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Land-surface temperature retrieval at high spatial and temporal
resolutions based on multi-sensor fusion

Penghai Wu, Huanfeng Shen*, Tinghua Ai and Yaolin Liu

School of Resource and Environmental Science, Wuhan University, Wuhan, China

(Received 14 September 2012; final version received 4 March 2013)

Land-surface temperature (LST) is of great significance for the estimation of
radiation and energy budgets associated with land-surface processes. However,
the available satellite LST products have either low spatial resolution or low
temporal resolution, which constrains their potential applications. This paper
proposes a spatiotemporal fusion method for retrieving LST at high spatial and
temporal resolutions. One important characteristic of the proposed method is the
consideration of the sensor observation differences between different land-cover
types. The other main contribution is that the spatial correlations between
different pixels are effectively considered by the use of a variation-based model.
The method was tested and assessed quantitatively using the different sensors of
Landsat TM/ETM�, moderate resolution imaging spectroradiometer and the
geostationary operational environmental satellite imager. The validation results
indicate that the proposed multisensor fusion method is accurate to about 2.5 K.

Keywords: land-surface temperature; image fusion; remote sensing; resolution

1. Introduction

Land-surface temperature (LST) retrieved from remote-sensing thermal infrared

observations has proved to be vital in applications such as determining the land-

surface energy exchange with the atmosphere (Sellers et al. 1997; Xu, Liang, and Liu

2011), the impact of urbanization on global climate and environment change (Jin,

Dickinson, and Zhang 2005; Yu et al. 2009), atmospheric stability and local wind

systems (Tarpley 1979), land-surface characteristics (Li and Avissar 1994), and

evapotranspiration (Anderson et al. 2012). However, the available satellite LST

products have either low spatial resolution or low temporal resolution, which constrains

their potential applications. For instance, the Landsat satellites, which retrieve LST at

high spatial resolutions (�100 m), can only revisit the same location on earth at

intervals of half to one month. The moderate resolution imaging spectroradiometer

(MODIS) can make repeated LST observations in one day or a half day, but with a 1

km spatial resolution (Wan and Li 1997; Wan et al. 2004). Higher temporal sampling of

LST is achievable with the geostationary operational environmental satellite (GOES),

but with a coarser spatial resolution (about 4 km) (Sun and Pinker 2005; Inamdar et al.

2008). As a result, it is extremely difficult to acquire satellite images with high temporal

and spatial resolutions due to trade-offs among these resolutions (Zhan et al. 2013).

One possible cost-effective solution is to explore the data fusion methods that can blend
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the two types of LST products from the different sensors to generate synthetic LST

products with high resolutions in both space and time.

A large number of data fusion methods have been developed (for a review see

Ehlers 1991; Hall and Llinas 1997; Pohl and Van Genderen 1998; Luo, Chih-Chen,
and Kuo Lan 2002). Classical remote-sensing image fusion techniques include

panchromatic/multispectral fusion (Wang et al. 2005; Thomas et al. 2008), multi-

spectral/hyperspectral fusion (Eismann and Hardie 2005), and multitemporal fusion

(Shen et al. 2009). These fusion techniques are aimed at extracting information and

enhancing visual effects; however, they are not effective in simultaneously enhancing

temporal resolution and spatial resolution, and cannot provide high-spatial-

resolution observations with a dense time series.

Only in recent years have we witnessed the emergence of spatiotemporal fusion
models for predicting an unknown high-resolution image. For example, Inamdar et al.

(2008) proposed an Normalized Difference Vegetation Index (NDVI)-based fusion

method by blending observations from MODIS and GOES for half-hourly LST values,

at a 1 km spatial resolution. However, the method needs auxiliary NDVI data, and LST

with a 1 km spatial resolution limits the sensors’ ability to quantify land-surface

processes in heterogeneous landscapes. Gao et al. (2006) proposed a spatial and

temporal adaptive reflectance fusion model (STARFM) that does not require any

auxiliary data. This approach was first used to blend Landsat and MODIS data to
predict daily surface reflectance at Landsat spatial resolution and MODIS temporal

frequency (Gao et al. 2006). Since then, the STARFM framework has also been applied

to the generation of gross primary productivity (Singh 2011), the analysis of dryland

forest phenology (Walker et al. 2012), the examination of virus dissemination (Liu and

Weng 2012), and the estimation of daily evapotranspiration (Anderson et al. 2011).

In the study presented herein, we extend the STARFM framework (Gao et al.

2006) and present a spatiotemporal fusion method for remote-sensing LST by

blending observations from multiple sensors (Landsat TM/ETM�, MODIS, and the
GOES Imager). One of the significant improvements of this method is the

consideration of sensor observation differences based on within-class regression,

with M-estimation (Huber 1964) to improve the fusion accuracy. Meanwhile, the

spatial correlations between different pixels are considered using a variation-based

prior constraint model. Based on the proposed method, our objective was to obtain

daily and/or hourly high-spatial-resolution LST products by blending observations

from Landsat with MODIS and GOES.

2. Methodology

2.1. STARFM

The premise of STARFM is that the preprocessed and corrected reflectances of
different sensors are consistent and comparable (Gao et al. 2006, Masek et al. 2006).

STARFM predicts reflectances based upon a spatially weighted difference computed

between the Landsat and the MODIS scenes at the acquisition date and one or more

MODIS scenes at the prediction date (Gao et al. 2006). The prediction algorithm in

STARFM is given by the following:

F xw=2;yw=2; t2

� �
¼
Xw

i¼1

Xw

j¼1

X1
k¼1

Wijk� C xi;yj;t2

� �
þF xi;yj;tk

� �
�C xi;yj;tk

� �� �
; (1)
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where F and C denote the fine-resolution and coarse-resolution reflectances, respec-

tively, (xi,yj) denotes the pixel location, tk is the acquisition date, k �(1,�), t2 is the

prediction date, w is the size of the moving window, and (xw/2,yw/2) is the central pixel.

The spatial weighting function Wijk determines how much each similar pixel
contributes to the central pixels. Ensuring that the sum of all the weights is 1, Wijk

can be normalized as follows:

Wijk ¼
1

Eijk

,Xw

i¼1

Xw

j¼1

Xn

k¼1

1
.

