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Hyperspectral Image Denoising With a
Spatial-Spectral View Fusion Strategy

Qianggiang Yuan, Liangpei Zhang, Senior Member, IEEE, and Huanfeng Shen, Senior Member, IEEE

Abstract—1In this paper, we propose a hyperspectral image
denoising algorithm with a spatial-spectral view fusion strategy.
The idea is to denoise a noisy hyperspectral 3-D cube using the
hyperspectral total variation algorithm, but applied to both the
spatial and spectral views. A metric Q-weighted fusion algorithm
is then adopted to merge the denoising results of the two views
together, so that the denoising result is improved. A number of
experiments illustrate that the proposed approach can produce
a better denoising result than both the individual spatial and
spectral view denoising results.

Index Terms— Hyperspectral image denoising, spatial view,
spectral view, total variation.

I. INTRODUCTION

YPERSPECTRAL images, with abundant spectral infor-

mation, have been widely used to distinguish different
land-cover types, which is very important for detecting miner-
als, urban planning, etc. [1], [2]. Unfortunately, because there
are a number of limitations with both the theoretical and sensor
aspects, a hyperspectral image will be contaminated with some
noise, which not only influences the visual effect but also
decreases the precision of the subsequent processing. It is
therefore important to reduce the noise in the hyperspectral
image.

In the past decades, the hyperspectral image denoising prob-
lem has been explored by many researchers. The approaches to
the problem can be classified into four groups. The first group
is the subspace-based methods. The most popular method is
principal component analysis (PCA) denoising, which retains
the first few principal components (PCs) containing most
of the information and discards the rest of the PCs which
contain little information and are assumed to be noise. Finally,
the denoised image is reconstructed from the high-rank PCs.
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Fig. 1. Spatial and spectral views in a hyperspectral image.

However, although the first few PCs contain the most infor-
mation, there will still be some noise remaining in them,
and it is also possible that some useful information will be
included in the low-rank PCs. To address these issues, some
other subspace-based selection methods have been developed
[3]-[5]. The second group is wavelet-based algorithms, such as
the hybrid spatial-spectral derivative-domain wavelet shrink-
age noise reduction (HSSNR) approach proposed by Othman
and Qian [6]. Recently, Chen e al. [7] proposed a new hyper-
spectral image denoising algorithm by adding a PCA transform
before using wavelet shrinkage. In this approach, a PCA trans-
form is first implemented on the original hyperspectral image,
and then the low-energy PCA output channel is denoised with
a wavelet shrinkage denoising process. This method performs
very well when the noise level of the data cubes is relatively
low. Another group of algorithms is based on the tensor
decomposition method [8]-[11], in which a hyperspectral
image is represented by a tensor model and is separated with
a tensor decomposition method such as the Tucker3 [8] or
parallel factor analysis (PARAFAC) [9]. The last group of
algorithms is the partial differential equation (PDE) based
methods. These include the hyperspectral anisotropic diffusion
model proposed by Martin-Herrero er al. [12], [13], and
the improved anisotropic diffusion model in [14] and [15].
In [16], a spatial-spectral adaptive hyperspectral total variation
denoising method was proposed that can adjust the denoising
strength both across and between the bands.

A hyperspectral image is usually viewed from the front,
which is the spatial view. However, a hyperspectral image, if
viewed from the side direction, will also have a spectral view,
which is shown in Fig. 1. For a hyperspectral image, noise
not only exists in the spatial view but also in the spectral
view (Fig. 2). In most hyperspectral image denoising methods,
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Fig. 2. Noise existing in both the spatial view and the spectral view in a hyperspectral image.
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Fig. 3. Flowchart of the proposed spatial-spectral view fusion algorithm.

the hyperspectral image is just denoised from the spatial
view, ignoring the role of the spectral view. Therefore, in this
paper, we propose a spatial-spectral view fusion algorithm for
hyperspectral image denoising. A noisy hyperspectral image
is first denoised using the hyperspectral total variation (TV)
approach proposed in our previous work [16], from both the
spatial and spectral views, and then the denoising results of
the two views are fused using a metric Q-weighting strategy.
A flowchart of the proposed algorithm is shown in Fig. 3.

The remainder of this paper is organized as follows: In
Section II, the hyperspectral image TV denoising model is
presented. In Section III, the spatial-spectral view fusion
strategy is introduced in detail. The experimental results and a
discussion are presented in Section IV. Finally, the conclusion
is given in Section V.

