-scale DEMs. DEM pro-
ducts are acquired through various measurements and at different times. A variety of factors,
such as the spatial scales, data collection techniques, and noises, can influence the data
quality (Chaplot ez al. 2006, Chen and Yue 2010). Furthermore, the quality for different areas
of the same data product may be not stable. Based on this fact, we should consider weights in
the construction, and assign larger weights for data with a better quality (Zhang et al. 2012).
Thus, the objective function in Equation (3) can be rewritten as

i = argmin Zwk Ny — Agu) ||} +AR (1) (7
3

where wy represents the weight for the kth dataset. Then, how can we determine the
weight for each DEM dataset?

According to Fisher and Tate (2006), the error of a given set of point measurements of
a surface can be determined by comparison with reference data that is assumed to be error
free. It is natural that we assume that the reconstructed data are more accurate. Therefore,
we set the weight at the rth iteration on the basis of the residual as

| log(1+ v, — A )
W g / [y — A, &

X
1;1 [1/1og(1 + [ly, — A |,)]
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This function determines the contribution of each DEM data in the fusion. The log(:)
function prevents the parameter being too sensitive, and the value of 1 ensures that the
weight is non-negative.

2.2.2. Slope-adaptive Markov random field regularization

The selection of the regularization is a pivotal task in SR, because it will determine
the spatial characteristics of the fused data. There are a variety of popular regulariza-
tions, such as the total variation (TV) model (Ng et al. 2007b), the MRF model (Pan
and Reeves 2006), and the nonlocal-based models (Zhang et al. 2010).

MRFs are commonly used in image processing due to their good performance in
modeling the contextual correlations between neighboring pixels. Two types of regular-
izations are popularly used, which are Gaussian-Markov random field (GMRF) and
Huber-Markov random field (HMRF) regularization. GMRF tends to oversmooth the
sharp edges and detailed information, while HMRF can overcome the criticism to a
degree by spatial information classification (Li and Singh 2009).

As we know, measurements in DEMs are often affected by random noise, and can
be even more obviously affected in low-relief areas where the shapes are subtle
(Gallant 2011). An ideal regularization can relieve the trade-off between removing
noise and preserving details. Inspired by MRF theory, we construct a spatially
adaptive MRF regularization in the proposed method. Different norm functions are
used for the constraint, and slope information is employed to measure the spatial
information of the DEM.

Based on MRF theory, the regularization is used with the objective function as

Ru) =7 [ldi(w)f; ©
i =1

where d'(-) is a coefficient operator for each clique ¢, and p; denotes the pixel-wise
adaptive norm constraint. For d.(-) in this equation, it represents the measurement for
neighboring pixels in 7 different directions. An approximately rotationally symmetric
operator within a 3 x 3 grid has proved to be a good choice for d.(-) (Pan and Reeves
2006, Shen and Zhang 2009), as shown in Figure 3. Therefore, finite-difference
approximations to second-order derivatives in four directions are employed. To define
the data roughness, the measurement at pixel i of the data vector u (HN,HN; x 1) is
given as

1
d.(u;) = w1 — 2u; +
2
d; (u;) = ui—gn, — 2u; + Uirnn,

dg(”i) = = (ti—pn,—1 — 2u; + Ui HN, 1) (10)

N — N =

d¥(u) = = (irrn, -1 — 2u; + Ui gy, 1)

We define the L, norm as a constraint function, which satisfies some geometric
properties. A common criticism of the L, norm—based regularization methods is that
the sharp edges and detailed information in the estimates tend to be overly smoothed.
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-
|
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Figure 3. The structure of the symmetric operator (3 x 3) for MRF regularization for data with a
size of HN; x HN,.

However, the L, norm is usually better in suppressing noise and overcoming the
staircase effect than the L; norm (Bertaccini et al. 2012). The compromise here is
to choose different constraint norms depending on the spatial distribution. Based on
this, the problem is how to determine the constraint function used. The height change
in DEM values can be dramatic, and often ranges from nearly zero or even negative to
hundreds or thousands of meters in one dataset. Local gridded elevation changes vary
with the terrain, as well as the sampling scale. Therefore, image gradients such as
first- and second-order gradients are not suitable for describing the real hypsography
of the earth’s surface, because it would cause the threshold selection to be a tough
task. In this paper, we use slope information for DEMs to distinguish different terrain
features, and thus determine the constraint norm used in Equation (9). To adaptively
select the threshold Ty, after calculating the slope § of # by Equation (6), we
normalize § and choose the median value as the threshold in general cases.
Therefore, the constraint norm for the pixel i is chosen as