Eijk

� �
; (2)

where Eijk may be related to the spectral difference, temporal difference or geometric

distance in the moving window, and can be expressed as follows (Gao et al. 2006):

Eijk ¼ ln Sijk � Aþ 1
� �

� ln Tijk � Aþ 1
� �

�Dijk; (3)

where A is a scale factor, equal to 10,000 (Gao et al. 2006), Sijk represents the spectral

difference, Tijk represents the temporal difference, and Dijk represents the geometric

distance. Equations (2) and (3) show that one pixel may be assigned a higher weight

Wijk if the pixel has smaller values of Sijk, Tijk, and Dijk.

2.2. The preliminary calculation function

Although the observation data can be preprocessed before the fusion process,
systematic observation differences may still exist between the different sensors. The

observation differences may come from the differences in the spectral ranges and/or

calibration algorithms. To minimize the effects of the observation differences on the

fusion results, this study proposes to fit regression curves for different land-cover

types when measuring the radiance difference (similar to the spectral difference when

fusing reflectance as STARFM).

To consider the observation differences, a simple linear regression relationship

between the coarse-resolution image and the corresponding fine-resolution image at
time t can be described as follows:

C xi; yj; t
� �

¼ a� F xi; yj; t
� �

þ b; (4)

where Fand C (and subsequently) denote the fine-resolution LST and coarse-

resolution LST, a is the gain parameter of the linear regression function between the

coarse- and fine-resolution pixels, and b is the bias. Thus, the radiance difference can

be calculated as follows:

Sij ¼ a� F xi; yj; t
� �

þ b� C xi; yj; t
� ���� ���: (5)

However, the linear regression coefficients (a and b) between the two sensors may

be different for different land-cover types. The radiance difference, Equation (5), can

be rewritten as follows:

Sijc ¼ ac � Fc xi; yj; t
� �

þ bc � Cc xi; yj; t
� ���� ���; (6)
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where the subscript c represents the land-cover types which can be obtained by

classifying the fine-resolution image.

For convenience, the land-cover map can be determined using an unsupervised

classification algorithm. The linear regression coefficients for each land-cover type
can then be solved by various optimization estimation methods. The simplest

method is the least-squares approach; however, the least-squares method is sensitive

to the existence of outliers and the distribution assumption of noise. When the noise

distribution is not normal or outliers exist in the observations, the estimation may be

unsatisfactory (Wu and Tam 2001). To improve the accuracy of the estimated

parameters, this paper uses the M-estimation method with the Huber cost function

(Huber 1964) to solve the coefficients.

In Equation (1), STARFM utilizes a weighting function to incorporate the spatial
correlation information from the neighboring coarse- and fine-resolution image

pixels. The spatial correlations used by STARFM are very useful for reflectance data,

but may introduce a degraded effect for LST. Therefore, the ‘correct’ neighboring

pixels and a more suitable window size need to be selected in the proposed method.

Meanwhile, the STARFM algorithm allows for the input of either one or two base

image pairs. For the predicted image at t2, one base image pair may be at t1 or t3,

while the two base image pairs may be at t1 and t3. According to the different input

base image pairs, the preliminary calculation functions may be expressed as the
following two cases:

Case 1: A single image pair as the t1 or t3 input, and we eliminate the temporal

difference within the spatial weighting function (Hilker et al. 2009). Therefore, the

spatial weighting function Eij is only related to the radiance difference Sijc and the

geometric distance Dij (Hilker et al. 2009), and can be expressed as follows:

Eijc ¼ lnðSijc � Aþ 1Þ �Dij: (7)

Here, Dij can be easily obtained by the method of Gao et al. (2006), and Sijc

denotes the radiance difference considering the observation difference. Wijc can be

normalized as follows:

Wijc ¼ 1
.

Eijc

,Xw

i;j¼1

1
.

Eijc

� � !
: (8)

Equations (7) and (8) mean that a smaller distance and a smaller radiance

difference from the similar pixel to the central pixel should produce a higher weight.

The fine-resolution LST can be calculated using the following:

F xw=2; yw=2; t2

� �
¼
Xw

i¼1

Xw

j¼1

Wijc �
 

C xi; yj; t2

� �
þ F xi; yj; t1

� �
� C xi; yj; t1

� �!
: (9)

Case 2: Two image pairs as the t1 and t3 inputs, and we adopt a temporal weight

(Zhu et al. 2010). Either of the fine-resolution LSTs at t1 or t3 can be used as the base

date to predict the fine-resolution LST of the prediction date t2, and they are marked

as F(xw/2, yw/2, t1�2) and F(xw/2, yw/2, t3�2), respectively. A consideration when

obtaining LST at t2 is to use a temporal weighted combination of the two prediction

116 P. Wu et al.

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

],
 [

H
ua

nf
en

g 
Sh

en
] 

at
 1

6:
44

 1
3 

D
ec

em
be

r 
20

13
 



results (Zhu et al. 2010). The temporal weight can be expressed as follows (Zhu et al.

2010):

Tk¼
1

,Pw
j¼1

Pw
i¼1

C xi; yj; tk

� �
�
Pw
j¼1

Pw
i¼1

C xi; yj; t2

� ������
�����

P
k¼1;3

1

,Pw
j¼1

Pw
i¼1

C xi; yj; tk

� �
�
Pw
j¼1

Pw
i¼1

C xi; yj; t2

� ������
�����

 ! ; ðk¼1;3Þ; (10)

Equation (10) means that with a smaller change of resampled coarse-resolution LST

within the window w between the time tk (k�1 or 3) and t2, a larger temporal weight

should be assigned. The predicted fine-resolution LST at the prediction time t2 is

then calculated as follows:

F xw=2; yw=2; t2

� �
¼ F xw=2; yw=2; t1�2

� �
�T1 þ F xw=2; yw=2; t3�2

� �
�T3: (11)

2.3. Variation-based model

By far the majority of the research into similar fusion problems has been based on
filter-based methods, in which the spatial correlations between different pixels are

not effectively considered. In this study, the spatial correlations are considered by

using a variation-based method. Compared with the filter-based fusion methods, we

can solve all the unknowns as a whole and consider the correlations between them.

As Ludusan and Lavialle (2012) noted, the variation-based fusion methods are more

robust, and have proved to be more suitable for practical image-fusion applications.

We present the following variation-based fusion model:

EðZ t2
Þ ¼ jjLf ðC t1

;C t2
; F t1
Þ � Z t2

jj2 þ �LrðZ t2
Þ; (12)

where the first term jjLf ðC t1
;C t2

; F t1
Þ � Z t2

jj2 is the data fidelity term, LrðZ t2
Þ acts as

the regularization spatial constraints term, l can be called the regularization

parameter, Z t2
is the final result at the prediction time t2, and Lf ðC t1

;C t2
; F t1
Þ is a

function of the fine-resolution LST at t1 and coarse-resolution LSTs at t1 and t2. The
spatial constraints can be expressed as follows:

LrðZ t2
Þ¼
X
i2u1

X
p2w

q

 
dpðZiÞ
� �!

