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Land surface temperature (LST) and its diurnal variation are important when evaluating climate change, the
land–atmosphere energy budget, and the global hydrological cycle. However, the available satellite LST products
have either a coarse spatial resolution or a low temporal resolution, which constrains their potential applications.
This paper proposes a spatio-temporal integrated temperature fusion model (STITFM) for the retrieval of high
temporal and spatial resolution LST from multi-scale polar-orbiting and geostationary satellite observations.
Compared with the traditional fusion methods for LST with two different sensors, the proposed method is able
to fuse the LST from arbitrary sensors in a unified framework. The model was tested using LST with fine, moder-
ate, and coarse-resolutions. Data from the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus
(ETM+) sensors, the Moderate Resolution Imaging Spectroradiometer (MODIS), the Geostationary Operational
Environmental Satellite (GOES) Imager, and the Meteosat Second Generation (MSG) Spinning Enhanced Visible
and Infrared Imager (SEVIRI) were used. The fused LST values were evaluated with in situ LST obtained from the
Surface Radiation Budget Network (SURFRAD) and the Land Surface Analysis Satellite Application Facility (LSA
SAF) project. The final validation results indicate that the STITFM is accurate to within about 2.5 K.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Land surface temperature (LST) is an important parameter of the
weather and climate system, controlling surface heat and water ex-
change with the atmosphere (Anderson, Allen, Morse, & Kustas, 2012;
Kalma, McVicar, & McCabe, 2008; Li et al., 2013; Sellers et al., 1997;
Tierney et al., 2008). However, the available satellite LST products
have either low spatial resolution (geostationary satellites) or low tem-
poral resolution (polar-orbiting satellites), which constrains their po-
tential applications (Inamdar, French, Hook, Vaughan, & Luckett,
2008). Satellite sensors such as the GOES Imager and MSG SEVIRI pro-
videmultiple spectral images of the same region of the earth at frequent
time intervals (up to 15 min). Diurnal cycles of LST, which constitute an
important element of the surface energy budget, can thus be obtained
from the geostationary satellites. However, their spatial resolutions
(3–5 km) are too coarse formany applications requiring a higher spatial
resolution. For example, the use of high temporal/low spatial resolution
geostationary platforms has been limited in land-surface hydrological
henhf@whu.edu.cn (H. Shen),
u (F.-M. Göttsche).
studies (Kalma et al., 2008). In contrast, polar-orbiting sensors such as
Landsat TM/ETM+ and MODIS provide LST with spatial resolutions
ranging fromabout 100 to 1000m,which allowmonitoring of heteroge-
neous areaswith a finer pixel footprint. Nevertheless, the strong diurnal
cycles of LST cannot be captured at the temporal resolution (between
two views per day and one view every 16 days for MODIS and Landsat,
respectively) of the polar-orbiting satellites (Sun, Pinker, & Kafatos,
2006). In other words, it is currently extremely difficult to directly ac-
quire LST with high temporal and spatial resolutions, due to the trade-
offs among these resolutions (Zhan et al., 2013).

A number ofmethods have been proposed to estimate LSTwith both
high temporal and spatial resolutions (see Zhan et al., 2013 for a re-
view).Most of thesemethods utilize LST fromone sensor and other aux-
iliary data of a better spatial resolution. These auxiliary data may
contain some specific physical or ecological parameters, such as topog-
raphy, normalized difference vegetation index (NDVI), emissivity, soil
water content index, and the reflectance of the visible and near-
infrared bands (Kustas, Norman, Anderson, & French, 2003; Nichol,
2009; Yang, Pu, Huang, Wang, & Zhao, 2010; Zhan et al., 2012). Only
in recent years havewewitnessed the emergence of spatio-temporal fu-
sion, using the LST from two different sensors to predict high-resolution
LST. For example, Gao, Masek, Schwaller, and Hall (2006) and Zhu,
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Chen, Gao, Chen, and Masek (2010) proposed a spatial and temporal
adaptive reflectance fusion model (STARFM) and its enhanced version
(ESTARFM) to predict daily Landsat-like reflectance data at the Landsat
spatial scale. Emelyanova, McVicar, Van Niel, Li, and van Dijk (2013)
proposed a framework for algorithm selection between STARFM and
ESTARFM, according to how the variance is driven by the temporal or
spatial component. Although these methods were originally proposed
for reflectance, they have also opened up a new avenue for other bio-
physical parameters, such as LST (Liu & Weng, 2012). Kim and Hogue
(2012) adopted a previously developed subtractionmethod that is sim-
ilar to STARFM, but without the spatial weighting function, to blend
Landsat and MODIS LST. Liu and Weng (2012) utilized STARFM to
blend ASTER and MODIS LST for public health studies. Huang, Wang,
Song, Fu, and Wong (2013) combined bilateral filtering and STARFM
to generate high spatio-temporal resolution LST from Landsat and
MODIS data for urban heat island monitoring. Weng, Fu, and Gao
(2014) improved and modified ESTARFM to predict thermal radiance
and LST data by considering the annual temperature cycle (ATC) and
urban thermal landscape heterogeneity. These fusion methods have
shown that LST products at the Landsat spatial scale can be predicted
every day, which considerably extends the potential applications of LST.