2 S<T, o
PPV ose1

The universal objective function can be finally expressed as

it = arg min [Zwk = Awlli+23 2> deu] (12)
k i t=1

with wy, d'(-), and p; defined above. This is a hybrid-norm and nonlinear minimization
problem. Using the iteratively reweighted norm proposed by Rodriguez and Wohlberg
(2009), it can be efficiently solved by approximating the equation with a weighted L,
norm, whose convergent properties have been provided. The preconditioned conjugate
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Figure 4. The flowchart for the proposed algorithm.

gradient (PCG) method (Ng et al. 2007b) is then utilized to iteratively optimize the energy
function after linearization. More detailed information can be found in previous work (Yue
et al. 2014). The flowchart for the proposed regularized algorithm is given in Figure 4.

3. Experiments and discussions

The experiments consisted of two parts, to verify the proposed method under synthetic
and real cases, respectively. DEM products with various scales and characteristics were
used, while different terrain features were also considered to test the performance and
robustness of the proposed method.

3.1. Experiment data
3.1.1. CGIAR-CSI SRTM v4.1

The SRTM data were collected over an 11-day mission in 2000, with the elevations
measured via radar interferometry using an onboard/outboard antenna system and
single-pass data acquisition (Farr and Kobrick 2000). The resolution of this product
was 3 arc (~90 m) on the WGS84 coordinate. The current version of this DEM
product was released by the Consortium for Spatial Information of the Consultative
Group of International Agricultural Research (CGIAR-CSI) after data improvement
and void filling. It covered about 80% of the globe (from 60°N to 60°S) (Jarvis et al.
2008). The dataset was regarded as the most quality-controlled and one of the broadest
coverage DEMs currently available.

3.1.2. ASTER GDEM2

The ASTER mission was a joint project between NASA and the Ministry of Economy,
Trade and industry (METI), and the elevation products were measured onboard NASA’s
Terra satellite since 2000 (Tachikawa et al. 2011). The current version released in 2011
was the second data product after resolution improvement and water body coverage
refinement, with a resolution of 1 arc (~30 m) on the WGS84 coordinate. It covered a
nearly global geographic extent (latitudes from 83°S to 83°N). However, the dataset was
known to be influenced by a variety of artifacts and anomalies that limit its immediate
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use. With elevation measured from the earth’s reflective surface, the accuracy of ASTER
GDEM2 was sensitive to land cover, such as forest canopies and buildings. Furthermore,
numerous voids at high latitudes (above 60°N) and low latitudes (below 60°S) were also
problems (Wang et al. 2011, Robinson et al. 2014).

3.1.3. WorldDEM

This dataset was a new product that was first made available in 2014. WorldDEM was
the product of the TanDEM-X Mission (TerraSAR-X add-on for digital elevation
measurements), realized as a Public—Private Partnership between Airbus Defence and
Space (ADS) and the German Aerospace Center (DLR). According to the product
report released by ADS (Airbus Defence and Space 2014), the resolution of this DEM
product was about 12 m on the WGS84 coordinate, with an absolute vertical accuracy
of 4 m, which was much higher than any other global satellite-based elevation model
available. The dataset has not been released globally and for free so far, but it was
possible to download sample data for South Australia for academic research. A simple
comparison of the three global elevation data products is given in Figure 5. This was a
small area in Quorn, Australia, with relatively smooth relief. We can see that the
WorldDEM data give the most attractive visual effect.

3.1.4. Air-borne INSAR data

The final dataset we used was the C-band TOPSAR interferometric 10 m DEM, which
was derived from air-borne C-band INSAR data from the NASA/Jet Propulsion
Laboratory (JPL) TOPSAR instrument (Chen et al. 2009). It was collected in 1998 near
Camp Roberts, California, United States. The C-band INSAR-derived 10 m DEM has
been reported that the vertical accuracy has also been widely verified by the root mean

WorldDEM

Figure 5. Comparison of the three DEM products. From left to right: 12 m WorldDEM, 30 m
ASTER GDEM2, and 90 m SRTM.



Downloaded by [Wuhan University] at 20:07 05 August 2015

12 L. Yue et al.

Figure 6. The partial C-band InSAR-derived 10 m DEM. Large-area data voids and missing values
can be observed.

square deviation (RMSD) as being less than 7 m over large areas, on a local coordinate
system (Schuler et al. 1998). Despite the considerable spatial resolution and vertical
accuracy, the limited spatial coverage and the data voids were the main obstacles for its
further application. We give a sample area of this dataset in Figure 6, with obvious data
voids in the area.