; (13)

where81 is the numberof pixels of the whole image and p is the pixel of the moving window.
r( �) is a constraints prior, andwhen it is a quadratic potential function, as in Equation (14),

the corresponding prior is regarded as Gauss�Markov (Shen and Zhang 2009):

xð Þ¼x2: (14)

As for dp(Zi), the second-order differences are computed between similar pixels

and the center pixel within the moving window in the image:

dpðZiÞ ¼
Xw

p¼1

Zi � Zp

� �
: (15)
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Complete details of the computing processes can be found in Shen and Zhang

(2009).

It is noted that the initial value should, theoretically, be updated with the spatial

weighting function. In this paper, however, it is fixed due to the computational load
consideration. It is therefore similar to implementing a variational denoising process

on the initial results solved by the method in Section 2.2.

3. Data

The primary streams of data used in this study comprise the parameters retrieved

from cloud-free MODIS, Landsat, and GOES images. These are described below.

3.1. MODIS 1 km LST

MODIS is an EOS instrument on both the Terra and Aqua satellites that serves as

the keystone for global studies of the atmosphere, land, and ocean processes,
scanning 9558 from the nadir in 36 bands ranging from visible to thermal infrared

regions (TIR) (Wan and Li 1997). The bands in the thermal atmospheric window are

designed for the remote sensing of surface temperature and emissivity. The LST

product was proposed by the MODIS Science Team as a daily daytime and nighttime

1 km global land product, and includes derivative products at lower temporal

frequencies and spatial resolutions. The accuracy of the MODIS daily LST is better

than 18C in the range from 10 to 508C, as validated from in situ measurement data

collected in field campaigns between 2000 and 2002 (Wan et al. 2004).
We use the MODIS LST/Emissivity, Daily, Level 3, Global 1 km SIN grid

product known as MOD11_A1, which is available from the International Scientific

Data Service Platform (http://datamirror.csdb.cn) and The Next Generation Earth

Science Discovery Tool (http://reverb.echo.nasa.gov/reverb/). The 1 km LST/

Emissivity data are produced by a generalized split-window algorithm that uses

radiances from the MODIS TIR window channels 31 (10.8�11.3 mm) and 32 (11.8�
12.3 mm) (Wan and Dozier 1996).

3.2. Landsat TM/ETM�LST

Landsat images offer the longest continuous global record of the earth’s surface and

are a unique resource for global change research and applications in agriculture,

cartography, geology, forestry, surveillance, education, and national security

(Güçlüer, Bayram, and Maktav 2010). Landsat offers significant advantages over

MODIS in the spatial resolution. The Landsat TIR channel has about a 100 m

spatial resolution (Landsat TM �120 m, Landsat ETM� �60 m) and is available

from The Next Generation Earth Science Discovery Tool (http://reverb.echo.nasa.

gov/reverb/). This is an important spatial resolution because it is coarse enough for
global coverage, yet detailed enough to characterize human-scale processes such as

the dynamics of urban growth (Masek, Lindsay, and Goward 2000) and urban heat

islands (Kumak, Bhaskar, and Padmakumari 2012). We retrieve the Landsat LST

using a generalized single-channel method (Jimenez-Munoz and Sobrino 2003) from

the Landsat TIR window channel 6 (10.4�12.5 mm).
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3.3. GOES imager LST

GOES provides approximately half-hourly temporal resolution earth observation

data, which constitute an important element of the land-surface processes. The

GOES 10 and GOES 13 Imager instruments consist of five spectral channels (one

visible band and four infrared bands) (Sun and Pinker 2003; Sun, Pinker, and Basara

2004), which measure the radiant and reflected solar energy from sampled areas of

the earth. GOES Imager data are available in a web-based data archive and
distribution system known as NOAA’s Comprehensive Large Array-data Steward-

ship System (http://www.class.noaa.gov/nsaa/products). For the present study, the

infrared image data at a nadir resolution of about 4 km stored as GOES Variable

Format (GVAR) counts packaged in 10-bit words in Network Common Data

Format are used. The 10-bit (0�1023) GVAR count value is converted to brightness

temperatures for the corresponding channels, utilizing the calibration coefficients

(Weinreb, Johnson, and Han 2011) for the GOES Imager. In this study, the LST data

at an hourly or half-hourly temporal resolution from GOES have been retrieved
according to the corresponding algorithms (Sun and Pinker 2003; Sun, Pinker, and

Basara 2004).

3.4. Ground truth data

The network of surface radiation measurement sites (SURFARD) was established in

1993 through the support of the NOAA Office of Global Programs. Its primary

objective is to support climate research with accurate, continuous, long-term

measurements pertaining to the surface radiation budget over the United States

(Wang and Liang 2009). The Sioux Falls station (SXF), which covers crop data from
South Dakota (96.628W, 43.738N), and the Desert Rock station (DRA), which covers

sand data from Nevada (116.028W, 36.628N), are selected in this study. The data

change from a 3-min to 1-min resolution after 1 January 2009, and can be

downloaded from http://www.esrl.noaa.gov/gmd/dv/data/. The site provides contin-

uous radiometric instrumentation to measure upwelling and downwelling thermal

infrared irradiance, which are used to retrieve the ground truth of the LST, according

to Inamdar et al. (2008). As in the previous studies (Sun and Pinker 2003; Sun,

Pinker, and Basara 2004; Inamdar et al. 2008), the ground truth of the LST is used to
directly evaluate the fused results from the GOES and TM LST products.

4. Experimental results

In this section, we test the performance of the proposed method by fusing multiple

LST products from the different sensors. The MODIS LST and GOES Imager LST

products are reprojected to the UTM projection and resampled to the same size as

the Landsat TM/ETM�LST products using a cubic interpolation approach (with

available georegistration information). To evaluate the quality of the fusion results
quantitatively and visually, several representative metrics are employed in this study.

The average absolute difference (AAD) and the root mean squared error (RMSE)

between the predicted synthetic LST and the actual LST are shown to directly reflect

the deviation of the predicted LST. The scatter plots of the predicted against actual

images are also shown, and provide an intuitive comparison between the estimated
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and actual LST. In addition, the ground truths from the SXF data are also used to

verify the effectiveness of the proposed method.