II. HYPERSPECTRAL TOTAL VARIATION DENOISING

A. Regularized Hyperspectral Denoising Model

Assuming that we have an original hyperspectral image,
and the degradation noise is assumed to be additive and
random distributed noise, the noise degradation model of the

hyperspectral image can be written as
ey

where u = [u1,u2,...,uj,...,ug] is the clear hyperspectral
image, with the size M x N x B, in which M represents
the samples of each band in the whole image, N stands for
the lines of the image, and B is the number of bands. f =
Lf1, f2,.-., fj,..., fB]is the noise degradation image, which
is also of size M x N x B, and n = [ny,n2,...,nj,...,np]
is the additive noise with the same size as u and f. In
this paper, we assume that the noise n is independent of the
signal u.

The denoising model for a hyperspectral image can be rep-
resented as the following regularization-based problem [16]:

f=u+n

B
i = arg min Z ||uj - fj ||§ + AR(u)
j=I

)

In (2), Zle fuj — fi ||§ is the data fidelity item, which stands
for the fidelity between the observed noisy image and the
original clear image, and R(u) is the regularization item,
which gives a prior model of the original clear hyperspectral
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Fig. 4. Noise distribution in the spatial views. (a) Band 1. (b) Band 10. (c¢) Band 20. (d) Band 30.

image u. A is the regularization parameter, which controls
the relative contribution between the data fidelity and the
regularization item.

The prior model of the hyperspectral image R(u) plays
a very important role in the process of denoising. It
controls the perturbation of the solution and solves the
ill-posed problem [17]. Based on the regularization theory,
many regularization models have been proposed, including
the Laplacian regularization [18], Gaussian—-Markov random
fields model [19], TV regularization [20], manifold regular-
ization [21], and divergence-based regularization [22]. Among
these models, TV regularization is very effective because of its
strong ability of edge preservation, and it has been widely used
in image deblurring [23], super-resolution [24], [25], and text
decomposition [26]. Based on the single band TV model, a
spectral-spatial adaptive hyperspectral TV model is proposed
in [16], which will be introduced in the next part.

B. Hyperspectral Total Variation (TV) Model

For a gray-level image u, the TV model is defined as
follows:

Ru)=TV @) = Z\/(v{lu)2 + (Vou)? 3)

where Vih and V; are linear operators corresponding to the
horizontal and vertical first-order differences, respectively, at
pixel i. V{’u =u; — uyi and VVu = u; — up(), where r(i)
and b(i) represent the nearest neighbors to the right of and
below the pixel.

In [16], we define two hyperspectral TV models, which have
the following formulations:

HTV: () = (4)
HTV,(u) = (5)
G =
W = (6)

where M N is the total number of pixels in one hyperspectral
band, and B is the total number of bands. V;; are linear
operators corresponding to the first-order differences at the ith
pixel in the jth band, respectively. Vu; is the gradient map
of the jth band. G means the gradient information of every
band is added together and the square root is taken of each
element of the sum. W; is a weighting parameter to control
the regularization strength in the different pixels.

The first model in (4) is called the spectral adaptive
hyperspectral TV model, which can give consideration to the
noise distribution characteristic of the hyperspectral image
and automatically adjust the denoising strength in different
spectral bands with the noise intensity. In high noise intensity
bands, a strong denoising strength will be used, while in
low noise intensity bands a weak strength will be used. The
second model in (5) is called the spectral-spatial adaptive TV
model, which can not only adaptively adjust the denoising
strength in the different spectral bands, in the same way
as the spectral adaptive model, but can also constrain the
denoising strength in different pixels, with the help of the
spatial information parameter W;. For the pixels in flat regions,
a strong regularization strength is enforced to suppress noise
and, conversely, a weak regularization strength is enforced on
the edge pixels to preserve them.

III. SPATIAL-SPECTRAL VIEW DENOISING AND FUSION
A. Spatial and Spectral View Denoising

As mentioned in the introduction, a hyperspectral image has
both spatial and spectral views, and the noise distribution in
the two views will be different. In the following section, the
differences are presented and analyzed. After this, we show
how to use the hyperspectral TV models on the two views.

