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Data assimilation as a method to predict variables, reduce uncertainties and explicitly handle various
sources of uncertainties has recently received widespread attention and has been utilized to combine
in situ and remotely sensed measurements with hydrological models. However, factors that significantly
influence the capability of data assimilation still need testing and verifying. In this paper, synthetic sur-
face soil moisture data are assimilated into the Soil and Water Assessment Tool (SWAT) model to evaluate

their impact on other hydrological variables via the ensemble Kalman smoother (EnKS), using data from
Key Wor‘.js" the Heihe River Basin, northwest China. The results show that the assimilation of surface soil moisture
Soil moisture . . . . .
SWAT can moderately improve estimates of deep layer soil moisture, surface runoff and lateral flow, which
Data assimilation reduces the negative influences of erroneous forcing and inaccurate parameters. The effects of the spa-
Heterogeneity tially heterogeneous input data (land cover and soil type) on the performance of the data assimilation
EnKS technique are noteworthy. Moreover, the approaches including inflation and localization are specifically
diagnosed to further extend the capability of the EnKS.

© 2014 Published by Elsevier Ltd.

1. Introduction

Soil moisture plays a fundamental role in the study of hydrol-
ogy, meteorology, and agriculture. From a hydrologic viewpoint,
the significance of soil moisture is in its role in partitioning precip-
itation into runoff and infiltration and controlling storage and
drainage [14,25,28]. In recent years, remote sensing has provided
a crucial solution for assimilating surface soil moisture into hydro-
logic models, thereby improving the prediction of substantial
hydrologic variables, such as root-zone soil moisture, evapotrans-
piration, and surface runoff [49,52,56].

Since the 1990s, remote sensing has demonstrated its utility in
the spatial and temporal characterization of surface soil moisture
and has overcome the limitations of the sparsely distributed point
measurements of traditional in situ networks [25,47]. With the
launch of the SMOS (Soil Moisture and Ocean Salinity) satellite,
and the SMAP (Soil Moisture Active and Passive) mission on the
agenda, satellite-based global observations of surface soil moisture
(0-5 cm) will soon furnish complementary information to enhance
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the estimations of other hydrologic states, especially for flood
forecasting [15,29]. The information on the moisture condition in
the subsurface and root-zone layers is crucial for improving flood
forecasting, water resource management, and the comprehension
of hydrologic processes. A number of studies have focused on
how to integrate the surface soil moisture into land surface and
hydrologic models from the local to the global scale [4,8,24,27,
33,37,39,51,59,60]. However, there is still a lack of knowledge on
how to efficiently employ remotely sensed soil moisture data in
catchment-scale hydrologic models, especially in distributed and
semi-distributed models [12,23,57,62].

Data assimilation techniques have been utilized in meteorology
and oceanography for decades, and the commonly applied meth-
ods can be roughly divided into two categories: variational tech-
niques and filter techniques [13,17]. Both techniques have
recently been adopted in hydrologic data assimilation frameworks.
Reichle et al. [50] used a four-dimensional variational method to
estimate large-scale soil moisture profiles, and Lee et al. [31] car-
ried out a series of real-world experiments with streamflow data
assimilated into a distributed hydrologic model via a variational
method. To examine the behavior of the ensemble Kalman filter
(EnKF) in a hydrologic data assimilation framework, Xie and Zhang
[62] diagnosed the augmented state-parameter assimilation in
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catchment modeling, and Chen et al. [6], Han et al. [23] both assim-
ilated synthetic soil moisture and in situ measurements into a
semi-distributed hydrologic model to improve the estimation of
important variables. The results were positive in these synthetic
experiments. However, in practical applications, where more
uncertainties arise, more difficulties will be encountered. The re-
cent advancements in the Particle filter (PF) have suggested that
the promising Markov Chain Monte Carlo (MCMC) reduces the
parameter sample impoverishment with a manageable ensemble
size. Both the synthetic and real experiments achieved more accu-
rate streamflow predictions with PF-MCMC in comparison to the
traditional PF approach [43]. Meanwhile, the smoother techniques,
such as the ensemble Kalman smoother (EnKS), have been proved
to perform well in land surface assimilation and other domains
[13,18,21,46,58], but until now have been inadequately investi-
gated for use in hydrological data assimilation. Therefore, the
effectiveness and capabilities of this technique need to be tested
and verified in a hydrological data assimilation framework. The po-
tential influencing factors (especially the spatially heterogeneous
geographic information) and the remedies for the limited ensem-
ble size and the sizeable model forecast error are also explored
in detail.

In this work, the study region is located in the upper reaches of
the Heihe River Basin in northwest China. Synthetic experiments
are designed to assess the potential of EnKS in improving the
prediction of hydrologic variables, including root-zone soil water
content (SWC), evapotranspiration, surface runoff, and lateral flow,
by assimilation of the surface SWC under different conditions.
Additionally, various other factors are diagnosed in detail. The
remainder of this paper is organized as follows. Section 2 presents
the basic principles of the methodologies and the hydrologic pro-
cesses of the SWAT model, especially emphasizing the soil water
dynamics. Section 3 describes the study area and basic informa-
tion, as well as the design and implementation of the experiments.
The diagnostics of the capability and sensitivity of EnKS are dis-
cussed in Section 4. Finally, Section 5 provides a brief summary
and describes the directions of future work.

2. Method and model
2.1. The ensemble Kalman filter

Because the chosen method is an important variant of the EnKF,
we explain its mechanism starting from the EnKF. The EnKF was
first proposed by Evensen [16], based upon the standard Kalman
filter formulations and Monte Carlo method to estimate states
and parameters in large high-dimensional nonlinear dynamics.
The error covariance of the model forecast state is computed based
on the ensemble generation produced by adding Gaussian white
noise to the model state and/or forcing data. Let y/(t) be the ensem-
ble of the model states at time t, which is propagated forward using
the full nonlinear hydrological model, A[ e ]. Thus, the model fore-
casting can be expressed as:

Y (6) = Ay (£ = 1), ot u(t), w(t)] (1)

where y%(t — 1) is the analysis results at time t — 1, which combines
the model forecast and observations whenever available, and o, u(t),
and w(t) are the time-invariant parameters, forcing data, and fore-
casting error, respectively.