4.1. Fusing of MODIS and ETM�LST products

In the first series of experiments, the proposed method is tested on sub-images from

Beijing and Hubei, China. Figure 1 shows the MODIS (upper row) and Landsat-7

ETM�(second and third rows) LSTs from 11 November 2001, 29 December 2001,

and 15 February 2002, respectively, from left to right. Using STARFM and the
proposed method, we reconstruct the Landsat-7 ETM�LST from 29 December

2001, given the two LST pairs from 11 November 2001 (Figure 1a and d), and 15

February 2002 (Figure 1c and f) and its MODIS counterpart (Figure 1b). The actual

(a) MODIS 11/11        (b) MODIS 12/29        (c) MODIS 02/15 

(d) ETM+ 11/11         (e) ETM+12/29          (f) ETM+ 02/15 

(g) colored ETM+ 11/11  (h) colored ETM+ 12/29   (i) colored ETM+ 02/15 

(j) Proposed 11/11     (k) Proposed 11/11 and 02/15  (l) Proposed 02/15 

Figure 1. The actual and predicted LSTs. (a), (b), and (c) are the actual MODIS LST on 11

November 2001, 29 December 2001, and 15 February 2002, respectively. (d), (e), and (f) are the

actual ETM�LST on 11 November 2001, 29 December 2001, and 15 February 2002,

respectively. (g), (h), and (i) are the actual ETM�LST, but colored corresponding to (d), (e),

and (f), respectively. (j), (k), and (l) are the predictions using one input date pair of November

11 as the base data, two input date pairs of November 11 and February 15 as the base data,

and one input date pair of February 15 as the base data, respectively.
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ETM�LST image (Figure 1e) can be used to evaluate the predicted result. The

images of the third row in Figure 1 are the colored LSTs, corresponding to the

second row, which show the changes in LST between the different months. Figure 1j

and l are the predictions using the one input pair of 11 November 2001, and 15

February 2002, respectively, while Figure 1k is the prediction using the two input

pairs from both November and February.
The effect of the two fine-resolution images at t1 and t3 for the center-predicted

image at t2 may be different. It is possible that incorrect information may be brought

in when a disturbance event results in land-cover type changes (e.g. fires and other

human activities). Gao et al. (2006) used both one input pair and two input pairs to

predict the fine-resolution image, and did obtain reliable predicted results. However,

that study did not compare the predictions. Similarly, some applications based on a

single pair of inputs (Hilker et al. 2009; Singh 2011; Walker et al. 2012; Watts et al.

2011) or two pairs of inputs (Anderson et al. 2011; Liu and Weng 2012) with the

STARFM method have shown that the results can meet the application demands,

but also without a comparison. In another study (Zhu et al. 2010), the authors

discovered that STARFM works better for reflectance with one input date pair

rather than two input pairs, because of the similar phenology between the one input

date pair and the predicted data. The image predicted by STARFM using two input

pairs resulted in an unrealistic image due to the large differences between the two

input pairs (Zhu et al. 2010). Whether the input pairs at t1 and/or t3 may bring about

a distinguishing effect when fusing LST has not been researched to date. This study
quantitatively compares the predictions of LST by the use of both one input date

pair and two input pairs.

Here, we set the data of 11 November 2001, 29 December 2001, and 15 February

2002, as t1, t2, and t3, respectively. Although there are no distinct visual differences

between Figure 1j�l, some detailed regions in Figure 2 are selected for the convenience

of visual judgment. Figure 2 shows the comparisons between the actual and predicted

LST. Figure 2a�c are the predicted LST at t2 by STARFM using the data at t1, the data

at t3, and the data at t1 and t3, respectively, from left to right. Figure 2d�f are the

predicted LSTs at t2 by the proposed method using the same data as the upper row, and

(g) is the actual LST at t2. It can be seen that the predictions of the proposed method

are better than those of STARFM, when compared with the actual LST. Meanwhile,

the predictions using the two input image pairs at t1 and t3 are better than the

predictions using one input image pair at t3, but are inferior to the predictions using one

input image pair at t1. The results indicate that the input pair at t3 may cause larger

uncertainties for estimating LST changes at the 100 m scale from 1 km information.
Figure 3 shows the scatter plots and histogram between the actual observed and

predicted ETM�LST. Taking the predictions of the two input image pairs as an

example, Figure 3a and b are the correlations between the actual and predicted LSTs

of STARFM and the proposed method, respectively. The data of Figure 3b are closer

to the 1-1 line than those of Figure 3a, indicating that the proposed method improves

the prediction of changes between the December and November/February images.

The histogram of the percentage probability distribution versus LST difference for

STARFM and the proposed method is shown in Figure 3c. Compared to STARFM,

the proposed method improves the mean LST difference from 0.35 to 0.24 K.

To quantitatively compare the proposed method with STARFM for the different

input pairs, the quantitative values of AAD and RMSE are listed in Table 1. The
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AAD and RMSE values of the proposed method are lower than those of STARFM,

indicating that the proposed method can reconstruct the ETM�LST more precisely

than STARFM. The prediction using one input date pair from 11 November 2001

obtains higher evaluation scores than the others, which again agrees with Figure 2.

To further test the performance of the proposed method, a second series of

experiments with a 48�48 km subset from Hubei province, China, are conducted.

Figure 4 shows the MODIS (upper row) and Landsat-7 ETM�(second row and

bottom row) LSTs from July 9, October 13, and November 30, 2002, respectively,

from left to right. Using STARFM and the proposed method, we reconstruct the

Landsat-7 ETM�LST from 13 October 2002, based on one input image pair from

July 9 or November 30 and two input image pairs from July 9 and November 30.

Figure 5 shows the STARFM (Figure 5a�c) and proposed method (Figure 5d�f)

colored predictions in comparison with the actual Landsat ETM�LST (Figure 5g).

From Figure 5, we can see that better predictions can be obtained with only one pair

from November 30 as the base data. The quantitative evaluation results shown in

Table 2 demonstrate that the predictions using one pair of data from November 30

are better than the others. The highest AAD and RMSE values appear with the

predictions from the use of one pair of data from July 9, which suggests that

disturbance events may have happened between July 9 and October 13. Furthermore,

the predictions of the proposed method also have lower AAD and RMSE values

than those of STARFM. Similarly, the scatter plots in Figure 6 show that the

predicted LST using one input pair from November 30 (Figure 6b) more closely

matches the actual LST (1:1 line) than the results from the use of one input pair from

July 9 (Figure 6a) and the results from the use of two input pairs on July 9 and

November 30 (Figure 6c).