3.2. Synthetic experiments

In this part, we conducted two sets of synthetic experiments to test and quantitatively
evaluate the efficacy of the proposed method. In the two experiments, WorldDEM data
with a small selected area (192 x 192) were used as the original data, as well as the
reference data for quantitative evaluation. The height values range from 377.22 to
795.82 m. Following the generative model in Equation (2), we created three data with
different scales, coverage, and noise levels in each experiment. According to the previous
research (Fisher and Tate 2006, Gallant 2011), we defined the noise in the DEM as
random noise satisfying a Gaussian distribution.

From the point of view of terrain analysis, the representative ability of the
morphological and hydrological features of DEMs is also critical. As we know,
channel networks are significant skeleton information in the description of terrain
surfaces (Lashermes et al. 2007, Passalacqua et al. 2010). To measure the reliability
of the reconstructed result in a hydrographic application, channel networks in the
region were extracted for evaluation. In addition, as a fundamental element of a
topographic map, we took contour lines generated from the reconstructed results as
one of the better ways of visual evaluation of the fusion result.

The first experiment was under a noiseless condition, which means that no simulated
noise was added in the degradation process. The resolutions of the three acquired DEM
datasets were 12 m, 20 m, and 30 m, respectively (Figure 7). Using the three datasets with a
size of 76 x 76, our purpose was to reconstruct seamless DEM data (192 x 192) with a 12 m
resolution, and the same coverage as the 30 m DEM, by fusing the supplementary informa-
tion between them. The fused result by the proposed method was compared with the
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(c)
Figure 7. The simulated data used in the first synthetic experiment. (a—c) The DEM data with
resolutions of 30 m, 20 m, and 12 m, respectively, while their coverage areas decrease.

interpolated results for the 30 m data by the bilinear, IDW, spline, and kriging interpolation
methods, which are commonly used in DEM densification. In addition, considering the
input HR information, mosaic results integrating the complementary data are also given for
a fair comparison. The quantitative indexes of the root mean square error (RMSE) (Chen
and Li 2013) and mean absolute error (MAE) were used to evaluate the vertical accuracy of
the results. As in Equation (13), u represents the reconstructed measurement, while ur is
the reference data of Q points. The visual results can display the continuous property of the
reconstructed data. For more detailed analysis, the maximum and minimum values in the
results were also presented in Tables 1 and 2, respectively.

Z (u— “ref)z
Q (13)

D U — ey |
MAE =~=4———
Q

RMSE =

Table 1. The quantitative results for the first experiment.

Bilinear IDW Spline Kriging Mosaic Proposed
MAE (m) 3.3637 2.1752 1.6131 1.6847 0.9261 0.6373
RMSE (m) 4.2042 2.7942 1.9778 2.0810 1.3548 0.8138
AMAX (m) 13.2254 13.2448 10.2128 11.0408 10.3896 8.9377
AMIN (m) —18.0399 —13.3466 —11.0835 —11.1600 —10.4210 —10.2900

Note: A, difference between the corresponding result and reference.

Table 2. The quantitative results for the second experiment.

Bilinear IDW Spline Kriging Mosaic MVF Proposed

MAE (m) 4.2521 3.1695 3.7236 3.6092 13.1435 2.8566 1.9263
RMSE (m) 5.3514 4.0247 4.6803 4.6359 80.9160 3.9431 2.5801
AMAX (m) 224949  17.8302  21.0339  22.8430 28.0336  28.0336  13.6748
AMIN (m) -20.6136 -—16.2014 —15.9914 -24.3264 -776.1406 —24.5125 -—16.7612

Note: A, difference between the corresponding result and reference.
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(a) (b)

(e) () (9)

Figure 8. The reconstruction results for the first experiment. (a—d) The results for the bilinear,
IDW, spline, and kriging interpolation methods; (e, f) the results reconstructed by mosaic and the
proposed method. The original reference data are shown in (g).