The observation z(t) is related to states through the measure-
ment operator H[ e |:

z(t) = Hy/(t), p] + &(t) (2)

where ¢(t) represents independently and identically Gaussian dis-
tributed observation errors with the covariance matrix R, and f is

the measurement parameters related to the observational operator.
Whenever observations are available, the model forecast is updated
using the Kalman gain, which weights the relative uncertainty of
the simulated estimation and observation:

Yo() = Y () + K{z(t) + &(t) - HY (6)]} 3)
where the Kalman gain K is calculated from the ensemble statistics:

K = PH'(HPHT +R) ' (4)
Here, P is the model forecast error covariance matrix. In practice,
PHT is the cross covariance between the predicted model state
y(t) and its transformed value H[y/(t)] in the observation space,
and HPHT is the error covariance of the transformed forecasting
states H[y/(t)]. Matrices PHT and HPH' are computed using the
ensemble realizations of the model forecast and its transformation
in the observation space. Each ensemble member is updated indi-
vidually, and the averaged ensemble diagnostic variables are trea-
ted as “true” or analysis values.

2.2. The ensemble Kalman smoother

The EnKS [18] is an extension of the EnKF in which the states
and observations are distributed in time and space, and the aug-
mented state vector is updated via the EnKF. The EnKF solution
is the “first guess” of the EnKS, and a smoother solution can be
found by including the impact of measurements backward in time
[17].

The EnKS requires only forward model runs and no backward
integrations of the model equations [13,18]. The forward model
runs through to the end of the smoother window to achieve the
forecasting states. Thus, the augmented state vector Y containing
states y at the time steps of interest is as follows:

Y=yl (5)

In addition, the augmented measurement vector Z contains all
the observations in the smoother window that are temporally
and spatially independent:

Z=z122-Zm| (6)

The above-mentioned EnKF formulas are then utilized to yield a
solution. The implementation of the EnKS requires that the ensem-
ble during the prior times must be stored and able to be updated
whenever new observations become available [13].

2.2.1. Inflation

The successful application of the EnKF and EnKS is highly
dependent on the accurate estimation of the model forecast and
the observational error covariance matrices. Many researchers
have been making efforts to improve the estimation of error
covariance matrices and forecast bias to take into account limited
ensemble size and ambiguous model intrinsic bias. Recently, Wu
et al. [61] have introduced the second-order least squares statistic
(SLS) and an iterative feedback framework to generate a more
accurate background forecast error covariance matrix. The itera-
tion is conducted within one time step, and thus the notation of
the time step is eliminated in the following formulae. Without
the consideration of adjusting observational error covariance ma-
trix R, the inflation factor y; for the background error matrix can
be achieved by minimizing the objective function L[ e ]:

L(y) =Tr {(ddT — y,HP,H" — R) (ddT — y,HP,H" — R) T} 7)

where d is the filter innovation between the actual and predicted
observations, d =z — H(y) and P; is the forecast error covariance
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matrix of i th iteration with P; = P. Then, an improved analysis state
y¢ can be updated by including this inflation factor.

i P (P ) ®

Thus, the estimation of the forecast error covariance matrix Pj.q
could be improved with the feedback information from the
updated states y¢:

Pt - ﬁjz(yf ) ©

where N is the ensemble size. In real applications, where the true
states are uncertain, the analysis state, which combines the model
forecast and observations together, would be a more accurate esti-
mate of the actual situation than the model forecast. Therefore, the
forecast error covariance matrix is adjusted to y;.1P;.1, where

) _ Tr[HP;,1H"(dd" — R)]
"1 Tr[HP,1H'HP;,1H"]

(10)

is estimated by minimizing the objective function L(};+,). The itera-
tion for computing the inflation factor and forecast error covariance
matrix would not stop until the criterion is satisfied; that is, the
difference of the objective function value between two successive
iterations is less than a predefined threshold.

2.2.2. Localization

The inflation of the forecast error covariance matrix can thwart
the filter divergence to some extent. However, small background
correlation errors between distinctive states and remote observa-
tions still exist. Localization is a possible solution to filter these er-
rors and to then obtain a compactly supported background error
covariance matrix [26]. The kernel component of localization is
the construction of the correlation function. In this study, a fifth-
order piecewise rational function of Gaspari and Stephen [20] is
adopted to generate the important correlation function p. The
distance D;; is the Euclidean distance between the two state points
yi and y;. We define an influential length scale L and let
F = 1/10/3 L. The ratio between the actual distance and the influ-
ential length is ¢ =D;;/F. Thus, the correlation function is as
follows:

ool s sty 0<o<1
plJ)=q8 245 5% 55,4 2 1<6<2 (11)
0, 5>2

Apparently, this function is isotropic and decreases monotoni-
cally with the ratio 6, which mimics the real-world situation
between different states [22]. The Kalman gain K is subsequently
refreshed:

K= [(p oP)HT] [H(pop)HT +R]71 (12)

where the notation o denotes the element-by-element matrix
multiplication (also called the Schur product). With the local sup-
port from a fifth-order correlation function, redundant or invalid
correlation errors associated with remote observations and states
are filtered out [26]. In this study, the influential length scale is re-
ferred to as the temporal scale, where the correlation between two
states at different time steps decreases with the time difference
increasing. The temporal compactness or localization conforms to
the reality and is quite reasonable with respect to hydrologic
phenomena, such as rainfall-runoff processes.

2.3. The Soil and Water Assessment Tool

The Soil and Water Assessment Tool (SWAT) is a watershed-
scale, time-continuous, semi-distributed and physically based
hydrologic model. It was developed to assess the impact of land
management practices and climate variability on the water avail-
ability and quality response of complex watersheds with heteroge-
neous land use and soil conditions [1]. The SWAT model operates
on a daily step and is widely utilized for its effectiveness and
capability in water resource management.