(a) STARFM 11/11    (b) STARFM 11/11 and 02/15  (c) STARFM 02/15 

(d) Proposed 11/11     (e) Proposed 11/11 and 02/15   (f) Proposed 02/15     (g) Actual 12/29 

Figure 2. Comparisons between actual and predicted LSTs. (a), (b), and (c) are predicted

LSTs at 29 December 2001, by STARFM, using the data from 11 November 2001; the data

from 11 November 2001, and 15 February 2002; and the data from 15 February 2002,

respectively, from left to right. (d), (e), and (f) are predicted LSTs on 29 December 2001, by the

proposed method using the same data as the upper row. (g) is the actual LST on 29 December

2001.
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4.2. Fusing of the GOES and Landsat TM LST products

In the third series of experiments, the proposed method is tested on sub-images from

South Dakota, USA. From the downloaded header file of the Landsat TM data, we

can see that the time of the center scan was at 17:14:23 UTC time. The GOES 13 data

was observed between 10:00 and 22:00 UTC time on 4 September 2010. All the TM

and GOES LSTs are listed in Figure 7. The TM (Figure 7a) and the GOES LSTs

Table 1. AAD and RMSE between the predictions from different input data and actual LST

of the first series of experiments.

The base data as input 11/11/2001 02/15/2002 11/11/2001 and 02/15/2002

AAD (K) STARFM 1.1826 1.5901 1.2496

Proposed 1.1642 1.5257 1.1880

RMSE (K) STARFM 1.4961 2.0014 1.6175

Proposed 1.4714 1.9494 1.4986

Figure 3. Comparisons between the actual LST and the predicted LST using scatter plots by

STARFM (a), scatter plots by the proposed method (b), and a histogram of the predicted

minus observed LST for each method (c), respectively.
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observed at around 17:00 UTC time (Figure 7i) are the input base data, and the other

GOES LST (Figure 7b�n) is the input data of the prediction time. The predictions

from 10:00 to 22:00 UTC time are shown in Figure 8. Although we cannot give a

quantitative comparison, on account of the lack of corresponding ground truth, the

predictions can show the interdiurnal temperature variation, as shown in Figure 8b�m.

(a) MODIS 07/09     (b) MODIS 10/13     (c) MODIS 11/30 

(d) TM 07/09        (e)  TM 10/13        (f) TM 11/30 

Figure 4. The actual Landsat and MODIS LST. (a), (b), and (c) are the MODIS LSTs on July

9, October 13, and November 30, 2002, respectively. (d), (e), and (f) are the Landsat TM LSTs

on July 9, October 13, and November 30, 2002, respectively.

(a) STARFM 07/09  (b) STARFM 11/13    (c) STARFM 07/09 and 11/13

(d) Proposed 07/09   (e) Proposed 11/13    (f) Proposed 07/09 and 11/13  (g) Actual 

Figure 5. Comparisons between the actual and predicted LSTs (colored). (a), (b), and (c) are the

predicted LSTs on October 13 by STARFM using the data from July 9, the data from

November 30, and the data from July 9 and November 30, respectively, from left to right. (d),

(e), and (f) are the predicted LSTs on October 13 by the proposed method using the same data as

the upper row. (g) is the actual LST on October 13 (the change is in the range of 290�310 K).
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In particular, we have no need to obtain the prediction at around 17:00 UTC time

because the actual TM LST (Figure 8a) is observed at a similar time. Figure 9 shows

the average LST of Figure 8 between 10:00 and 22:00 UTC time.

To validate the performance of the proposed method, the fourth set of

experiments utilizes the ground truth from the SXF and DRA data. The TM LST

and the GOES 13 LSTs (images containing the SXF site) from 00:00 to 04:00 UTC

time and 15:00 to 23:00 on 18 June 2010 are listed in Figure 10 (the GOES

Table 2. AAD and RMSE between the predictions from different input data and actual LST

of the second series of experiments.

The base data as input 07/09 11/30 07/09 and 11/30

AAD (K) STARFM 3.4262 0.7511 1.6869

Proposed 3.2759 0.7295 1.5771

RMSE (K) STARFM 3.6018 0.9523 2.0714

Proposed 3.3158 0.9159 1.8099

Figure 6. Scatter plots of predicted LSTs using the proposed method against actual LST for the

different input data pairs. (a) is the scatter plot of the predicted LST using the one input data

pair from July 9 against the actual LST. (b) is the scatter plot of the predicted LST using the one

input data pair from November 30 against the actual LST. (c) is the scatter plot of the predicted

LST using the two input data pairs from July 9 and November 30 against the actual LST.

International Journal of Digital Earth 125

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

],
 [

H
ua

nf
en

g 
Sh

en
] 

at
 1

6:
44

 1
3 

D
ec

em
be

r 
20

13
 



observations between 05:00 and 14:00 UTC time are contaminated by clouds or

otherwise reduced visibility). The TM LST (Figure 10a) and the GOES LST

observed at around 17:00 UTC time (Figure 10i) are the base data, and the other 13

(a) TM 17:00     (b) GOES 10:00  (c) GOES 11:00  (d) GOES 12:00 

(e) GOES 13:00  (f) GOES 14:00  (g) GOES 15:00  (h) GOES 16:00   (i) GOES 17:00 

(j) GOES 18:00  (k) GOES 19:00  (l) GOES 20:00   (m) GOES 21:00  (n) GOES 22:00 

Figure 7. The actual Landsat LST and GOES LST. (a) is the Landsat LST observed on 4

September 2010; and (b)�(n) are the GOES LSTs observed between 10:00 and 22:00 UTC time

during 4 September 2010.

(a) TM 17:00     (b) “TM” 10:00  (c) “TM”11:00   (d) “TM”12:00 

(e) “TM” 13:00  (f) “TM” 14:00  (g) “TM” 15:00  (h) “TM” 16:00  (i) “TM” 18:00

(j) “TM” 19:00  (k) “TM” 20:00  (l) “TM” 21:00  (m) “TM” 22:00

Figure 8. Comparisons between the actual TM and predicted LST (colored). (a) is the actual

Landsat TM LST (colored), and (b)�(n) are the predictions (colored) at Landsat spatial

resolution (‘TM’) between 10:00 and 22:00 UTC time on 4 September 2010, respectively.
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Figure 9. The average LST of Figure 8 between 10:00 and 22:00 UTC time on 4 September

2010.