The reconstruction results are shown in Figure 8, as well as the referenced data. From
Figure 8, it can be seen that the bilinear and IDW interpolation methods obtain the
most unsatisfactory results, with an obvious smooth terrain surface apparent in the
upper right and middle part. The kriging and spline methods perform better at
preserving the detailed features; however, the limited information makes these meth-
ods difficult for handling more complex terrains. The main objective in this experi-
ment was to test the performance under an ideal situation. There is a narrow span in
the data resolution, and no noise affects the consistency between the data in this case.
Therefore, the mosaic method can acquire a relatively fine result. However, in the
upper right and the lower left corner in Figure 8(e) and 8(f), we can see that compared
with the mosaic result, the proposed method can reconstruct a seamless enhanced
elevation result, rather than a simple data integration. There are sharp edges and
features in the areas even without input high-resolution details, as shown in
Figure 8(f). The quantitative results in Table 1 also confirm the tendency. Only the
proposed method can reconstruct the topographic relief well.

However, the ideal case in the first experiment cannot practically describe general
situations. The second experiment was therefore simulated as closer to a real case.
Despite the down-sampling and coverage offset, noise and data voids were considered.
The same operations were conducted as in the first experiment to get the three DEM
datasets. We then added zero mean Gaussian noise with a standard deviation (SD) of 5
in the 20 m resolution data, and noise with SD 8 in the 30 m resolution data. Arbitrary
missing values were simulated in the 12 m resolution DEM. The input data in this
experiment are shown in Figure 9.

As mentioned in Section 2, by the use of the regularized framework proposed in this
paper, we can simultaneously handle data fusion, noise suppression, and void filling. The
results for this case are displayed in Figure 10. In this group, we use a color map
generated from the reconstructed DEM data to display the results for better visual
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Figure 9. The simulated data used in the second synthetic experiment. (a—c) The DEM data with
resolutions of 30 m, 20 m, and 12 m, respectively, with different noise levels and data voids.
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Figure 10. The reconstruction results for the second experiment. (a—d) The results for the bilinear,
IDW, spline, and kriging interpolation methods, and (e, ) the results reconstructed by mosaic, and
the mosaic result after void filling (MVF). (g) Result of the proposed method, and the original
reference data are shown in (h).

interpretation. It can be seen that with noise, the advantages of the proposed method are
more prominent. All the interpolation methods have difficulty in achieving a balance
between suppressing noises and preserving details. The kriging method can overcome the
effect of noise to a certain extent, but it simultaneously smoothes the sharp terrain
features. Because there are voids existing, we utilized the kriging method to fill the
voids in the mosaic result as postprocessing, and obtained an acceptable result. In this
paper, we use ‘MVF’ to indicate the mosaic result with a void-filling process.

Under this complex case, only the proposed method can obtain a similar result to the
reference data, considering the inconsistency between the input data. In this case, the weights
were assigned as in Equation (8), in accordance with the quality of the input data. Thus, the
12 m data got the highest weight, while the noisy 30 m DEM data made the smallest
contribution to the reconstructed result. The elevation deviation between the comparative
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Figure 11. The horizontal and vertical elevation profiles for the comparative results in the second

synthetic experiment. (a, b) The horizontal profile, and (c, d) the vertical elevation profile.

methods and the proposed method can be clearly observed in the horizontal and vertical
elevation profiles, as shown in Figure 11. The result of the proposed method, displayed as the
red line, closely resembles the reference data, in both directions. Although the kriging method
can get a visually fine result with the small voids in this test, it can be observed that the height
values are indeed estimated unfaithfully. The quantitative assessment in Table 2 also shows
the clear superiority of the proposed method. Interpolation methods were inevitably under the
influence of noises, thus the height values in the corresponding result will be somewhat
higher than the referenced data. IDW method achieved the best quantitative index among the
interpolation methods, probably for the preservation of sharp details. Nevertheless, terrain
noises inevitably affect the accuracy. The proposed method performs best by combining SR,
noise suppression, and void filling into a universal framework.

Furthermore, we used the results acquired by kriging interpolation, MVF, and the
proposed method to extract the channel network, as shown in Figure 12. This
procedure was undertaken by the hydrology analysis tool and map algebra tool in
ArcGIS software, following the steps of filling sinks, tracing flow directions,
computing the flow accumulation, and conditional operation. It can be observed in
Figure 12 that the channel network generated from the proposed method
closely resembles the reference data. The results show that the channel network in
Figure 12(a) and 12(b) has too many spurious branches while missing some
significant branches in the bottom part. This is caused by the noise and subtle
distortions in the DEM terrain representation. With noise, the mosaic results preserve
the inconsistency between the data, and thus there is an apparent staircase effect.
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(d)

Figure 12. The extracted channel network in the second experiment. (a—c) The extraction results
from the DEM data reconstructed by kriging interpolation, MVF, and the proposed method,
respectively. (d) The reference data.