Although infrequently used, geostationary thermal sensors hold
great potential because of their widespread availability and their
higher temporal density (Zhan et al., 2013). Geostationary satellites
may be a cost-effective data source to enhance the temporal resolu-
tion from daily to hourly. For instance, Inamdar et al. (2008) and
Inamdar and French (2009) merged GOES LST, MODIS LST, and
MODIS NDVI or emissivity data to yield half-hourly LST values at a
1-km spatial resolution. Using various auxiliary datasets, Zaksek
and Ostir (2012) downscaled SEVIRI LST to a 1-km spatial resolution
and a temporal resolution of 15min.Wu, Shen, Ai, and Liu (2013) ex-
tended STARFM to blend Landsat TM/ETM+ and GOES LST to re-
trieve hourly LST at the Landsat TM/ETM+ spatial resolution.
However, it is difficult to capture accurate spatio-temporal change
information at such large-scale differences, which can cause instabil-
ity of the local variables. A possible solution named “scale transition”
is to add medium-scale sensors to the process of fusion between the
fine- and coarse-scale sensors. For instance, in order to aid the pass-
ing of change information from GOES (4-km spatial) to Landsat
(about 100-m resolution), MODIS data with their moderate resolu-
tion (1000-m spatial) can be added to the fusion process of Landsat
and GOES.

However,many of the existingmethodswere developed to fuse data
from only two sensors (Huang et al., 2013; Kim & Hogue, 2012; Liu &
Weng, 2012; Weng et al., 2014; Wu et al., 2013), and little work has
been done on fusing data from three or more sensors. In this study, we
present the spatio-temporal integrated temperature fusion model
(STITFM) for remote sensed LSTs which blends arbitrary observations
from multi-scale polar-orbiting and geostationary satellites. Based on
the proposed method, the objective is to fuse the LST data from arbitrary
sensors by the use of a unified framework. The fused LSTs are integrated
at the highest spatial and temporal resolutions among the input LST satel-
lite data. The performance of the new method was evaluated with field
observations from the Surface Radiation Budget Network (SURFRAD)
and the Land Surface Analysis Satellite Application Facility (LSA SAF)
project.

The next section briefly describes the primary sources of data.
STITFM is introduced in Section 3. The experimental results and quanti-
tative evaluations are provided in Section 4. In Section 5 and Section 6,
we provide a discussion and concluding remarks.

2. Data

The primary data used in this study comprised in situ LSTs, cloud-
free Landsat TM/ETM+ LSTs, Terra MODIS LSTs, GOES Imager LSTs,
and MSG SEVIRI LSTs. These are described below.
2.1. In situ LST

In situ LSTs from two geographically different locations character-
ized by different surface types were used (see Fig. 1). The network of
surface radiation measurement sites (SURFRAD) was established in
1993 through the support of the NOAA Office of Global Programs. The
SURFRAD stations provide high-quality in situ measurements of up-
and downwelling long-wave radiations within the U.S. (Wang &
Liang, 2009; Yu et al., 2009). On 1 Jan 2009, data sampling changed
from 3-min to 1-min resolution, and the data can be downloaded
from the NOAA Global Monitoring Division (GMD) (http://www.esrl.
noaa.gov/gmd/dv/data/). As in our previous study (Wu et al., 2013),
data from the Desert Rock (DRA) site in Nevada (116.02 W, 36.63 N)
were used for validating the LST retrieval. The land-cover type in the
DRA site is open shrubland. The in situ surface skin temperatures or
LSTs were estimated according to the method of Inamdar et al. (2008).

Another set of in situ measurements was acquired from the LST val-
idation site established and maintained by the Karlsruhe Institute of
Technology (KIT), Germany. KIT operates permanent validation sta-
tions, supported by the LSA SAF project, which were specifically de-
signed for the validation of LST retrieved from TIR satellite
measurements, such as the MSG/SEVIRI LST product (Xu, Yu, Tarpley,
Gottsche, & Olesen, 2013). For the present study, the Evora site data in
Portugal (8.00 W, 38.54 N), covering natural vegetation compounds of
dispersed oak and cork trees interlaced with open grassland, were
used for validating the LST retrieval. As in the previous studies
(Inamdar et al., 2008; Kabsch, Olesen, & Prata, 2008; Sun & Pinker,
2003; Sun, Pinker, & Basara, 2004; Xu et al., 2013), the in situ LSTs
were also used to directly evaluate the predictions (or spatial averages)
from the fusion of the multi-sensor LST products.

2.2. Landsat TM/ETM+ LST

Landsat images offer the longest continuous global record of the
earth's surface, and are a unique resource for global change research
and applications in agriculture, cartography, geology, forestry, regional
planning, surveillance, education, and national security (Gucluer et al.,
2010). Landsat has aminimum16-day revisit cycle, which is sometimes
extended due to cloud contamination. The Landsat TIR channels have a
spatial resolution of about 100 m (Landsat TM 120 m, Landsat ETM+
60m), and are available from theNextGeneration Earth Science Discov-
ery Tool (http://reverb.echo.nasa.gov/reverb/). This is an important spa-
tial resolution because it is detailed enough to characterize human-scale
processes such as the dynamics of urban growth (Masek, Lindsay, &
Goward, 2000) or urban heat islands (Kumak, Bhaskar, &
Padmakumari, 2012). We retrieved the Landsat LST using a generalized
single-channel method from the Landsat TIR window channel 6
(10.4–12.5 μm), based on the work of Jimenez-Munoz and Sobrino
(2003). The details of the Landsat, MODIS, and geostationary satellite
data used in this study are summarized in Table 1.