In a SWAT simulation, a watershed is first subdivided into sub-
basins, according to the DEM, then each subbasin is further divided
into hydrologic response units (HRUs), based on the spatially het-
erogeneous land cover, soil characteristics and slope. The hydrol-
ogy is separated into two major partitions: (a) the land phase
and (b) the routing phase. Here, we exclusively focus attention
upon the fundamental physical processes of flow generation and
soil water dynamics. The 2009 version of SWAT is used in this
study, and detailed information on the hydrological processes is
given by Neitsch et al. [53].

2.3.1. Flow generation
Hydrological processes, including surface runoff, are based on a
water balance equation, with a daily step at the HRU scale:

t
SWt = SWO + Z(Pi - qurf.i - ETi - Wperc,i - ng1) (13)

i=1

where SWy is the initial SWC at the beginning of the simulation
(mm H,0), and SW, is the SWC at the end of day t (mm H,0). P; is
the total precipitation on day i, and Qsursi, ETi, Wpercis and Qgy,; are
the daily amounts of surface runoff, evapotranspiration, percolation,
and return flow on day i (mm H,0), respectively.

In the SWAT model, the total streamflow Q; consists of surface
runoff Qsr; subsurface lateral flow Qq; and groundwater flow

Qgw,i on day i
Qi = Qgui + Quaei + Qg (14)

Surface runoff is the main component of streamflow and deter-
mines the soil moisture in profiles. It can be estimated using either
the modified SCS curve number (CN) procedure or the Green-Ampt
infiltration method, depending on the availability of daily or hourly
precipitation data. Here, in this paper, the modified SCS CN method
is chosen according to the available daily precipitation data.

The processes are carried out at the HRU level and, subse-
quently, water from these generations is aggregated at the subba-
sin level. Through the routing phase of the hydrologic cycle, the
total runoff is generated in the channel network, producing the
streamflow at the outlet.

2.3.2. Soil water dynamics

Soil moisture plays an important role in determining other
processes, including surface runoff, lateral flow, and evapotranspi-
ration. According to the water balance equation, the dynamics for
soil water in each layer at the HRU scale on a daily basis can be
expressed as follows:

SW;y_,' = Sle.i + Wperc,ly,i - Qlat.ly‘i - ETa‘Iy.i (15)

where SW?W and SW),; represent the SWC at the end and beginning
of day i, respectively; Wpery, is the net percolation that enters the
layer ly; and Qua1y,i and ET,,; are the lateral flow and evapotranspi-
ration drawn from the layer ly, respectively. For the surface soil
layer, the amount of infiltration is the difference between the pre-
cipitation and the surface runoff.

To diagnose the performance of data assimilation on the hydro-
logic cycle of the SWAT model, we exclusively select four primary
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states, as shown in Table 1. The specifications of these states are
shown by Neitsch et al. [45].

3. Experiment
3.1. Study area and model data

In this paper, the Babaohe watershed located in the upper
reaches of the Heihe River Basin in semi-arid northwest China is
selected (Fig. 1). This watershed varies greatly from 2669 to
4974 m in elevation and covers 2350.44 km?. Grassland and brush
are the two dominant land-cover types, and the main soil types are
alpine meadow soil, alpine frost desert soil and chestnut soil [34].
The area receives approximately 526 mm of annual precipitation,
of which nearly 70% falls between June and September. The daily
average temperatures range from —14 °C to 20 °C.

The topographic information, land use, soil type, and daily
meteorological record datasets were required for incorporation
into ArcSWAT, an ArcGIS interface for the SWAT model. The spatial
delineation of the subbasins and HRUs is based on the DEM, land
cover and soil data, whose horizontal resolution is an important
factor when deciding the number of subbasins and HRUs. In this
work, the stream network and subbasins are delineated from the
300 m horizontal resolution DEM by resampling the DEM data at
30 x 30 m via bilinear interpolation, which is enough for the
streamflow simulation and can somewhat reduce the computa-
tional cost [5,3]. Based on the topographic information, the wa-
tershed is divided into 27 subbasins, and the further division of
subbasins into HRUs is based on the land cover and soil informa-
tion. The land cover information is provided from the Chinese Na-
tional Land Cover Data (NLCD) Set 2000, generated by visual
interpretation of the Landsat TM and ETM+ images acquired pri-
marily in the year 2000 [36]. The Chinese NLCD 2000 data for the
Babaohe watershed is reclassified into six different land cover
types (Table 2). The soil obtained from the Harmonized World Soil
Database [19] is reclassified into seven types (Table 3). Thus, we
obtained 27 subbasins after watershed delineation and 292 HRUs
after the overlay of land cover, soil data and slope.

An additional complication is the lack of uniform soil layer
depths between HRUs, resulting from the original soil data, which
makes it difficult to obtain the forecast cross covariance term when
performing the data assimilation [6]. Therefore, the soil profiles
across the watershed are resampled into five vertically consistent
layers, with the bottom depths of 5, 15, 30, 60 and 100 cm. The sur-
face soil layer has a depth of 5 cm to be consistent with the surface
soil moisture data retrieved from remote sensing.

The daily meteorological data, including precipitation, maxi-
mum/minimum temperature, wind speed, relative humidity and
solar radiation, were obtained from three meteorological stations:
Qilian (38.19 N, 100.24 E), Minle (38.44 N, 100.83 E) and Yong-
chang (38.18 N, 101.58 E), located in the vicinity of this watershed.
Based on the mechanism in the ArcSWAT interface, the meteoro-
logical data assigned to a subbasin comes from the nearest station
[38]. Three subbasins situated in the southeast of the Babaohe
watershed are assigned records from the Yongchang station with
extremely inaccurate measured precipitation. The influence of

inaccurate precipitation quantities will be shown in the next sec-
tion. The daily streamflow data have been measured at the outlet
of the Babaohe watershed, the Qilian hydrologic station, since
1978. These measurements from the stations are utilized to cali-
brate the model and generate “synthetic true” states and observa-
tions in the Observing System Simulation Experiment (OSSE)
framework [40]. However, the absence of surface soil moisture
observations at the HRU spatial level necessitates an additional
meteorological forcing dataset from another distinct source. Data-
sets simulated by the Weather Research and Forecasting model
(WRF) with resolutions of 5 km/1 h were validated over the Heihe
River Basin [48] and therefore aggregated into the daily data. Spe-
cial forcing datasets assigned to the three stations were obtained
from the corresponding grid points.