3.3. Real data experiments

We also conducted three sets of experiments using real DEM data, with the DEM products
described in Section 3.1 being involved in the test. In the three tests, there might not be
ideal referenced data for evaluation. Fortunately, the subjective visual effects can help us
judge the methods’ performance. For the first real data experiment, the proposed method
was tested for the fusion of 12 m WorldDEM data and 30 m resolution ASTER GDEM
data with a relatively small selected area (181 % 181). The input data were from Quorn,
Australia, which belong to a relatively diverse terrain, with the elevation ranging from 118
to 666 m. The results (452 x 452) are given in Figure 13. In this case, the main problem
was the noise existing in the GDEM data; however, the proposed method is good at
handling such a problem.

Figure 13. The reconstructed results in the first real data experiment. (a—d) The results for the
bilinear, IDW, spline, and kriging interpolation methods, and (e, f) the results reconstructed by
mosaic and the proposed method.
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Figure 14. Detailed regions cropped from Figure 13(a—f).

In Figure 13, we can see that the results in parts (a)—(c) are severely influenced by
noise. It is worth mentioning that the subtle rolling topography, for example, the upper
right part of the figures, does not represent real terrain. This is in fact caused by noise,
which is a common problem in GDEM data. Among the interpolation methods, the
kriging algorithm is able to suppress the noise by tuning the statistical parameters.
However, compared with the result of the proposed method, the kriging result loses the
sharp features, while the mosaic result suffers from noise and the artifacts near the mosaic
edges. To allow a better visual judgment, cropped regions from Figure 13(a)—(f) are given
in Figure 14(a)—(f). Compared with the results of the other methods, the result of the
proposed method not only removes the noise but also fuses the HR and LR information to
be oversampled DEM data without apparent joints.

The objective of the second real data experiment was to fuse an air-borne SAR dataset
with a space-borne elevation data product. Given that air-borne SAR data are often
acquired at a high cost and are limited to relatively narrow areas, we tried to improve
the quality of the HR dataset by fusing it with other auxiliary datasets by the use of the
proposed method. The kriging interpolation method was used for comparison, as well as
the mosaic method. The C-band InSAR-derived 10 m DEM we used in this paper was
introduced in Section 3.1.4. In this experiment, we selected an area with a size of
300 x 300 (Figure 15), and attempted to obtain a 900 x 900 DEM with the same coverage
as the 30 m data. Differing from the experiments before, the considerable inconsistency
between the two kinds of data makes the problem more complex. First, the coordinate
systems need to be matched before the fusion. Errors brought about by the coordinate
registration may affect the accuracy of the result. Second, the different vertical coordinate
systems of the two datasets should also be considered. In addition, voids with a large area
exist in the data. For the first problem, the scale-invariant feature transform (SIFT)
algorithm was utilized for the registration, and a manual check was implemented to reject
the errors. By tuning the regularization parameter, the proposed method can make use of
the robustness of the L; norm to overcome the registration errors. In terms of the second
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(a) (b)

Figure 15. The input multi-scale DEM data in the second real experiment. (a) 30 m GDEM data,
and (b) C-band InSAR-derived 10 m DEM with large-area voids as input data.

problem, to ensure the consistency of the vertical coordinate systems, we chose a small
shared area in the input data after registration to calculate the average vertical offsets
between them. The offset values were then regarded as the vertical differences between
the input data on different datum.

According to the results given in Figure 16, the proposed method can obtain an
acceptable result with large areas of missing values. In Figure 16, we give the complete
reconstructed result by the proposed method in Figure 16(a), with the generated contour
lines. Figure 16(b)—(e) are the cropped regions corresponding to the rectangular area in
Figure 16(a) processed by the different methods. It can be observed that with a large
missing area, the mosaic method cannot handle this situation, even when further processed
by kriging interpolation. Compared with the result of the interpolation method, the

(d) (a)

Figure 16. The reconstructed results in the second real data experiment. (a) Complete result and
generated contour lines for the proposed method. (b—e) The cropped regions for kriging interpola-
tion, the mosaic method, MVF, and the proposed method (7 = 50), respectively.
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Figure 17. The reference L-band PolSAR Pauli color-coded image ((HH + VV]|, blue; [HH — VV|,
red; 2|HV| green).