2.3. MODIS 1 km LST

The MODIS sensors on board the Terra and Aqua satellites have 36
spectral bands ranging from the visible to the thermal-infrared spec-
trum. The spatial resolution varies from 250 m (bands 1 and 2) to
500 m (bands 3 to 7) and 1000 m (bands 8 to 36). The sensors view
the entire earth every one or two days. TheMODIS LST productwas pro-
posed by the MODIS Science Team as a daily daytime and nighttime 1-
km global land product, and includes derivative products at lower tem-
poral frequencies and spatial resolutions. In the range from 10 °C to
50 °C, the accuracy of the MODIS daily LST product is better than 1 °C,
as validatedwith in situmeasurements collected duringfield campaigns
between 2000 and 2002 (Wan, Zhang, Zhang, & Li, 2004). We used the
MODIS LST/Emissivity Daily Level 3 Global 1-km SIN grid product
known as MOD11A1, which is available from the Geospatial Data
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Fig. 1. Locations of SURFRAD's validation stations, and a photo of the DRA site (upper); and locations of the KIT validation stations, and a photo of the Evora site (below).
From http://www.esrl.noaa.gov/gmd/grad/surfrad/ and http://www.imk-asf.kit.edu/, respectively.
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Cloud, the Computer Network Information Center, CAS (http://www.
gscloud.cn), and the Next Generation Earth Science Discovery Tool
(http://reverb.echo.nasa.gov/reverb/). The 1-km LST was produced by
a generalized split window algorithm that uses radiances from the
MODIS TIR window channels 31 (10.8–11.3 μm) and 32 (11.8–12.3 μm)
(Wan & Dozier, 1996).

2.4. GOES Imager LST

GOES provides approximately half-hourly temporal resolution earth
observation data, which constitute an important element of the land-
surface processes. GOES Imager instruments consist of five spectral
channels (one visible band and four infrared bands) (Sun & Pinker,
2003), whichmeasure the radiant and reflected solar energy from sam-
pled areas of the earth. GOES 10 Imager data are available from a web-
based data archive and distribution system known as NOAA's
Table 1
The details of the satellite data used in this study.

Satellite data Acquisition date

Landsat ETM+
(path: 40, row: 35)

4 Aug 2002
20 Aug 2002

MOD11A1
(h08v05)

4 Aug 2002
20 Aug 2002

GOES 10 Imager 20 Aug 2002
Landsat TM
(path: 203, row: 35)

20 May 2010

MOD11A1
(h17v05)

20 May 2010
18 May 2010

MSG SEVIRI 18 May 2010
Comprehensive Large Array-data Stewardship System (http://www.
class.noaa.gov/nsaa/products). The GOES 10 IR channels provide earth
observation data at intervals of approximately every 30 min, at a nadir
resolution of about 4 km. Infrared image data stored as GOES Variable
Format (GVAR) counts packaged in 10-bit words in Network Common
Data Format (netCDF) were used. The 10-bit (0–1023) GVAR count
value was converted to brightness temperatures for channels 2 and 4,
utilizing the calibration coefficients for the GOES 10 imager (Weinreb
et al., 2011). GOES LST data at a 30-min temporal resolution were re-
trieved according to the algorithms described in Sun and Pinker
(2003, 2005).

2.5. MSG SEVIRI LST

SEVIRI is the main instrument on board the MSG satellite series,
which are the geostationary meteorological satellites developed by the
Acquisition time (UTC) Number

18:09 2

18:36 2

Starting at 00:00 and every 30 min thereafter 45
10:59 1

10:41 2

Starting at 00:00 and every 15 min thereafter 89

http://www.gscloud.cn
http://www.gscloud.cn
http://reverb.echo.nasa.gov/reverb/
http://www.class.noaa.gov/nsaa/products
http://www.class.noaa.gov/nsaa/products
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European Space Agency (ESA) and the European Organization for the
Exploitation of Meteorological Satellites (EUMETSAT) (Govaerts,
Wagner, & Clerici, 2005; Schmetz et al., 2002). The SEVIRI sensor
scans the full earth disk every 15 min in 11 spectral bands, with a
spatial resolution of 3 km. It consists of three visible and near-
infrared channels, centered at 0.6, 0.8, and 1.6 μm, and eight infrared
channels, centered at 3.9, 6.2, 7.3, 8.7, 9.7, 10.8, 12.0, and 13.4 μm.
The LSA SAF operational LST product was used (Gottsche, Olesen, &
Bork-Unkelbach, 2013), which is generated by the use of a general-
ized split window algorithm to operationally retrieve LST from the
SEVIRI TIR channels at 10.8 and 12.0 μm. SEVIRI-derived LSTs are
generated for four different geographical areas within the Meteosat
disk: Europe, Northern Africa, Southern Africa, and South America.
The general accuracy of the SEVIRI LST product is better than 2 K
(Freitas, Trigo, Bioucas-Dias, & Gottsche, 2010; Trigo, Monteiro,
Olesen, & Kabsch, 2008), and the SEVIRI LST product is freely avail-
able from the LSA SAF website (http://landsaf.meteo.pt).
3. Methodology

The premise of multi-source data fusion is that the preprocessed
and corrected data from the different sensors are consistent and
comparable (Pohl & Genderen, 1998). All the different sensor data
need to be reprojected and resampled to a common spatial grid
and coordinate system. If the different sensors scan the same scene
within a short time interval, we treat the data as simultaneous,
even though this assumption may cause some additional error (Liu
& Weng, 2012). For example, the Terra/MODIS platform crosses the
equator at about 10:30 am local solar time, which is roughly
30 min after Landsat ETM+ (Gao et al., 2006). For the purposes of
this study, we consider the LST from the two sensors to be simulta-
neous observations (Table 1).
Fig. 2. Schematic of STITFM with Landsat ETM+, MODIS, and GOES data. The left vertical
axis is the spatial resolution, and the right vertical axis is the temporal resolution, while
the horizontal axis denotes the observation time. The predictions (within the dashed
frame) are generated by considering two cloud-free ETM-MODIS pairs acquired at TP
and Tp2, the MODIS-GOES pairs acquired at Tq, and the GOES data at the predicted times
TX1 and TX2. The ellipses denote that STITFM allows for the input of more base LST pairs
at different times. The predictions have a 30-m spatial resolution (ETM+) and a 30-min
temporal resolution (GOES).
3.1. Fusion framework of arbitrary sensors