3.2. Experiment design

3.2.1. SWAT calibration

To construct the data assimilation framework, the SWAT model
is calibrated for three years using the recorded daily streamflow
data measured at the outlet from January 1, 2005 to December
31, 2007. Before calibration, the model is spun-up for three years
from January 1, 2002 to December 31, 2004. A sensitivity analysis
is also performed for the sake of the parameters being selectively
optimized. According to the sensitivity analysis, a total of 16
parameters are chosen, including ESCO, CN2, CANMX, SOL_K,
HRU_SLP, GWQMN, SOL_AWC, ALPHA_BF, CH_K2, EPCO, SURLAG,
SOL_ALB, GW_DELAY, CH_N2, GW_REVAP, and SLSUBBSN, sorted
by the degree of sensitivity (Table 4). The validation covers the
whole year 2008. To assess the performance of the SWAT model,
two evaluation metrics are chosen: the Nash-Sutcliffe efficiency
and the coefficient of determination [44]. During the calibration
period, they are 0.55 and 0.68, respectively. During the validation
period, the corresponding values are 0.52 and 0.64, respectively.
Both metrics show the effectiveness of the parameters and their
applicability to the data assimilation framework [23,44].

Among these parameters, ESCO and EPCO are important in
determining the vertical soil water coupling strengths between
two adjacent soil layers [30,35]. As ESCO decreases and EPCO in-
creases, more evaporative and plant uptake demands will be
drawn from the deeper layers when water demand cannot be sat-
isfied by the upper layers, thus strengthening the vertical coupling
within the soil profile [6]. After calibration, they are 0.84 and 0.20,
respectively, representing a moderately loose coupling strength.

3.2.2. Assimilation experiments

In this study the performance of the EnKS and improvements
derived from the inflation factor and localization, associated with
a semi-distributed hydrologic model, are the main objectives.
Therefore, a typical data assimilation framework is constructed fol-
lowing the specification of the OSSE [40]. Four key components are
important. (1) A “true” or “control” hydrologic simulation is gener-
ated with station-based meteorological forcing records and
calibrated parameterization scheme. (2) Based on the “true”
scenario, synthetic observations (surface SWC) are obtained by
taking into account the observational error. (3) The ensemble of

Table 1
List of selected dynamic states.
Order State variable Definition Level
1 SW_SOL Amount of water stored in soil layer for each HRU (mm H,0) HRUxNlay
2 SUR_Q Amount of surface runoff contribution to stream flow in the main channel from the HRU (mm H,0) HRU
3 LAT_Q Amount of lateral flow contribution to stream flow from the HRU (mm H,0) HRU
4 ET_A Actual evapotranspiration (soil evaporation and plant transpiration) from the HRU (mm H,0) HRU
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Fig. 1. Study area: the Babaohe watershed, northwest China.
Table 2

Land cover information of the Babaohe watershed.

Land cover classification Area
(km?) Proportion (%)
RNGE Range, grasses 1032.77 43.94
FRST Mixed forest 798.16 33.96
WETN Wetland, non-forested 426.72 18.15
WATR Water 85.27 3.63
URMD Residential, medium density 417 0.18
AGRL Agricultural land 3.35 0.14
Table 3

Soil types of the Babaohe watershed.

the meteorological forcing dataset is generated based on the WRF
model simulation and then utilized to trigger the SWAT model.
Within this “ensemble open loop” (EnOL) scenario, the hydrologic
parameters are calibrated in a previous and well-warmed initial
condition, which is achieved through a three-year spin-up period
as the true scenario. (4) The EnKS, the key technique of combining
the model forecast and the observations, is further improved with
novel methods, such as the novel SLS-based inflation factor [61].
These approaches are capable of generating a more accurate back-
ground error covariance matrix and thus improving the estimates.
Particularly, the SLS-based inflation factor and localization are
diagnosed in this hydrologic data assimilation framework. The
flowchart of the OSSE experiment is depicted in Fig. 2.

Soil types Area Hydrologic soil group Specifically, the twin synthetic experiments are conducted to
(km?)  Proportion (%) inspect how the assimilation of surface SWC improves the root-
LPi  Gelic leptosols 90010 3830 A zone SWC and other hydrologic states with different implementa-
CMi  Gelic cambisols 443.85 18.88 C tions of the EnKS from June 1 to September 30, 2008. The original
LPe  Eutric leptosols 44240 18.82 B standard implementation of the EnKS (EnKS-O scenario) is first
II;I;T g/lacl’igﬁiiepmso's 3;3“51? ]Z'gz E applied to examine its performance in hydrologic data assimila-
phaeozems ' ’ tion. Moreover, the assimilation with improved or enhanced
CHI  Luvic chernozems 68.69 292 D implementation of the EnKS via the SLS-based inflation factor
HSs  Terric histosols 5147 219 B and localization (EnKS-E) is also conducted. The comparison
Table 4
Description of the calibrated model parameters.
Order Variable name Definition Level
1 ESCO Soil evaporation compensation factor HRU
2 CN2 Initial SCS runoff curve number for moisture condition II HRU
3 CANMX Maximum canopy storage HRU
4 SOL_K Saturated hydraulic conductivity HRU
5 HRU_SLP Average slope steepness HRU
6 GWQWN Threshold depth of water in the shallow aquifer required for return flow to occur HRU
7 SOL_AWC Available water capacity of the soil layer HRU xNlay
8 ALPHA_BF Baseflow alpha factor HRU
9 CH_K2 Effective hydraulic conductivity in main alluvium SUBBASIN
10 EPCO Plant uptake compensation factor HRU
11 SURLAG Surface runoff lag coefficient BASIN
12 SOL_ALB Moist soil albedo HRU xNlay
13 GW_DELAY Groundwater delay time HRU
14 CH_N2 Manning’s “n” value for the main channel SUBBASIN
15 GW_REVAP Groundwater “revap” coefficient HRU
16 SLSUBBSN Average slope length HRU
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Fig. 2. Flowchart of the OSSE experiment.

between the twin experiments may be sufficient to investigate the
capability and efficiency of the EnKS.