For a hyperspectral image, the noise intensity in each band
varies. In the following figures, using the DC Mall image as an
example, we randomly add noise of different intensity to the
different bands and present the noise distribution differences
in the two views. Fig. 4 shows the noise distribution in the
spatial views, and Fig. 5 presents the noise distribution in the
spectral views. From the two sets of figures, it can be seen
that the noise distribution in the spatial views is different from
the distribution in the spectral views. In the spatial view, the
noise intensity in each band is different, while, if the spatial
view is transformed to a spectral view, it will appear that
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Noise distribution in the spectral views. (a) Band 1, (b) Band 10. (c) Band 20. (d) Band 30.

Fig. 6. Comparison between (4) and (5) for the spectral view denoising. (a) Noisy hyperspectral image. (b) Denoising with (4) for the spectral view (mean
PSNR = 29.86, mean SSIM = 0.8755). (c) Denoising with (5) for the spectral view (mean PSNR = 29.35, mean SSIM = 0.8556).

the noise intensity in the different bands is similar. For the
spatial view, it has been proved in [16] that the spectral—spatial
adaptive model proposed in (5) is the better denoising method.
However, for the spectral view, because it is different from
the spatial view, the question is which is the better denoising
model, (4) or (5). In the following, we give an example to
discuss this issue.

The two models in (4) and (5) are both tested on the
simulated noisy hyperspectral image, and the results are shown
in Fig. 6. It can be seen that the model in (4) works better than
the model in (5) for the spectral view, which is the opposite
of the results for the spatial view. Therefore, the spectral view
is denoised with model (4). We think the reason for this is
that there is little spatial information in the spectral view,
and the spatial information weighting process is therefore not
necessary.

From the discussion above, the denoising models for the
spatial and spectral views can be summarized as follows.

Spatial view denoising

B 2
4°P* = arg min Z Huj.pa - ijpa
j=l1

2

MN

+iZWi

i=1

B
D (Vijus2 b (7)

j=1

Spectral view denoising

B
i°P® = arg min Z uj.pe - f;pe z
j=1
MN B
+1 (VijusP)2 1. (8)
i=1\ j=I

In the two equations, u’P? and f*P? are the clear and noisy
images in the spatial views, u’P® and f*P¢ are the clear and
noisy images in the spectral views, B is the band number, and
J means the jth band. The two models are both optimized with
the split Bregman method in [16], which will be introduced
as follows:

For (7), the data fidelity item can be rewritten as

spa fspa 2

spa __ pspa
T Pl

2
K )

j=1

First, an auxiliary variable d is added instead Vu®P?* in (7)

uspa _ fspa

) MN
#°P* = arg min ‘ 5 + 1 ZI: Wi
=

subject to d = Vu®P?,
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With the Bregman iteration [27], (10) can be changed into an
unconstrained problem as follows:

Jj=1

0P = argmin[ u®Pt — fopa :
2
MN B 2
+2 5w, Z(di,-)2+/3Hd—wSPa—bH2 . an
i=1

In (11), b is also an auxiliary variable to accelerate the iter-
ation. The minimization of (11) can be performed alternately
with the following two subproblems:

subproblem u*P? :
@ = argmin { [ — £ 44 |d — v — ][5} (12)
subproblem d :
MN
d= argmin { A Z Wi

i=1

B 2
pYCHE ﬁ”d — Vs sz .
- (13)

To solve two subproblems, the following equations must be
solved:

(I = pAWS = f+ BV (d —b) (14)
B
AW
d = shrink | | > (Vi + by, A
j=1
(15)
biy1 = b+ (V' — diy1) (16)

where k is the iteration time, and the shrink operator stands
for the soft thresholding process. Equation (14), because it
is strictly diagonal, can be efficiently solved using the Gauss—
Seidel iteration algorithm. The advantage of the split Bregman
method is that the difficult optimization problem in (7) is
split into the above two subproblems, which are very easy
to optimize. The optimization of (8) is very similar to that
of (7), except that the matrix W is removed.

Next, we analyze whether the denoising results from the
two views are complementary to each other.