Neglecting preprocessing errors and differences in the retrieval
methods, for a homogenous moderate spatial resolution pixel, the cor-
responding fine spatial resolution LST F can be expressed as (Huang
et al., 2013; Wu et al., 2013):

F i; t1ð Þ ¼ M i; t1ð Þ þ ε1; ð1Þ

whereM denotes the moderate spatial resolution LST resampled to the
fine-resolution grid, i denotes the i-th pixel, t1 is the acquisition time,
and ε1 is the difference between the LST observed at the fine and mod-
erate resolutions, which is mainly due to the spectral differences be-
tween the sensors and the radiometric differences caused by solar
geometry. If the moderate spatial resolution LST M(i, t2) at another
time t2 is a known value among the inputs, then the fine spatial resolu-
tion LST at time t2 can be predicted as:

F i; t2ð Þ ¼ M i; t2ð Þ þ ε2: ð2Þ

Supposing that the land-cover type and sensor calibration do not
change between dates t1 and t2, then the residual would also not
change from dates t1 and t2. Furthermore, random noise is neglected.
We have the residual ε2 = ε1, so the following equation can be
obtained:

F i; t2ð Þ ¼ F i; t1ð Þ þM i; t2ð Þ−M i; t1ð Þ: ð3Þ

When a coarse spatial resolution sensorwith a sufficiently high tem-
poral resolution is also available, thefine spatial resolution LST at time t3
can be predicted from the fine spatial resolution LST at time t2 and the
coarse spatial resolution LST C(i, t2) and C(i, t3):

F i; t3ð Þ ¼ F i; t2ð Þ þ C i; t3ð Þ−C i; t2ð Þ: ð4Þ

Combining Eqs. (3) and (4), the high spatial resolution LST predicted
at time t3 can be expressed as:

F i; t3ð Þ ¼ F i; t1ð Þ−M i; t1ð Þ þM i; t2ð Þ−C i; t2ð Þ þ C i; t3ð Þ: ð5Þ

By analogy, fused LST from a series of sensors with successively
coarser resolutions can be obtained:

F i; tmð Þ ¼ F i; t1ð Þ−M i; t1ð Þ þM i; t2ð Þ:
−C i; t2ð Þ þ C i; t3ð Þ−…−X i; tm−1ð Þ þ X i; tmð Þ; ð6Þ

where tm is the time for which the high spatial resolution LST is pre-
dicted, and F, M, C, and X denote the LST values from the different
sensors. The other sensors are not written but are expressed as ellip-
ses. F has the highest spatial resolution among all the sensors, while
X is the sensor with the highest temporal resolution. t1, t2, t3, ⋯, tm − 1

denote the acquisition times of the corresponding sensors. Note that,
for each sensor, we may acquire more than one LST at their revisit
cycle. For instance, we may have n input pairs of F(i, t1) and
M(i, t1), where n ∈ [1, + ∞].

However, at coarser spatial scales, land surfaces are rarely homo-
geneous and usually include several land-cover types. In this case,
additional information from neighboring pixels can be introduced
as a reference (Gao et al., 2006). We compute the LST value for the
central pixel at tm with a filter operator, which is similar to the
weighting function used by Gao et al. (2006).

F iw=2; tm
� �

¼
X
i¼1

X
t1¼1

X
t2¼1

X
t3¼1

…
X

tm−1¼1

Wit � F i; t1ð Þ−M i; t1ð Þ þM i; t2ð Þ
−C i; t2ð Þ þ C i; t3ð Þ−…−X i; tm−1ð Þ þ X i; tmð Þ

� �
;

ð7Þ

where w is the size of the moving window, and iw/2 is the central
pixel within the sliding window. It should be noted that only similar
pixels within the sliding window are selected to calculate the LST
value (Wu et al., 2013). The similar pixels are LST-similar pixels, as
in Wu et al. (2013), and can be selected using:

F i; t1ð Þ−F iw=2; t1
� ���� ���≤σ � 2=m ð8Þ

http://landsaf.meteo.pt
image of Fig.�2
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where F(i, t1) is the neighbor pixel LST, F(iw/2, t1) is the central pixel
LST, σ is the standard deviation for the LST data, andm is the estimat-
ed number of classes.

Although Eq. (7) allows for the input of more base sets of LST at dif-
ferent times (t1, t2, t3,…, tm − 1 ∈ [1, +∞]), we generate a synthetic LST
based on a single base set of LST (t1, t2, t3, …, tm − 1 = 1). Preliminary
trials conducted using one base set of LST have indicated that the results
are satisfactory, which were shown for two sensors in our previous
study (Wu et al., 2013) and also by other researchers (Walker et al.,
2011).
Fig. 3.Observed and predicted LSTs. The area is a 900 km2 subset of remote sensed data. (a) obse
20 August 2002; (d)–(f) observed GOES LSTs at 18:00, 00:00, and 10:30 UTC on 20 August 200
using three sensors (withMODIS LST); (j) observedGOES LST at 18:00UTC on 4August 2002; an
3.2. Spatio-temporal weighting function

The spatio-temporal weighting function Wit determines how much
each similar pixel contributes to the central pixel and, therefore, has to
be accurately known. It is determined by the following three measures:
1) The similarity difference between pixels in a slidingwindow and the

central pixel at a given window location is:

Si ¼ F i; t1ð Þ−F iw=2; t1
� ���� ���: ð9Þ
rved ETM+LST on 4 August 2002; (b) and (c) observedMODIS LSTs on 4 August 2002 and
2; (g) observed ETM+ LST on 20 August 2002; (h) and (i) predicted “Landsat-like” LSTs
d (k) and (l) are the predicted “Landsat-like” LSTs using two sensors (withoutMODIS LST).

image of Fig.�3
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This is a simple measure to determine the similarity between the
pixels in the sliding window and the central pixel at the fine spatial
resolution observation. It is a nonnegative number, and was usually
less than 2 K in our experiments. Even when similar pixels are cho-
sen, their degree of similarity to the central pixel usually varies. A
smaller value of Si implies that the similar pixel has a higher degree
of similarity to the central pixel and also contributesmore additional
information. The degree of similarity (SDi) can be written as:

SDi ¼ exp −Sið Þ.X
exp −Sið Þ: ð10Þ

Therefore, the pixel with a higher SDi should be assigned a higher
weight in Eq. (7).