Within the iteration of the calculation of the inflation factor and
the background error covariance matrix, the localization and
boundary truncation are repeated to reduce the analysis error. This
adjusts the analysis value to the minimum (10~%) or maximum
(saturated soil water content minus 10~°) value whenever the up-
dated soil moisture estimate exceeds the boundary limitation. This
boundary truncation confines the final output to a reasonable
range and eliminates the violation caused by numerical computa-
tion. In practical experiments, the objective function converges
after 4-6 iterations; thus, the shift of mean values by one boundary
truncation could be removed.

3.2.3. Evaluation metrics

To evaluate the performance of the assimilation, the time series
of SWC and other representative hydrological states obtained from
the true, ensemble open loop, and assimilation scenarios are com-
pared to each other. Two metrics are chosen, root-mean-square
error (RMSE) and mean bias error (MBE):

RMSE =

(S Ti)?
+ (16)

N
MBE — 2i=1(5i = Ti) 17)
N

where T; and S; represent the ith value of true and simulated
(ensemble open loop or assimilation scenario) hydrologic variables,
respectively, and N is the total number.

To measure the magnitude of the improvement, a normalized
error reduction (NER) index, which has been used in previous
research [6], is introduced:

RMSE,

NER:lfm

(18)
where RMSE, and RMSE, represent the root-mean-square errors of
the ensemble open loop and assimilation scenarios, respectively.
NER varies from negative infinity to 1.0, with 1.0 representing the
analysis results identical to the true value after assimilation. A

negative NER means deterioration in the assimilation after the open
loop.

Moreover, a typical measure, called the normalized root-mean-
square-error ratio (NRR) [41], is used to investigate the quality of
the generated ensemble in this ensemble assimilation and analysis
framework.

2N RMSE"

NRR = {/——
VN+1" RMSE"
where RMSE™ and RMSEM represent the time-averaged RMSE of the
ensemble mean and the mean RMSE of the ensemble members,
respectively, T is the total time step, and N is the ensemble size.

The identical value of NRR is 1, NRR>1 indicates too narrow a
spread, and NRR < 1 indicates an ensemble that is too wide.

(19)

3.3. Implementation of EnKS into SWAT

3.3.1. Specifications of the forcing data

To a large degree, the accuracy of the model output is depen-
dent upon the quality of the input datasets, including their spatial
and temporal resolution [2,3]. Among the datasets, precipitation is
one of the most important because of its role in determining
hydrologic processes between the surface and vertical soil layers
[54,55]. The rainfall data are often obtained from rain gauge
stations, which generally capture only a fraction of the true
precipitation. In this paper, the precipitation is assumed to have
a lognormal distributed error following the criteria of Moradkhani
and Meskele [41], which assumes a heteroscedastic error

variance:
P2
inp =1 | (20)
Pt + (Ocp . Pt)
2
Ginp = | In (waﬂ +1> (21)
Pt
Pi = eXP(tynp + Pp; - Oinp) (22)
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where P; and Pﬂ are the observed and perturbed precipitation at
time ¢, respectively. The log transformation of Pi is a Gaussian dis-
tribution with mean, ty,p and standard deviation, o,p. op is the var-
iance scaling factor of precipitation with a set value of 0.5, and ¢p;
is a standard normally distributed random number, with i varying
from 1 to 50 because the ensemble size is set to 50.

The ensemble of temperature (maximum and minimum tem-
peratures) is generated as follows:

T =Ti+or- @, (23)

where T; and Ti are the observed and perturbed temperature at time
t, respectively, ¢r; is a standard normally distributed random num-
ber with a homoscedastic error assumption, and oy is the variance
scaling factor of temperature with a value of 2.0.

3.3.2. Specifications of the observations

The aggregated daily meteorological forcing datasets by the
WRF simulation are employed to generate the “ensemble open
loop” scenario. Meanwhile, the simulation with forcing based on
station measurements is treated as the “true” or “control” scenario.
The synthetic observations (surface SWC) are generated from the
“true” scenario by adding random perturbation:

Zo=z-(14+0;-¢,) (24)
where z, represents the synthetic surface SWC observations, z is the
“true state” obtained from the true scenario, and ¢, is a normally

distributed random number with the observational variance scaling
factor, o, and 0.1 is assigned to this scaling factor.

4. Results and discussion

To illustrate the capability of the EnKS to reduce the influences
of inaccurate meteorological data and poor initial conditions, two
assimilation experiments are conducted to analyze the impact of
assimilating surface soil moisture on root-zone soil moisture and
other primary hydrologic states under different configurations dur-
ing the period from June 1 to September 30, 2008. In the following
parts, the simulation results forced with station-based meteorolog-
ical datasets are referred to as “TRUE”. The ensemble mean results
of the open loop simulation with WRF simulation as input are re-
ferred to as “EnOL”. The ensemble mean values of the data assim-
ilation via the original standard EnKS are referred to as “EnKS-O".
Moreover, the improved EnKS with the inflation factor and locali-
zation is also applied to further improve estimation and is referred
to as “EnKS-E”. Unless otherwise noted, the length scale of the
localization is set to 10.