(a) TM 17:00      (b) GOES 00:00     (c) GOES 01:00      

(d) GOES 02:00    (e) GOES 03:00    (f) GOES 04:00      (g) GOES 15:00    

(h) GOES 16:00     (i) GOES 17:00    (j) GOES 18:00     (k) GOES 19:00

(l) GOES 20:00     (m) GOES 21:00    (n) GOES 22:00    (o) GOES 23:00 

Figure 10. The actual Landsat LST and GOES LST. (a) is the Landsat LST observed on 18

June 2010, and (b)�(o) are the GOES LSTs observed between 00:00 and 04:00 UTC time and

15:00 to 23:00 UTC time on 18 June 2010, respectively.
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GOES LSTs (Figure 10b�n) are the input data of the prediction time. Figure 11b�n

are the predictions from 00:00 to 04:00 UTC time and 15:00 to 23:00 UTC time.

Similarly, we have no need to obtain the prediction at 17:00 UTC time because the

actual TM LST (Figure 11a) is observed at this time.

Evaluations of the LSTs from the SXF site and the predictions from 18 June

2010 are shown in Figure 12. The time units shown on the abscissa (in UTC) in

Figure 12a comprise a single day (24 h). The dotted curve in red in Figure 12a

represents the LST measurements at the SXF site, while the predicted LSTs are

denoted by a circle in blue. Note that the solid circle at 17:00 UTC time represents

the observed TM LST based on the work of Jimenez-Munoz and Sobrino (2003).

Some values are interrupted where the GOES observations are lacking due to

clouds or otherwise reduced visibility. The LSTs of the predictions show a

downward trend between 00:00 and 04:00 UTC time and then show an increasing

trend followed by a downward trend between 15:00 and 23:00 UTC time. The

trends of the available predictions are in agreement with the ground measurement.

(a) TM 17:00      (b) “TM” 00:00     (c) “TM” 01:00      

(d) “TM” 02:00     (e) “TM” 03:00     (f) “TM” 04:00     (g) “TM” 15:00

(h) “TM” 16:00     (i) “TM” 18:00      (j) “TM” 19:00     (k) “TM” 20:00

(l) “TM” 21:00      (m) “TM” 22:00    (n) “TM” 23:00

Figure 11. Comparisons between the actual TM and predicted LST (colored). (a) is the actual

Landsat LST at 17:00 UTC time (colored), and (b)�(n) are the predictions (colored) at

Landsat TM spatial resolution (‘TM’) from 00:00 to 04:00 UTC time and 15:00 to 23:00 UTC

time on 18 June 2010, respectively.
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The scatter plot of the predicted LST versus in situ LST is shown in Figure 12b with

0.95 for R2 and 2.14 K for RMSE.

Similar experiments are also undertaken for a different surface type using the

data from the DRA site. The retrieved ETM�LST and the GOES 10 LSTs (images

containing the DRA site) observed on 20 August 2002 are used. There are 45 GOES

LSTs with 30-min resolutions over that day (the GOES observations between 08:30

and 09:30 UTC times are absent). The ETM�LST and the GOES LST observed at

around 18:00 UTC time are the base data, and the other GOES LSTs are the input

data of the prediction time. The 46 inputs and the 44 predictions are not listed here;

however, the evaluations between the LSTs from the DRA site and the predictions

are shown in Figure 13. The time units shown on the abscissa (in UTC) in Figure 13a

comprise a single day (24 h). The dotted curve in red in Figure 13a represents the

LST measurements at the DRA site, while the predicted LSTs are denoted by a circle

in blue. The scatter plot of the predicted LST versus the DRA observations is shown

in Figure 13b with 0.98 for R2 and 1.87 K for RMSE. From Figures 12 and 13, we

can see that the proposed method can obtain hourly and even half-hourly high-

spatial-resolution LST, although the absolute mean errors of the predictions are

about 2.5 K. The sources of errors may include the following:

(1) The data preprocessing contains registration errors, and cloud contamination

may also have a significant negative impact on the validation process.

(2) The retrieval methods of the different sensors (see Section 3). For the same

time and area, the LSTs retrieved from different sensors may be different. The

retrieval methods themselves may also have certain errors.
(3) The land surface is typically heterogeneous over satellite pixel areas, while in

situ LSTs are usually collected over significantly smaller and more homo-

geneous areas (Yu et al. 2012). The scale difference may be a major source of

error (Wang and Liang 2009).

Figure 12. Evaluation of estimates of LST based on proposed method with the SXF site

observations. (a) is the predicted LST (circles in blue) compared directly with the SXFobservations

(dotted line in red) on 18 June 2010, the solid circle at 17:00 UTC time represents the actual TM

LST, the data gaps in GOES from 05:00 to 14:00 UTC time, due to clouds or otherwise reduced

visibility, are not predicted, (b) the scatter plot of the predicted LST versus in situ LST.
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5. Conclusion

This paper presents an extended spatiotemporal fusion method for remote-sensing LST

by blending observations from multiple sensors (Landsat, MODIS, and GOES). The

objective was to obtain daily or hourly LST at a Landsat spatial scale. Through

consideration of the observation differences between the sensors and the spatial

correlations between pixels, the proposed method can improve the current state of

temporal surface temperature prediction. We also compare the predictions based on

different input LST pairs, and the comparison reveals that the input LST pairs having

large differences with the predicted LST result in incorrect contributory information, the

same as with the predicted reflectance. Although the predictions are improved somewhat

when the initial value is fixed, further improvement will be realizable when it is updated

iteratively. In addition, the hourly LSTs at the Landsat spatial scale can be obtained with

our method only if the Landsat data are available at the correct revisit cycle. This limiting

factor could be solved by simultaneously fusing GOES, MODIS, and Landsat data.

Acknowledgements

This work was supported by the Major State Basic Research Development Program (973
Program) under Grant 2011CB707103, National High Technology Research and Develop-
ment Program (863 Program) under Grant 2013AA12A301, National Natural Science
Foundation of China under Grant 41271376, the Hubei Natural Science Foundation under
Grant 2011CDA096, and the Fundamental Research Funds for the Central Universities under
Grant 2012205020205. Many thanks to the anonymous reviewers. We would like to thank F.
Gao, F. Li, and D. L. Sun for their help.

References

Anderson, M. C., R. G. Allen, A. Morse, and W. P. Kustas. 2012. ‘‘Use of Landsat Thermal
Imagery in Monitoring Evapotranspiration and Managing Water Resources.’’ Remote
Sensing of Environment 122, 50�65. doi:10.5194/hess-15-223-2011.