B. Analysis of the Complementary Nature of Spatial and
Spectral View Denoising

In the following, we present an example to illustrate the
complementary nature of the spatial and spectral view denois-
ing results. In Fig. 7, with the Washington, DC Mall hyper-
spectral data as an example, the denoising results using (7) and
(8), from both the spatial and spectral views, are presented.
More details of the data are given in the experimental section.
In Fig. 7, the first column is the original image, and the
second column is the noisy image with a noise variance
of 0.05 (the dynamic range of the image is normalized to
0-1). The denoising results from the spatial and spectral views
are shown in the third and fourth columns, respectively. The
second row presents a detailed part of the denoising results,
the third row shows the denoising result in the spectral view,
and the fourth row shows the spectral curve of the denoising

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 5, MAY 2014

result. From the comparison, it can be seen in the spatial
view denoising result [Fig. 7(c)] that the edge and spatial
information is well preserved, but the noise in the spectral
dimension is not well suppressed, and some noise can still
be clearly seen in the spectral curve. In the spectral view
denoising result [Fig. 7(d)], the noise in the spectral dimension
is well suppressed, and the spectral curve is more similar to the
original image [Fig. 7(a)], but the spatial information appears
blurred and some detailed information is lost. This suggests
that the denoising results from the two views can complement
each other, and fusing them could potentially improve the
denoising result. Consequently, in the following section, we
propose a metric Q-weighting strategy to fuse the denoising
results of the spatial view and the spectral view.

C. Spatial-Spectral View Fusion Strategy

1) Blind Image Quality Metric Q: From the above analysis,
it is seen that the denoising results from the spatial and spectral
views can complement each other. Therefore, the next critical
problem is how to fuse the two denoising results together.
First, for each band, we must identify which one is the better
of the two denoising results.

In this paper, the blind image quality evaluation index,
named the metric Q and as proposed in [28], is adopted. The
definition of the metric Q is as follows:

ST — 82
s1+ 52

0 =si (17)
where s; and sy are, respectively, the singular values of the
gradient matrix G over an N x N window (w;), and G has
the following definition:

G=| p®) py®) | kew (18)

where k denotes the kth pixel in the window w;. The metric
Q is correlated with the noise level, sharpness, and intensity
contrast of the structured regions of an image; it does not
require any prior knowledge [28], and it is an effective blind
image quality evaluation index. The larger the metric Q, the
better the image quality. Therefore, for the two denoising
results of each band, the metric Q value is calculated, and
the two denoising results are fused with a metric Q weighting
strategy.

2) Metric Q-Weighted Fusion Method: Let usw =

[ay", a5, a5, ..., uy ] be the denoising result of the spatial

view, @ = [a)", 45", 4y ,..., i} ] is the denoising result
of the spectral view, and B is the band number. For zsps and
usee, we first compute the value of the metric Q of each band,

respectively, which can be expressed as
on = [oF, 07, 0, ..., OF]
s s S spe
o = [0, 07, 07,.... 05 |

The final denoising result is then obtained by applying the
metric Q weighted fusion strategy to the two denoising results

19)
(20)
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Fig. 7. Comparison between the spatial view and spectral view denoising results. (a) Original image. (b) Noisy image with a noise variance of 0.05. (c) Spatial

view denoising result. (d) Spectral view denoising result.

of the different views, which can be expressed as
spa aspa spe aspe
spa spe
Q" +0;

It is shown that the two denoising results are fused band
by band.

uj =

2y

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Simulated Experiment

In this section, the HYDICE image of the Washington,
DC Mall, with a size of 200 x 200 x 191, is used to verify
the performance of the proposed algorithm. The experimental
data were provided by Prof. David Landgrebe, and can be
downloaded from [29]. Before the simulated process, the gray
values of the hyperspectral image were normalized to between
0 and 1. The peak signal-to-noise ratio (PSNR) index and

the structural similarity index (SSIM), as proposed in [30],
are used to give a quantitative assessment of the results of
the simulated experiments. For the hyperspectral image, we
compute the PSNR and SSIM values between each clear band
and denoised band, and then average them. These are denoted
as MPSNR (mean peak signal-to-noise ratio) and MSSIM
(mean structural similarity index). In order to evaluate the
spectral fidelity of the denoising result, the mean spectral angle
(MSA) index is also used.

In our method, the regularization parameter A in (7) and
(8) is adjusted until the best result is arrived at for both the
spatial and spectral views. In the simulation experiments, the
optimal A is selected as the one with the highest mean PSNR
and SSIM values.

For the simulated process, we simulate the addition of noise
in the following two cases:

Case 1: For different bands, the noise intensity is equal: in
this case, the same distribution of zero-mean Gaussian noise
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is added to each band, with a variance of 0.02, 0.03, 0.05,
0.07, and 0.1.

Case 2: For different bands, the noise intensity is different:
in this case, different variance zero-mean Gaussian noise
is added to each band, the variance value being randomly
selected from O to 0.05, and from O to 0.01.