4.1. Soil water content and predictor hydrologic variables estimation

The watershed area-averaged SWC of the five soil layers within
TRUE, EnOL, EnKS-0, and EnKS-E are demonstrated in Fig. 3. In gen-
eral, soil water content is slightly overestimated in the EnOL sce-
nario, despite a relatively low amount of total precipitation.
Compared to the EnOL scenario, both the original standard EnKS
and the improved EnKS with the inflation factor and localization
have improved the SWC estimation in the upper three layers (0-
30 cm; Fig. 3a-c). Particularly in the EnKS-E scenario, the soil mois-
ture estimation maintains good agreement with the true value
(Fig. 3a). The error statistics are listed in Table 5. For the surface
SWC estimation, the RMSE (MBE) is 1.19 (0.27) for EnOL, 0.90
(—-0.43) for EnKS-0O, and 0.29 (-0.01) for EnKS-E. Moreover, the
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Fig. 3. Comparison of the area-averaged SWC between the TRUE (black solid line), the EnOL (red dashed line), the EnKS-O (green dash-dot line), and the EnKS-E (blue dash-
dot line) scenarios from June 1st to September 30th, 2008: (a) 0-5 cm, (b) 5-15 c¢m, (c) 15-30 cm, (d) 30-60 cm, (e) 60-100 cm, and (f) 0-100 cm (unit: mm H,0). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Error statistics of the hydrologic variables between the results with ensemble simulation/assimilation and TRUE during June 1st to September 30th, 2008. Here, EnOL, EnKS-0, and
EnKS-E represent the ensemble mean results of the open loop simulation, the assimilation with the standard EnKS, and the assimilation with the enhanced EnKS, respectively.

Metric Variables
SW(1) SW(2) SW(3) SW(4) SW(5) SW ET SURQ LATQ
NRR EnOL 1.38 1.27 1.21 1.35 1.40 1.40 1.37 1.39 1.34
EnKS-O 1.34 1.24 1.20 133 1.36 1.34 1.40 1.15 1.32
EnKS-E 1.04 1.23 1.23 1.30 1.33 1.27 1.40 1.13 1.32
RMSE EnOL 1.19 1.55 2.28 3.50 5.15 9.77 1.16 1.07 0.78
EnKS-0 0.90 1.21 2.12 1.95 0.30 4.68 1.22 0.48 0.71
EnKS-E 0.29 1.24 241 2.89 0.39 5.81 1.32 0.53 0.71
RMSE-A EnOL 1.40 2.08 3.50 4.41 5.40 12.20 1.29 1.11 0.83
EnKS-O 1.50 2.46 4.59 3.81 0.67 8.85 1.76 0.56 0.86
EnKS-E 0.34 1.85 3.65 3.60 0.58 7.60 1.47 0.55 0.75
MBE EnOL 0.27 -0.10 0.43 242 5.14 8.15 -0.85 0.09 -0.11
EnKS-O -0.43 0.25 0.64 0.22 0.05 0.73 -0.78 -0.01 —0.40
EnKS-E -0.01 0.41 0.85 1.65 0.28 3.19 -0.94 -0.01 -0.16

overestimation in the fifth layer is significantly reduced, and thus
promising profile SWC estimations are achieved in both scenarios
(Fig. 3e and f). Compared to EnOL, the RMSE is reduced to 4.68
for EnKS-O and 5.81 for EnKS-E. The reduced RMSE values are ob-
served in all soil layers and demonstrate the positive effects of both
approaches.

The comparisons between the watershed-averaged SWC esti-
mations achieved through different implementations of the EnKS
seem to exhibit that the enhanced approach has a non-dominated
advantage over the original standard version. Except for the sur-
face soil layer, the RMSE value of the EnKS-E is larger than the cor-
responding value of the EnKS-O. However, the area-weighted
RMSE (RMSE-A) of all the HRUs in the watershed is smaller in
the EnKS-E scenario, indicating a steady and smooth performance
with improved estimation over the study basin. For example, the
area-weighted RMSE of the surface (profile) SWC for EnOL, EnKS-
O, and EnKS-E scenarios is 1.40 (12.20), 1.50 (8.85), and 0.34
(7.60), respectively. Within the implementation of the standard
EnKS, overestimation and underestimation in different HRUs
mutually compensates each other, leading to a deceitfully better
estimation. Actually, the ensemble of the forecast states is too nar-
row with a NRR larger than 1 for all variables. The background er-
ror covariance matrix is underestimated, leading to an inferior
performance of the EnKS. Nevertheless, the SLS-based inflation fac-
tor provides a moderate multiplicative factor to account for the
limited ensemble size and the inaccurate model error estimation.
Further improvements are obtained by filtering out the redundant
and improper remote observations within the implementation of
localization.

Because the SWC plays a crucial role in determining the land
phase of the hydrologic cycle, the changes in the SWC also subse-
quently influence other hydrologic components, such as evapo-
transpiration, surface runoff, and lateral flow. The estimates of
important hydrological variables within the different scenarios
are presented in Fig. 4. The EnOL scenario underestimates these
hydrologic variables, especially the evapotranspiration and the lat-
eral flow with negative MBE. Notwithstanding the promising re-
sults observed in the SWC estimation, only trivial improvements
exist in surface runoff and lateral flow. Moreover, the increased
RMSE values of the evapotranspiration for both approaches reveal
a destructive effect of the data assimilation. The underestimation
of evapotranspiration still persists even after the assimilation of
surface SWC. The RMSE (MBE) is 1.16 (—0.85) for the EnOL, 1.22
(—0.78) for the EnKS-O, and 1.32 (—0.94) for the EnKS-E. As for
the surface runoff, a remarkable overestimation of peak values
emerges within the EnOL. Despite the correction of the absolute
peak values, the lag time between different rainfall events has

barely improved. Meanwhile, the lateral flow is slightly improved
with reductions in the RMSE from 0.78 for EnOL to 0.71 for the
two approaches. For the predictor hydrologic variables, the assim-
ilation of surface soil moisture has few improvements over the
open loop simulation. The information contained in the surface soil
moisture is insufficient to impact these hydrologic variables. Fur-
ther enhancements can be achieved by including other data
sources, such as in situ streamflow records [7].