proposed method can use the auxiliary information obtained from the multi-scale DEM
data, and thus obtain more accurate and detailed terrain features. To better evaluate the
results, we give the L-band PolSAR Pauli color-coded image with a 10 m resolution as the
reference in Figure 17. It can be clearly observed that results of the proposed method can
provide a more accurate bank line, which makes sense in hydrological applications. The
contours generated from Figure 16(b)—(e), respectively, are given in Figure 18. The details
are enhanced by fusing the high-resolution DEM data, while the data voids are filled with
the supplementary information in the LR data by the proposed method. The proposed
method consistently obtains more visually attractive contour line results and detailed
terrain features, especially in the two highlighted regions.

For better comparison and parameter analysis, we also give the results with the
detection method expressed in Equation (4). As Figure 19 shows, without spatially
adaptive strategy, we cannot distinguish details and noises in the flat regions (e.g., the
water area). And the inaccurate detection results will result in the remaining anomalies in
the fused data. The adaptive method employs slope information to increase the accuracy
of anomalies detection and exclusion in the fusion.

The last real data experiment was the fusion of three multi-scale DEM datasets. In this
experiment, in addition to the C-band InSAR-derived 10 m DEM and the 30 m GDEM
data, we also took 90 m SRTM DEM data as auxiliary input data. Here, the resolution gap
between the 10 m data and the 90 m data becomes the main critical issue. We need to
reconstruct a DEM with a size of 720 x 720 by fusing three small areas of data (80 x 80).
However, the well-controlled quality of the SRTM data makes the result visually attrac-
tive. The color maps covered by the generated contour lines are shown in Figure 20, while
partial comparative results are given in Figure 21. It can be seen that there are obvious
visual differences in this group of results. Overall, the proposed method provides more
continuous and detail-enhanced large-scale DEM data with a 10 m resolution.

4. Discussion and conclusion

Although a variety of DEM products were available, they were all characterized by trade-
offs in spatial coverage, data resolution, and quality. In general, DEMs with a very high
spatial resolution (less than 30 m) were usually limited to a narrow coverage and have
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The comparative generated contour lines for the results in the second real data

experiment. (a—d) The results for the kriging interpolation, the mosaic method, MVF, and the

proposed method, respectively.
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Figure 19. The comparative results with anomalies detection by (Equation (4)) with 7 = 45. (a, b) The
partial fused data and corresponding generated contours in the second real data experiment, respectively.
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Figure 20. The corresponding color maps covered by the generated contour lines in the last
experiment. (a—d) The results for kriging interpolation, the mosaic method, the MVF, and the
proposed method, respectively.

(a) (b) (c) (d)

Figure 21. The partially reconstructed results in the third real data experiment. (a—d) The results for
kriging interpolation, the mosaic method, the MVF, and the proposed method, respectively.

data quality problems (e.g., data voids and noise). Therefore, in this paper, we have
proposed a novel regularized framework for multi-scale DEM fusion. Rather than a simple
mosaic result of data with different spatial coverage, the reconstructed data were generated
using the supplementary information between different DEMs. In the proposed method, a
weighted L; norm was utilized to restrain the errors brought about by horizontal errors,
while a slope-based spatially adaptive MRF prior was employed for the spatial constraint.
Multiple problems, including data inconsistency, noise, and data voids can be overcome
by taking advantage of the proposed method.

The experimental results confirmed the performance of the proposed method in
various cases, compared with other methods, including popular geo-statistical
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interpolation algorithms and a mosaic method. We conducted two synthetic experiments
to test the performance under simulated conditions. It can be seen that the proposed
method obtained more satisfactory results in these two experiments by both quantitative
and visual evaluation. However, real cases are more complex. In the fusion of the famous
global DEM products and air-borne SAR-derived DEM data, the proposed method proved
its effectiveness and robustness to the significant changes between data from multiple
sources, and even with large resolution gaps.

The main purpose in this paper was to propose a new method to deal with the
integration of DEMs. However, there were still some limitations to the proposed method.
In this paper, the model took the main factors such as the scaling effect, datum differ-
ences, random noise, and horizontal or vertical errors among multi-scale DEM products
into consideration. However, more complex problems such as other unpredictable produc-
tion errors and the effect of cartographic generalization were not included in the proposed
method. In our future work, more possible degradation factors will be taken into account
to improve the accuracy of the fused DEM data. Besides, the accelerated strategies are
desired for large-scale DEM fusion.
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