Figure 13. Evaluation of estimates of LST based on proposed method with the DRA site

observations. (a) is the predicted LST (circles in blue) compared directly with the DRA observations

(dotted line in red) on 20 August 2002, the solid circle at 18:00 UTC time represents the actual

ETM�LST, the data gaps in GOES from 08:30 to 10:00 UTC time, due to the GOES observations

being absent, are not predicted, (b) the scatter plot of the predicted LST versus in situ LST.

130 P. Wu et al.

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

],
 [

H
ua

nf
en

g 
Sh

en
] 

at
 1

6:
44

 1
3 

D
ec

em
be

r 
20

13
 



Anderson, M., V. Kustas, J. Norman, C. Hain, J. Mecikalski, L. Schultz, M. Gonzalez-Dugo,
C. Cammalleri, G. D’urso, and A. Pimstein. 2011. ‘‘Mapping Daily Evapotranspiration at
Field to Continental Scales Using Geostationary and Polar Orbiting Satellite Imagery.’’
Hydrology and Earth System Sciences 15 (1): 223�239. doi:10.5194/hess-15-223-2011.

Ehlers, M. 1991. ‘‘Multisensor Image Fusion Techniques in Remote Sensing.’’ ISPRS Journal
of Photogrammetry and Remote Sensing 46 (1): 19�30. doi:10.1016/0924-2716(91)90003-E.

Eismann, M., and R. Hardie. 2005. ‘‘Hyperspectral Resolution Enhancement Using High-
Resolution Multispectral Imagery with Arbitrary Response Functions.’’ IEEE Transactions
on Geoscience and Remote Sensing 43 (3): 455�465. doi:10.1109/TGRS.2004.837324.

Gao, F., J. Masek, M. Schwaller, and F. Hall. 2006. ‘‘On the Blending of the Landsat and
MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance.’’ IEEE
Transactions on Geoscience and Remote Sensing 44 (8): 2207�2218. doi:10.1109/
TGRS.2006.872081.

Güçlüer, D., B. Bayram, and D. Maktav. 2010. Land Cover and Coast Line Change Detection
by Using Object Oriented Image Processing in Alacati, Turkey, 158. Dolunay: IOS Press.

Hall, D. L., and J. Llinas. 1997. ‘‘An Introduction to Multisensor Data Fusion.’’ Proceedings
of the IEEE 85 (1): 6�23. doi:10.1109/5.554205.

Hilker, T., M. Wulder, N. Coops, N. Seitz, J. White, F. Gao, J. Masek, and G. Stenhouse. 2009.
‘‘Generation of Dense Time Series Synthetic Landsat Data Through Data Blending with
MODIS Using a Spatial and Temporal Adaptive Reflectance Fusion Model.’’ Remote
Sensing of Environment 113 (9): 1988�1999. doi:10.1016/j.rse.2009.05.011.

Huber, P. J. 1964. ‘‘Robust Estimation of a Location Parameter.’’ The Annals of Mathematical
Statistics 35 (1): 73�101. doi:10.1214/aoms/1177703732.

Inamdar, A. K., A. French, S. Hook, G. Vaughan, and W. Luckett. 2008. ‘‘Land Surface
Temperature Retrieval at High Spatial and Temporal Resolutions over the Southwestern
United States.’’ Journal of Geophysical Research 113 (D7): D07107. doi:10.1029/2007JD00
9048.

Jimenez-Munoz, J. C., and J. A. Sobrino. 2003. ‘‘A Generalized Single-Channel Method for
Retrieving Land Surface Temperature from Remote Sensing Data.’’ Journal of Geophysical
Research 108 (D22): 4688�4695. doi:10.1029/2003JD003480.

Jin, M., R. E. Dickinson, and D. Zhang. 2005. ‘‘The Footprint of Urban Areas on Global
Climate as Characterized by MODIS.’’ Journal of Climate 18 (10): 1551�1565. doi:10.1175/
JCLI3334.1.

Kumak, K. S., P. U. Bhaskar, and K. Padmakumari. 2012. ‘‘Estimation of Land Surface
Temperature to Study Urban Heat Island Effect Using Landsat ETM�Image.’’
International Journal of Engineering Science 4: 771�778.

Li, B., and R. Avissar. 1994. ‘‘The Impact of Spatial Variability of Land-Surface
Characteristics on Land-Surface Heat Fluxes.’’ Journal of Climate 7 (4): 527�537.
doi:10.1175/1520-0442(1994)007%3C0527:TIOSVO%3E2.0.CO;2.

Liu, H., and Q. Weng. 2012. ‘‘Enhancing Temporal Resolution of Satellite Imagery for Public
Health Studies: A Case Study of West Nile Virus Outbreak in Los Angeles in 2007.’’ Remote
Sensing of Environment 117: 57�71. doi:10.1016/j.rse.2011.06.023.

Ludusan, C., and O. Lavialle. 2012. ‘‘Multifocus Image Fusion and Denoising: A Variational
Approach.’’ Pattern Recognition Letters 33 (10): 1388�1396. doi:10.1016/j.patrec.2012.
02.017.

Luo, R. C., Y. Chih-Chen, and S. Kuo Lan. 2002. ‘‘Multisensor Fusion and Integration:
Approaches, Applications, and Future Research Directions.’’ IEEE Sensors Journal 2 (2):
107�119. doi:10.1109/JSEN.2002.1000251.

Masek, J., F. Lindsay, and S. Goward. 2000. ‘‘Dynamics of Urban Growth in the Washington
DC Metropolitan Area, 1973�1996, from Landsat Observations.’’ International Journal of
Remote Sensing 21 (18): 3473�3486. doi:10.1080/014311600750037507.

Masek, J., E. Vermote, N. Saleous, R. Wolfe, F. Hall, K. Huemmrich, F. Gao, J. Kutler, and T.
Lim. 2006. ‘‘A Landsat Surface Reflectance Dataset for North America, 1990�2000.’’ IEEE
Geoscience and Remote Sensing Letters 3 (1): 68�72. doi:10.1109/LGRS.2005.857030.

Pohl, C., and J. Van Genderen. 1998. ‘‘Review Article Multisensor Image Fusion in Remote
Sensing: Concepts, Methods and Applications.’’ International Journal of Remote Sensing 19
(5): 823�854. doi:10.1080/014311698215748.