From the ensemble quality point of view, the EnOL scenario has
a quite narrow spread, indicating an overconfident estimation of
the forcing datasets and the parameter uncertainties with NERs
larger than 1. The NRRs in Table 5 demonstrate the quality of the
ensemble for different scenarios and variables. With the imple-
mentation of standard and enhanced EnKS models, the NRR is re-
duced. In particular, the enhanced EnKS with the inflation factor
and localization, which adjust the background error covariance
matrix, is better at characterizing the ensemble spread. Therefore,
the NRR of the surface SWC is reduced from 1.38 to 1.34 and 1.04
for the EnKS-0 and EnKS-E scenarios, respectively. For evapotrans-
piration and lateral flow, the improvements are trivial.

4.2. The spatial variation of the hydrologic variables

The temporal evolution of the SWC is improved by the assimi-
lation of the surface SWC into the SWAT model, especially with
the implementation of the enhanced EnKS with the inflation factor
and localization. This section illustrates the impacts of the spatially
heterogeneous input information, including meteorological data,
soil type and land cover, on the performance of the standard and
enhanced EnKSs. Usually, an HRU map is created by overlaying a
land cover map on a soil map before the SWAT simulation and
assimilation, to demonstrate the spatial variation of improvement.
The time-averaged RMSE maps of the surface and profile SWCs, the
evapotranspiration and the lateral flow are shown in Fig. 5. The
spatially distributed RMSE map effectively characterizes the spatial
variety of improvement and exposes the factors that influence the
performance.

The results demonstrate, through smaller RMSE values, that the
enhanced EnKS in general outperforms the original standard
implementation of EnKS. Compared to the surface SWC in EnOL
(Fig. 5a), the EnKS-O (Fig. 5b) reveals a slight change in the south-
east. For other parts of the watershed, no obvious improvements or
even deteriorations emerge. Due to the mechanism of the SWAT
model, the rain gauge closest to the subbasin is assigned to the
trigger model. However, due to the limited availability of the origi-
nal data, only three rain stations are utilized in this work, which
may be inadequate [54]. Nonetheless, the uncertainty introduced
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by meteorological forcing is greatly eliminated by the enhanced
EnKS, as shown in Fig. 5c. As for the profile soil water content, both
approaches have reduced the estimation error. Obviously, much
more promising and steady improvements of the profile SWC are
achieved in the EnKS-E scenario (Fig. 5f). The background error
covariance matrix is inflated and better characterized through
localization. However, the RMSE of evapotranspiration over the en-
tire watershed have increased following the assimilation of the
surface SWC in both implementations.

An interesting phenomenon emerges with the estimation of the
lateral flow: the margins of the watershed have relatively larger er-
rors. The distribution of the RMSE correlates with the soil type map
(Fig. 1), signifying a relationship between the estimation of lateral
flow and the physical soil characteristics. The significant impacts
from the inaccurate forcing data observed in the surface and profile
soil layers and the evapotranspiration (Fig. 5a, d, and g) have disap-
peared. Therefore, we can conclude that the lateral flow is signifi-
cantly influenced by the original soil physics instead of by the
extrinsic forcing datasets, such as precipitation.

4.3. The influence of land cover and soil type

The land cover and soil type determine the relevant parameters
and physical properties that govern the movement of water and air
throughout the soil profile [45], and thus affect the estimation of
important hydrologic variables. The different soil hydrologic
groups imply distinct infiltration characteristics. Group A, which
is classified by LPi, indicates a high infiltration rate and water
transmission, even when thoroughly wetted. Correspondingly,
groups B, C, and D have moderate, low and very low infiltration
rates, respectively. A high infiltration rate indicates a strong
vertical correlation, and vice versa. The type of land cover, which
plays a prominent role in determining the value of the CANMX
parameter, significantly influences the infiltration, surface runoff
and evapotranspiration. Technically, both land cover and soil type
affect the behavior of the EnKS [11]. The investigations below are
based on the EnKS-E scenario. Because the area proportion varies
between different land cover and soil types, the diagnosis of the
magnitudes is not easy. Fig. 6 shows the box and whisker plots
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Numbers on each map indicate the subbasin number.

of the NER (normalized error reduction) under various conditions.
In terms of the land cover type (Table 2), WETN (Fig. 6a), the third
largest area of land cover, demonstrates a broad distribution of
NERs, indicating large differences in the improvements. Due to
the many factors that influence the hydrologic processes of wet-
lands, the assimilation method behaves arbitrarily across the wa-
tershed. RNGE (Fig. 6a, ¢, and e), comprising the majority of the
land cover, exhibits a relatively smaller distribution for the surface
and profile SWCs. Simultaneously, the statistics reveal a greater
improvement in RNGE (higher median value) and a limited correc-
tion of FRST (lower median value). Not only is the median of FRST

small in comparison to RNGE but a wide-ranging distribution also
exists, implying unstable improvements. The spatially heteroge-
neous land cover affects the physics of the hydrologic processes
and thus influences the ensemble spread of the EnOL/EnKS-E
scenario.

As for the soil type (Table 3), the improvements of the surface
and profile SWCs under different soil types are varied, as shown
in Fig. 6b and d. The PHc demonstrates a wide spread with small
area proportion for surface SWC. However, the NERs of most soil
types for the profile soil layer range from zero to 0.8, indicating
that factors influencing the final estimation are variable. The soil
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type influences the subsurface hydrology, including infiltration and
lateral flow. The statistics show an obvious correlation between
different soil types and the degrees of improvement of lateral flow.
The lateral flow in the profile soil layer (Fig. 6f) is significantly
influenced by the infiltration rate, with a greater improvement in
LPi and a moderate improvement in CHI. The vertical coupling is
strengthened in soil types with a high infiltration rate; thus, the
lateral flow is moderately improved through the assimilation of
the surface SWC.