2) The scale difference between the different resolution data at their
corresponding acquisition times is:

Rit ¼ F i; t1ð Þ−M i; t1ð Þ þM i; t2ð Þ−C i; t2ð Þ þ C i; t3ð Þ−…−X i; tm−1ð Þj j: ð11Þ

This is an approximate measure to determine the homogeneity of a
lower-resolution pixel at the corresponding acquisition time. It is a
nonnegative number, and was usually less than 4 K in our
Fig. 4. The 45 predicted LSTs at a half-hourly temporal resolution at the Landsat spatial sc
09:30 UTC could not be predicted due to missing GOES observations, and the LSTs with bro
vation time of each line).
experiments. The measure of homogeneity given by Eq. (11) is lim-
ited by differences in projection and geolocation errors. A smaller
value of Rit means that the higher spatial resolution pixel has closer
radiance features to the averaged surrounding pixels at the lower
resolution; thus, the change at the higher resolution should be com-
parable to that of the averaged surrounding pixels.

3) The geometric distance between the similar pixel (xi, yi) and the cen-
tral pixel (xw/2, yw/2) at a given window location is:

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−xw=2

� �2 þ yi−yw=2

� �2
r

: ð12Þ

This measures the spatial distance between the central predicted
pixel and the surrounding similar pixels. A closer similar pixel should
be assigned a higher weight according to spatial autocorrelation. To
match the magnitude of the similarity difference and the scale differ-
ence, we convert the geometric distance to a relative distance through
the function:

Di ¼ Aþ dið Þ=A ð13Þ
ale on 20 August 2002 (local time = UTC time — 7.7 h). The LSTs between 08:30 and
wn spaces are caused by the missing MODIS LST (the first column denotes the obser-

image of Fig.�4


Fig. 5. Scatter plots of observed LST against LSTs predictedwith STITFM for different num-
bers of sensors: (a) for two sensors (without MODIS); and (b) for three sensors (with
MODIS). The solid line is the 1:1 line. .
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where A is a constant that is determined by the spatial resolution of the
fine resolution and the window size (Gao et al., 2006).

The combined scale difference and the relative distance can be
computed with:

Eit ¼ ln Rit � 100þ 1ð Þ � Di: ð14Þ

To match the SDi, we normalize Eit as:

Vit ¼ Eit=
X

Eit : ð15Þ

Ensuring that the sumof allweights is 1,Wit is normalized as follows:

Wit ¼ 1= Vit � SDið Þ=
X

1= Vit � SDið Þ
� �

: ð16Þ

Eqs. (15) and (16) mean that a higher degree of similarity, a smaller
scale difference, and a smaller distance from a similar pixel to the cen-
tral pixel should produce a higher spatio-temporal weight. One special
case is Rit = 0, where the spatio-temporal weight Wit is then set to the
maximum value. The predicted value is F(iw/2, tm) = X(i, tm).

Fig. 2 presents aflowchart of STITFMwith Landsat,MODIS, andGOES
data.

4. Experimental results

We tested the performance of STITFM by fusing three LST products
from the aforementioned satellite data, although themodel is applicable
to an arbitrary number of products. Two scenarios were investigated:
the first scenario fuses Landsat, MODIS, and GOES data for North
America, while the second scenario uses data from Landsat, MODIS,
and SEVIRI for Europe. The predicted LST was obtained at the Landsat
spatial resolution. Satellite data with a similar spatial resolution (such
as ASTER, with a 90-m spatial resolution) would be ideal for evaluating
the predictions; unfortunately, such data were not available (with a
similar overpass time). The only option was the comparison of the
satellite-based LSTs with in situ measurements, even if this implies a
large scale factor (Yu et al., 2009). Therefore, corresponding ground
measurements from SURFRAD and KIT were used, in line with the ap-
proach used in a number of previous studies (Gottsche et al., 2013;
Inamdar et al., 2008; Wang & Liang, 2009; Xu et al., 2013; Yu et al.,
2012, 2009).

Two experiments (EXP1 and EXP2) were conducted. For EXP1,
Landsat ETM+, MODIS, and GOES LST were used as the input data
(Table 1). We evaluated the fusion results by comparing them with in
situ LST from SURFRAD. For EXP2, the in situ LST from KIT was used to
evaluate the predictions obtained from the Landsat TM, MODIS, and
MSG SEVIRI LSTs (Table 1). For a quantitative evaluation of the agree-
ment between the in situ LSTs and the LST predictions, we used the co-
efficient of determination (R2), the bias, and the root-mean-square error
(RMSE).

4.1. Fusion of ETM+, MODIS, and GOES LST

To investigate the practical feasibility of STITFM, the presented
experiments focused on deriving half-hourly LST at a Landsat spatial
resolution over the southwestern U.S. The area was a 900 km2 subset,
encompassing an elevation range of 725–1813 m (McVicar & Körner,
2013). The choice of this area was based on the following reasons:
(1) the availability of high-quality satellite data; (2) the accessibility
to a surface LST validation site (the DRA site); (3) the opportunity to
address problems created by low emissivities over the semi-arid and
arid regions; and (4) the feasibility and credibility of the region for
LST studies have already been evaluated (Inamdar et al., 2008).