Fig. 8 shows the denoising result of the 0.05 noise variance
case. The quantitative evaluation of the denoising result is
presented in Fig. 9 and Table I. Fig. 9 shows the changes
in the PSNR and SSIM values of the different bands before
and after fusion, and Fig. 10 gives the max, min, and mean of
the PSNR and SSIM values in Fig. 9. In Table I, the MPSNR
and MSSIM values of all the noise conditions are presented.

It can be seen that the proposed spatial-spectral view fusion
denoising result is better than both the individual spatial
view and spectral view denoising results. In the spatial view
denoising result, although the spatial information is preserved
well, the noise in the spectral dimension is not completely
suppressed, and some noise still remains in the spectral curve.
For the spectral view denoising result, the noise in the spectral
dimension is suppressed well, and the spectral curve is very
similar to the true spectral curve shown in Fig. 7(a), but in
the spatial dimension the edges are blurred and the spatial
information is not well preserved. For our spatial-spectral
view fusion method, as the denoising results in the different
views complement each other, the result is better than both the
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TABLE I
QUANTITATIVE EVALUATION OF THE DENOISING RESULTS IN SIMULATED EXPERIMENT CASE 1
Noise Variance  Evaluation Index  Spatial View  Spectral View Fusion
MPSNR 35.55 35.20 36.21
0.02 MSSIM 0.9606 0.9582 0.9669
’ MSA 291 3.06 2.73
Time (s) 61.53 57.68 88.84
MPSNR 33.47 33.36 34.14
0.03 MSSIM 0.9390 0.9400 0.9486
’ MSA 3.77 3.93 3.59
Time (s) 85.77 76.44 81.43
MPSNR 30.40 30.41 31.12
0.05 MSSIM 0.8827 0.8917 0.9040
’ MSA 5.02 5.01 4.62
Time (s) 141.87 143.15 82.42
MPSNR 27.64 27.66 28.23
0.07 MSSIM 0.7804 0.8153 0.8247
’ MSA 6.27 5.86 5.57
Time (s) 270.86 259.28 86.08
MPSNR 26.99 27.47 27.85
01 MSSIM 0.7632 0.8046 0.8124
’ MSA 7.13 6.78 6.40
Time (s) 278.695 268.716 77.303
40 : T T 1.00 T T T
1.5SD 1.5SD
spatial 90% spatial 90%
spectral 50% spectral 50%
36 fusion el 0.95 fusion Lo
1 \ 7
2 7 —— ]
3 32 = 0.90
& Z
- Z )=l T
i LA T A '
28 0.85 I
24 1 1 1 080 1 1 1
(2) (b)
Fig. 10. Max, min, and mean of the PSNR and SSIM values in Fig. 9. (a) PSNR value. (b) SSIM value.
TABLE II

individual spatial view and spectral view denoising results.
Not only is the spatial information well preserved but the
noise in the spectral dimension is also better suppressed. The
better performance of our method can also be seen in the
quantitative evaluation results in Fig. 9 and Table I, where the
PSNR and SSIM values are improved in almost all the bands
after the denoising results of the two views are fused together.
The proposed method also produces the highest MPSNR
and MSSIM values, which illustrates the improved spatial
information preservation property. Meanwhile, the MSA value
of our method is the lowest, which reflects a better spectral
fidelity. In addition, the result of the proposed fusion method
is robust with the change of the noise intensity.

The denoising result of simulated case 2 is shown in Fig. 11,
and the quantitative evaluation results are presented in Table II
and Fig. 12. It can again be seen that the denoising result
after fusion appears better than the single-view denoising
results, both from the visual and quantitative aspects, when
various noise intensities are distributed in the different bands.
As described in Section III-A, when different intensity noise
is added in the different bands, the noise distribution will

2321

QUANTITATIVE EVALUATION OF THE DENOISING RESULTS
IN SIMULATED EXPERIMENT CASE 2

Noise Evaluation ~ Spatial ~ Spectral ~ Fusion
Variance Index View View

MPSNR 34.03 33.44 34.43
0.05 MSSIM 0.9415 09409  0.9493

’ MSA 3.73 3.89 3.58
Times (s) 75.54 65.09 94.36

MPSNR 30.14 29.85 30.61
01 MSSIM 0.8711 0.8755 0.8883

’ MSA 5.63 5.79 5.38
Time (s) 146.17 128.79 90.99

appear different in the spatial and spectral views. In the spatial
view, the noise intensity will vary in each band, while in
the spectral view the noise intensity in each band will be
similar. The experimental results in this case illustrate that
the proposed hyperspectral TV model can deal with the two
different noise conditions. For instance, for the spatial view,
the hyperspectral TV model will give different denoising
strengths to the different bands, while for the spectral view the
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model will give a similar denoising strength to all the bands.
These “spectrally adaptive” properties can guarantee a balance
between “noise suppression” and “detail preservation.”