4.4. Influence of adjusting the forecast error covariance matrix

Despite the explanations given above, there are other factors
that influence the behavior of the EnKS in the hydrologic data
assimilation, such as the physics of model [10], the ensemble size
and the observational error estimation [42]. Therefore, some spe-
cific investigations are needed to better characterize the perfor-
mance of this approach. In this section, we focus on the sole
impact with the SLS-based inflation factor, or localization. Further,
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Fig. 7. Effects of the adjusting methods on the estimation of different variables.

the length scale of localization is also diagnosed to examine its ef-
fect on various states.

Fig. 7 shows the range and median values of NERs for all HRUs
in four scenarios, i.e., the original standard EnKS (EnKS-0O), the im-
proved EnKS with inflation factor only (EnKS-1), the enhanced
EnKS with localization only (EnKS-2), and an implementation of
the EnKS with both approaches (EnKS-E). In the four scenarios,
the surface SWCs are improved, with median values larger than
zero. Additionally, a larger median value for the surface SWC is ob-
served in the EnKS-E scenario. Significant improvements are
achieved through the inflation factor, evidenced by increased med-
ian values (surface SWC), and stable performances are achieved via
the localization, with a small range for all variables. Despite the
fact that the inflation factor approach degraded the estimate of
the SWCs in deep layers with decreased NER median values, the
estimates are improved by the benefits of localization. Specifically,
a narrow distribution of NERs in the EnKS-2 and EnKS-E reveal that
the EnKS performs steadily when localization is applied.

Overall, the best performance of the EnKS emerges when both
the SLS-based inflation factor and the localization are applied.
The SLS-based inflation factor and the localization are both neces-
sary in this hydrologic data assimilation framework to improve the
final results. In our synthetic experiments, the bias correction pro-
posed by De Lannoy et al. [9] was also utilized. However, the per-
formance of the EnKS was poorer, and thus this method is not
demonstrated here.

The length scale, the only parameter in the localization
technique, plays an important role in determining the correlation
function and thus the covariance matrix. Therefore, we examine
the performance of the EnKS and the improvement of the state
estimates with variable length scales, in which the length scale
changes from 1 to 30 while the other conditions are held constant.
Fig. 8 shows the varying normalized RMSE values of the different
states with the increasing length scale. The curves change moder-
ately with varying influential length scales. However, the trends in
the estimation errors for the upper three layers and the deeper
layers remain different with different length scales. The estimation
error of the surface SWC increases with the increasing of length
scale, which indicates that the surface SWC is mainly affected by
the current observation. In particular, the RMSEs of the second
and third soil layers decrease with the increasing length scale
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Fig. 8. Normalized RMSEs for different soil layers as a function of the length scale.

initially. After remaining constant for a period, the estimation val-
ues increase again. However, the fourth and root-zone soil layers
have improved results with the increasing length scale. The re-
sponse to the influential length scale varies with different soil lay-
ers. For specific application, the length scale should be chosen
carefully. A short length scale should be adopted when the accu-
racy of the surface soil moisture is under specific consideration.
When a larger length scale is utilized, the root-zone soil moisture
is improved and the subsurface hydrology is better characterized.
To counterbalance the improvements of the adjacent soil layers,
a medium length scale must be adopted. In our study, the perfor-
mance of the surface SWC is the main focus, and thus a length scale
of 10 is chosen.

5. Conclusions

In this paper, synthetic experiments were conducted to
investigate the influence of assimilating the surface SWC via the
EnKS on other primary hydrologic variables, implemented in a
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semi-distributed hydrologic model (SWAT). Three scenarios were
conducted for each experiment: the TRUE scenario, the EnOL sce-
nario, and the EnKS scenario. Specifically, the original and en-
hanced implementations of EnKS were utilized. The experiments
were implemented in different situations to investigate the various
factors that might influence the performance of the EnKS, including
spatially heterogeneous input data and different methods of
adjusting the forecast error covariance matrix. Our synthetic
experiments demonstrated that the EnKS could effectively update
the profile SWC and other predictor variables by assimilating sur-
face SWC with calibrated static hydrologic parameters. The under-
standing of the model structure was very important because it
greatly influences the outcome of the data assimilation. The EnKS
behaved promisingly with other adjusting approaches, such as
the SLS-based inflation factor and localization. Specifically, the
localization improved the final results with a more stable perfor-
mance. However, the length scale of the localization also influ-
enced the estimation of different soil layers. In practical
applications, a counterbalance between the surface and root-zone
SWC estimates should be taken into account. Approaches that im-
prove the estimation of the background error matrix are vital to ac-
count for the limited ensemble size and inaccurate model error
specifications, and these approaches are crucial in the hydrologic
data assimilation framework. Moreover, the performance of the
EnKS varied across the watershed due to the spatial variation of
the soil and land cover. The soil types with higher infiltration
had a more significant improvement, especially in terms of the pro-
file soil layer and the lateral flow, and the EnKS performed reason-
ably well under the RNGE land cover type. The results also showed
the influence of inaccurate meteorological forcing dataset on the
outcome.

Our analysis was subject to several factors that could be ad-
dressed in the future. First, we need to examine the performance
of the EnKS and these adjustment approaches under real circum-
stances. In operational hydrologic forecasting, the performance of
the data assimilation may be reduced due to the unknown uncer-
tainties of the observation and model error specifications, the mea-
surement availability, the time-varying hydrologic parameters and
inaccurate forcing datasets [37]. Lately, the utilization of the vari-
able variance multiplier as a flexible adjustment of the ensemble
spread has gained popularity in handling fluctuating uncertainties
[32,43] and could be further extended to future endeavors. Mean-
while, the effect of spatially heterogeneous input data should be
diagnosed carefully with different data sources and circumstances.
Finally, the exploration of the improved smoother methods, such as
the ensemble moving batch smoother [13] is necessary, as well as
the introduction of the MCMC approach into the smoothing frame-
work [43]. Our ongoing research will focus mainly on these issues.
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