The ETM+ LST observed at 18:09 UTC on 4 August 2002, the
MOD11A1 LST observed at 18:36 UTC on 4 August 2002 and 20 August
2002, and the GOES LST observed at 18:00 UTC 20 August 2002 were
used as the base data, while the other GOES LSTs were used as the
input data for generating the LST predictions. It should be noted that
the Landsat TIR channel had been resampled to 30 m when we
downloaded it. Therefore, the predictions are synthetic LSTs with 30-
m spatial resolution at a 30-min temporal interval. Fig. 3 shows the ob-
served ETM+ LST, the MODIS LST, parts of the GOES LST, and the pre-
dicted results. The base data, Fig. 3(a)–(d), were observed ETM+ LST
on 4 August 2002, the observed MODIS LST on 4 August 2002, the ob-
served MODIS LST on 20 August 2002, and the observed GOES LST at
18:00 UTC on 20 August 2002, respectively. We only show two of the
44 GOES LSTs that were available for predicting the LST (Fig. 3(e) and
(f)). The corresponding predicted “Landsat-like” LSTs at 00:00 and
10:30 UTC on 20 August 2002 are shown in Fig. 3(h) and (i). The pre-
dicted LSTs have a white dot in the top-right corner, which was caused
by the missing MODIS LST shown in Fig. 3(b).

Note that we can also obtain “Landsat-like” predictions using only
two sensors (i.e. without MODIS LST as an input), but the accuracy
may be lower. LST predictions obtained from only GOES and ETM+
LST as the base data (Fig. 3(a)–(d) and (j)) are shown in Fig. 3(k) and
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Fig. 6. Predicted (a), actual (b), and their difference (d) LSTs acquired at about 18:00 UTC on 20Aug 2002. Panel (c) is the classified image of Landsat acquired on 04Aug 2002. Open shrub-
land, desert rock, and mixed forest are marked in red, green, and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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(l). The observed ETM+ LST (Fig. 3(g)) observed at 18:09 UTC on 20
August 2002 can be used to evaluate the predicted results. Using GOES
LSTs at other times on 20 August 2002, we can obtain predicted
Landsat-like LST at all available GOES acquisition times. For conve-
nience, Fig. 4 shows the 45 predicted LSTs obtained from the three sen-
sors during 20 August 2002. Fig. 4 also illustrates the temperature
variation over the course of the day.

The ETM+ LST at 18:09 UTC on 20 August 2002 can be observed;
therefore, we can compare the observed ETM+ LST with the predic-
tions at the similar time. Fig. 5 shows scatter plots between the observed
ETM+ LST at 18:09 UTC and predicted ETM+ LST at 18:00 UTC on 20
August 2002. Fig. 5(a) shows the observed LST vs. the LST predicted
with STITFM when using two sensors (i.e. without MODIS), while
Fig. 5(b) shows the observed vs. the predicted LST for three sensors
(with MODIS). The data in Fig. 5(b) fall more closely onto the 1-1 line
than those in Fig. 5(a), which indicates that STITFM with three sensors
improves the prediction. Compared to the prediction obtained at
18:00 UTC from two sensors, the prediction at the same time using
three sensors improves the RMSE from 4.06 K to 1.40 K and the bias
from −3.86 K to −0.31 K. This is primarily because the moderate-
resolution MODIS LST plays the important role of “scale transition” by
narrowing the spatial resolution difference between the ETM+ and
GOES LST.

Moreover, to show the relationship between land cover and the pro-
posedmethod, the errors for different land-cover typeswere calculated.
Firstly, amask (for themissing pixels)was built and applied for both the
predicted “Landsat” LST from three sensors and the actual Landsat LST
(Fig. 6(a) and (b)). The unsupervised IsoData classification method
was then employed for the actual Landsat LST acquired on 4 Aug
2002, and the number of classes was set as three in the experiments
(Fig. 6(c)). The land-cover classes consisted of a mixed type of desert
Table 2
The errors for different land-cover types.

Class Mixed type Desert rock

RMSE (K) 1.48 1.10
Bias (K) −0.41 −0.20
rock and open shrubland (in red), desert rock (in green), and open
shrubland (in blue). Finally, the RMSE and bias of each land-cover
typewere calculated and are listed in Table 2, according to the classified
image of Fig. 6(c) and the difference image of Fig. 6(d).

From Table 2, we can see that the errors for different land-cover
types are different. The RMSE and bias of the mixed type (in red) are
similar to the whole scene. The RMSE and bias of desert rock (in
green) are lower than for the whole scene, while the RMSE and bias of
open shrubland (in blue) are the highest. In other words, the capability
of the spatio-temporal fusionmethodmay be affected by different land-
cover types. These findings have also been confirmed by previous stud-
ies (Hilker et al., 2009). Furthermore, the errors also differ for the same
land-cover type, which indicates that the proposedmethodmay also be
affected by topography, such as elevation, slope, and aspect. Overall, we
found that higher accuracies were obtained in the homogeneous areas
of each category.