B. Real Data Experiment

To further confirm the effectiveness of the proposed method,
we also test it in a real data experiment. The HYDICE urban
image [31] is selected as the real data, which has a size of
200 x 200 pixels and 205 bands. There is considerable high-
intensity striping and mixed noise bands included in the data,
examples of which are presented in column 1 of Fig. 13(a).
In the real data experiment, the optimal A is selected as the
one with the highest Q value [28]. From the experimental
result, it can be seen that, in the spatial view denoising result,
although the high-intensity noise is well suppressed and the
edges are well preserved, some textural information is over-
smoothed, which can be clearly seen in the local detailed
information presented in the last two rows of Fig. 13(b). In
the spectral view denoising result presented in Fig. 13(c), not
only is the noise not completely suppressed but the edge infor-
mation also appears blurred. However, in the spectral view
denoising result, the textural information is well preserved.
Therefore, the denoising results of the two views can still
complement each other, and after the denoising results of the
two views are fused, the noise is well suppressed and, also,
the detailed information, both in edges and textures, is well
preserved.

TABLE III
QUANTITATIVE EVALUATION OF THE DENOISING RESULTS WHEN THE
SPECTRAL—SPATIAL FUSION IDEA IS USED ON THE
WIENER FILTER METHOD

Noise Evaluation  Spatial ~ Spectral ~ Fusion
Variance Index View View

MPSNR 30.58 29.34 30.61

0.02 MSSIM 0.8739  0.8559 0.8844
MSA 4.32 4.78 4.10

MPSNR 28.61 28.37 29.38

0.05 MSSIM 0.8257  0.8296 0.8585
MSA 6.19 5.88 5.27

MPSNR 25.35 26.54 27.10

0.1 MSSIM 0.6967  0.7626 0.7845
MSA 10.12 8.10 7.74

C. Discussion

In this paper, the hyperspectral TV model is used as the
hyperspectral image denoising method. However, can this spa-
tial and spectral fusion method still work with other denoising
methods? To answer this question, we tested the spatial-
spectral fusion idea with the adaptive Wiener filter [16],
[32], and the evaluation results are shown in Table III, From
the results, it is seen that for the simple spatially adap-
tive Wiener filter method, our proposed spatial and spectral
fusion method still gives better results than the single-view
denoising results, which illustrates that the fusion process
is independent of the method used. Therefore, in future
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Fig. 12. Change in PSNR and SSIM values of the different bands before and after fusion in simulated experiment case 2. (a) PSNR value change. (b) SSIM

value change.

Fig. 13.

Comparison between spatial view denoising, spectral view denoising, and the spatial-spectral view fusion results with real data. (a) Original noisy

image. (b) Spatial view denoising result. (c) Spectral view denoising result. (d) Spatial-spectral view fusion result.

research, it will be interesting to try the spatial-spectral
fusion idea on some other hyperspectral image denoising
methods.

V. CONCLUSION

In this paper, a spatial-spectral view fusion method was pro-
posed to denoise hyperspectral imagery. The original hyper-

spectral image was first denoised with a hyperspectral total
variation method, from both the spatial and spectral views, and
then the denoising results of the two views were fused together
with a Q-weighting strategy. The experimental results indi-
cated that the proposed spatial-spectral view fusion method
produces better denoising results than both the individual
spatial view and spectral view denoising methods.
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However, the proposed fusion idea could still be further
improved in certain aspects. For example, in this paper we
assumed that the noise was independent of the clear hyper-
spectral signal, while the signal-dependent noise character-
istic of hyperspectral imagery has recently been discussed
[33]-[36]. How to extend the hyperspectral TV model and
spatial-spectral fusion idea to a signal-dependent noise type
will be very interesting. In addition, the adaptive selection of
the regularization parameter 4 will be in our future research
agenda.
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