Since the Landsat satellite only observes the surface at its overpass
time, in situ LSTs were used to validate the predicted LST at the other
times on 20 August 2002. Ground-truth data from the DRA site in Neva-
da, U.S., were used to verify the effectiveness of STITFM. Fig. 7 compares
the in situ LSTs from the DRA sitewith the LST predictions. From the fig-
ure, it is clear that there is an overall agreement between the LST predic-
tions and the ground-truth LST. However, the predicted LSTs obtained
from three sensors are closer to the in situ LSTs than the LSTs obtained
from two sensors. The prediction error for three sensors (RMSE =
2.5 K) is lower than that for two sensors (RMSE = 3.7 K). These results
were obtained by the use of Landsat LST and GOES LST acquired on dif-
ferent days (the Landsat LST was observed on 4 August 2002 and the
GOES LST was observed on 20 August 2002). In our previous study
(Wu et al., 2013), we obtained predictions by the use of Landsat LST
and GOES LST observed on the same day (20 August 2002). The
Open shrubland No classification (whole scene)

1.72 1.40
−0.91 −0.31
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prediction error for two sensors (observed on the same day) was 1.87 K
(Wu et al., 2013), which is better than the result from different days (for
both three sensors and two sensors: RMSE=2.5 K for three sensors and
RMSE= 3.7 K for two sensors). This is assumed to be due to the greater
consistency of the surface parameters and, consequently, better predic-
tions can be obtained when all the data are from the same day.
4.2. Fusion of TM, MODIS, and SEVIRI LST

In this experiment (EXP2), STITFM was tested on LST retrieved over
Evora, Portugal, where one of KIT's permanent validation stations is lo-
cated. Since SEVIRI data have a 15min temporal resolution, we can the-
oretically obtain 96 SEVIRI LST data per day. However, due to clouds or
missing data, we actually obtained 89 SEVIRI LST data for EXP2.

Fig. 8(a)–(h) shows the observed TM LST on 20 May 2010, the ob-
served MODIS LST on 20 May 2010, the observed MODIS LST on 18
May 2010, the observed SEVIRI LST at 11:00 UTC on 18 May 2010, the
observed SEVIRI LST at 00:15 UTC on 18 May 2010, the observed
SEVIRI LST at 00:45 UTC on 18 May 2010, the predicted “Landsat-like”
LST at 00:15 UTC on 18 May 2010, and the predicted “Landsat-like”
LST at 00:45 UTC on 18 May 2010, respectively. Fig. 8(a), (b), (c), and
(d) shows the input base data, while Fig. 8(e) and (f) shows two of
the 89 available SEVIRI LSTs. The “Landsat-like” LST predictions corre-
sponding to the two SEVIRI acquisition times are shown in
Fig. 8(g) and (h). Similarly, the other 87 LST predictions at SEVIRI acqui-
sition times for 18 May 2010 can be obtained, but are not reproduced
here. Predictions with the same resolution were obtained by fusing
only SEVIRI and TM LSTs. The data in Fig. 8(a) and (i) served as input
base data, while Fig. 8(e) and (f) shows the input SEVIRI LST at the pre-
dicted time. The corresponding predictions are shown in Fig. 8(j) and
(k). Although there are no obvious visual differences between
Fig. 8(g) and (h) obtained for three sensors and Fig. 8(j) and
(k) obtained for two sensors, some detailed regions are shown in
Fig. 9 for the convenience of visual judgment.

For a better analysis, Fig. 9(a),(b),(d), and (e) shows the LST predic-
tions from Fig. 8(j),(k),(g), and (h) in color, while Fig. 9(g) shows the
observed TM LST from Fig. 8(a).When comparing the subsets of the ob-
served TM LST with the predicted Landsat-like LST in the right column,
it is clear that the prediction from three sensors is considerably closer to
the observations than the prediction obtained from two sensors. Since
Fig. 7. Diurnal cycle of LSTs predicted using three sensors (blue pluses) and two sensors
(green stars), compared with that of the in situ LSTs (red dotted line) from the DRA site
on 20 August 2002 The data gap for GOES between 08:30 and 09:30 UTC is due tomissing
observations, which means that there are also no predictions.
there are no TM LSTs at 11:15 UTC on 18 May 2010, Landsat TM LST ac-
quired at a similar time (10:59 UTC) on 20 May 2010 is shown in
Fig. 9(g), which introduces some additional uncertainty. Fig. 10 shows
in situ LSTs from the Evora site and LST predictions using two and
three sensors as the input. It is clear that the predicted LSTs obtained
by fusing the data from three sensors are closer to the in situ LSTs
than those produced by fusing the data from two sensors. The predic-
tion error for three sensors (RMSE = 2.2 K) is smaller than that for
two sensors (RMSE = 3.3 K). This means that the predictions obtained
from three sensors are closer to the ground truth, which indicates that
the base concept of STITFM, i.e. to use the data frommore than two sen-
sors as input, is meaningful and leads to improved results.

5. Discussion

The available satellite LST products have either a coarse spatial reso-
lution or a low temporal resolution,which constrains their potential ap-
plications. To better utilize the complementary information in different
data, it is necessary to develop techniques to fuse this useful informa-
tion. Considering the limitations of the existing fusion methods, this
paper proposes a spatio-temporal integrated temperature fusion
model (STITFM) that uses multi-scale polar-orbiting and geostationary
satellite observations to predict higher temporal and spatial resolution
LST. The multi-scale polar-orbiting satellites such as Landsat and Terra
can provide fine-resolution spatial details, while data from geostation-
ary platforms (GOES or SEVIRI) can be obtained with a much better
temporal resolution (images every 15 or 30 min). This was accom-
plished by blending LSTs from three sensors, although STITFM is able
to fuse data from an arbitrary number of sensors.

This study has examined in detail the theoretical basis of the pro-
posed method and included two series of experiments that predicted
LSTs at the Desert Rock (DRA) site in Nevada, U.S., and the Evora site
in Evora, Portugal. In general, the resulting high spatial and temporal
resolution LSTs obtained from three sensors were better than those ob-
tained from two sensors. The predictions were evaluated against both
observed high-resolution LST data and in situ LSTs. The experiments in-
dicated that LST can be predicted using data from three sensors with an
accuracy (RMSE) of better than 2.5 K, but the accuracy is affected by dif-
ferent land-cover types. Other sources of errors may include the data
preprocessing, the retrieval methods of the different sensors.

The primary reason for the superior performance of the three-sensor
STITFM is that themoderate resolution LST improves the distribution of
the spatial information during the “scale transition” by narrowing the
spatial resolution difference between the fine- and coarse-resolution
LST. Many details that cannot be shown in geostationary satellite pixels
(GOES or SEVIRI) can be captured byMODIS. Unlike the previous fusion
models for Landsat and MODIS LST (Huang et al., 2013; Weng et al.,
2014), the model proposed in this paper provides a potential solution
that utilizes a geostationary satellite to obtain “Landsat-like” LSTs out-
side the Landsat overpass time, which may be useful for dynamic sur-
face heat island analysis (Yuan & Bauer, 2007). On the other hand, in
contrast with our original work, in which predictions were obtained
by fusing only Landsat and geostationary satellite data (Wu et al.,
2013), STITFM is suitable for the data from different days, and can also
obtain more accurate predictions from more sensors in a unified
framework.

However, it should be noted that there are several potential limita-
tions to the proposed method. The main limitation of the proposed
method is its relatively strict conditions, such as the quality of the
input data, orbital parameters, overpass times, viewing geometry, imag-
ing registration, and the availability of biophysical parameters. Consid-
ering that the differences in the overpass time and the viewing
geometry between the Landsat and MODIS sensors were small for the
study area, this study did not attempt to correct for the difference in di-
urnal temperature change. However, this correction or normalization
should be conducted to extend the model further, especially for LST
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Fig. 8. Observed and predicted LSTs. The area is a 900 km2 subset of remote sensed data. (a) observed TM LST on 20 May 2010; (b) and (c) observed MODIS LSTs on 20 May 2010 and 18
May 2010; (d)–(f) observedGOES LSTs at 11:00, 00:15, and 11:15UTCon 18May 2010; (g) and (h) predicted “Landsat-like” LSTs using three sensors (withMODIS LST); (i) observedGOES
LST at 11:00 UTC on 20 May 2010; and (j) and (k) are the predicted “Landsat-like” LSTs using two sensors (without MODIS LST).
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(Duan, Li, Tang, Wu, & Tang, 2014). Secondly, as in the previous studies
(Gao et al., 2006; Huang et al., 2013;Weng et al., 2014; Zhu et al., 2010),
STITFM does not have the ability to predict changes that are not
reflected in all the sensor pixels. An improved fusion model that could
combine the decomposition of mixed pixels and sub-pixel mapping
would be useful for predicting changes. In addition, a number of param-
eters are sensitive to the different scenes, e.g. the window size and the
number of land-cover classes, and must be carefully set.

For the design of the experiments, a number of issues need to be ex-
plained, and should be investigated further in the future.

Only one in situ site was selected for each series of experiments
(EXP1: DRA; EXP2: Evora). The main reason for this is that the distance
between the different sites (provided by SURFRAD or KIT) is significant,
and cannot be covered by one Landsat scene. Moreover, a large number
of pixels in theMODIS LST (MOD11A1) productweremasked out due to
cloud, heavy aerosols, etc., especially in EXP1 (see Fig. 3(b)). Image
mosaicing and gap-filling techniques using multi-temporal data could
help to improve this situation.

The two experiments were conducted only for a single day (24 UTC
hours). In theory, more consistent predictions (more than 24 UTC
hours) could have been obtained. However, satellite-derived time series
of LST (such as the daily MODIS LST) vary with satellite viewing angles
and sun geometry, which cause serious bias between predictions and in
situ LST (Vinnikov et al., 2012). Production of such a time series requires
addressing angular anisotropy when using asynchronous satellite ob-
servations (Vinnikov et al., 2012). Although angular variations in LST
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Fig. 9.Comparison between observed LSTs and LSTs predictedusing a different number of sensors. Panels (a) and (b) show the predictions corresponding to Fig. 8(j) and (k) obtained from
two sensors; panels (d) and (e) are the predictions retrieved from three sensors and correspond to Fig. 8(g) and (h); sub-figure (g) shows the observed TM LST as in Fig. 8(a); and panels
(c), (f), and (h) show subsets of (b), (e), and (g) in more detail.
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have been investigated by several researchers (Pinheiro, Privette, &
Guillevic, 2006; Vinnikov et al., 2012), there is currently no practical
way to perform angular normalization of satellite-derived LSTs (Li
et al., 2013). To eliminate or at least limit the angular effect, only
MODIS LST acquired under similar satellite viewing angles (less than
10°) was selected.

The final issue is the evaluation of the predictions with in situ LST.
Themost important factor for choosing any LST validation site is the ho-
mogeneity of its surface temperature. In such a case, evaluationwith an
in situ site can be acceptable; however, how to evaluate the other pixels
of the predictions is still a real challenge. A possible solution is to achieve
spatial modeling for the in situ LSTs while taking into account the influ-
ence of topography, land-cover types, and so on (McVicar et al., 2007).
6. Conclusion

The STITFM algorithm was successfully used in this study to obtain
LST at a Landsat spatial resolution and 30 min or even 15min temporal
resolution. The predicted LSTs from three sensors (Landsat, MODIS, and
GOES/SEVIRI) were better than those from two sensors (Landsat and
GOES/SEVIRI), which were evaluated using the observed high-
resolution LST data and in situ LSTs. Land cover was shown to be associ-
ated with algorithm performance and was intricately linked with the
site domain characteristics. Although STITFM was tested with LST in
this study, it advances the capability for producing other remotely
sensed data products with both high spatial resolution and frequent
coverage frommulti-scale polar-orbiting and geostationary satellite ob-
servations. Such a capability will be beneficial for monitoring diurnal
land-surface and ecological dynamics at the spatial scales most relevant
to human activities, such as urban heat islands (Zaksek &Ostir, 2012) or
water turbidity measurement (Vanhellemont et al., 2014).
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