International Journal of Digital Earth 131

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

],
 [

H
ua

nf
en

g 
Sh

en
] 

at
 1

6:
44

 1
3 

D
ec

em
be

r 
20

13
 

http://dx.doi.org/10.5194/hess-15-223-2011
http://dx.doi.org/10.1016/0924-2716(91)90003-E
http://dx.doi.org/10.1109/TGRS.2004.837324
http://dx.doi.org/10.1109/TGRS.2006.872081
http://dx.doi.org/10.1109/TGRS.2006.872081
http://dx.doi.org/10.1109/5.554205
http://dx.doi.org/10.1016/j.rse.2009.05.011
http://dx.doi.org/10.1214/aoms/1177703732
http://dx.doi.org/9048
http://dx.doi.org/9048
http://dx.doi.org/10.1029/2003JD003480
http://dx.doi.org/10.1175/JCLI3334.1
http://dx.doi.org/10.1175/JCLI3334.1
http://dx.doi.org/10.1175/1520-0442(1994)007%3C0527:TIOSVO%3E2.0.CO;2
http://dx.doi.org/10.1016/j.rse.2011.06.023
http://dx.doi.org/02.017
http://dx.doi.org/02.017
http://dx.doi.org/10.1109/JSEN.2002.1000251
http://dx.doi.org/10.1080/014311600750037507
http://dx.doi.org/10.1109/LGRS.2005.857030
http://dx.doi.org/10.1080/014311698215748


Sellers, P., R. Dickinson, D. Randall, A. Betts, F. Hall, J. Berry, G. Collatz, A. Denning,
H. Mooney, and C. Nobre. 1997. ‘‘Modeling the Exchanges of Energy, Water, and Carbon
between Continents and the Atmosphere.’’ Science 275 (5299): 502�509. doi:10.1126/
science.275.5299.502.

Shen, H., M. Ng, P. Li, and L. Zhang. 2009. ‘‘Super-resolution Reconstruction Algorithm to
MODIS Remote Sensing Images.’’ The Computer Journal 52: 90�100. doi:10.1093/comjnl/
bxm028.

Shen, H., and L. Zhang. 2009. ‘‘A MAP-Based Algorithm for Destriping and Inpainting of
Remotely Sensed Images.’’ IEEE Transactions on Geoscience and Remote Sensing 47 (5):
1492�1502. doi:10.1109/TGRS.2008.2005780.

Singh, D. 2011. ‘‘Generation and Evaluation of Gross Primary Productivity Using Landsat
Data through Blending with MODIS Data.’’ International Journal of Applied Earth
Observation and Geoinformation 13 (1): 59�69. doi:10.1016/j.jag.2010.06.007.

Sun, D., and R. T. Pinker. 2003. ‘‘Estimation of Land Surface Temperature from a
Geostationary Operational Environmental Satellite (GOES-8).’’ Journal of Geophysical
Research 108 (D11): 4326. doi:10.1029/2002JD002422.

Sun, D., and R. Pinker. 2005. ‘‘Implementation of GOES-Based Land Surface Temperature
Diurnal Cycle to AVHRR.’’ International Journal of Remote Sensing 26 (18): 3975�3984.
doi:10.1080/01431160500117634.

Sun, D., R. T. Pinker, and J. B. Basara. 2004. ‘‘Land Surface Temperature Estimation from the
Next Generation of Geostationary Operational Environmental Satellites: GOES M-Q.’’
Journal of Applied Meteorology 43 (2): 363�372. doi:10.1175/1520-0450(2004)043%3C0363:
LSTEFT%3E2.0.CO;2.

Tarpley, J. 1979. ‘‘Estimating Incident Solar Radiation at the Surface from Geostationary
Satellite Data.’’ Journal of Applied Meteorology 18 (9): 1172�1181. doi:10.1175/1520-
0450(1979)018%3C1172:EISRAT%3E2.0.CO;2.

Thomas, C., T. Ranchin, L. Wald, and J. Chanussot. 2008. ‘‘Synthesis of Multispectral Images
to High Spatial Resolution: A Critical Review of Fusion Methods Based on Remote Sensing
Physics.’’ IEEE Transactions on Geoscience and Remote Sensing 46 (5): 1301�1312.
doi:10.1109/TGRS.2007.912448.

Walker, J. J., K. M. De Beurs, R. H. Wynne, and F. Gao. 2012. ‘‘Evaluation of Landsat and
MODIS Data Fusion Products for Analysis of Dryland Forest Phenology.’’ Remote Sensing
of Environment 117: 381�393. doi:10.1016/j.rse.2011.10.014.

Wan, Z., and J. Dozier. 1996. ‘‘A Generalized Split-Window Algorithm for Retrieving Land-
Surface Temperature from Space.’’ IEEE Transactions on Geoscience and Remote Sensing 34
(4): 892�905. doi:10.1109/36.508406.

Wan, Z., and Z. L. Li. 1997. ‘‘A Physics-Based Algorithm for Retrieving Land-Surface
Emissivity and Temperature from EOS/MODIS Data.’’ IEEE Transactions on Geoscience
and Remote Sensing 35 (4): 980�996. doi:10.1109/36.602541.

Wan, Z., Y. Zhang, Q. Zhang, and Z. L. Li. 2004. ‘‘Quality Assessment and Validation of the
MODIS Global Land Surface Temperature.’’ International Journal of Remote Sensing 25
(1): 261�274. doi:10.1080/0143116031000116417.

Wang, K., and S. Liang. 2009. ‘‘Evaluation of ASTER and MODIS Land Surface
Temperature and Emissivity Products Using Long-Term Surface Longwave Radiation
Observations at SURFRAD Sites.’’ Remote Sensing of Environment 113 (7): 1556�1565.
doi:10.1016/j.rse.2009.03.009.

Wang, Z., D. Ziou, C. Armenakis, D. Li, and Q. Li. 2005. ‘‘A Comparative Analysis of Image
Fusion Methods.’’ IEEE Transactions on Geoscience and Remote Sensing 43 (6): 1391�1402.
doi:10.1109/TGRS.2005.846874.

Watts, J. D., S. L. Powell, R. L. Lawrence, and T. Hilker. 2011. ‘‘Improved Classification
of Conservation Tillage Adoption Using High Temporal and Synthetic Satellite
Imagery.’’ Remote Sensing of Environment 115 (1): 66�75. doi:10.1016/j.rse.2010.
08.005.

Weinreb, P., J. Johnson, and D. Han. 2011. ‘‘Conversion of GVAR Infrared Data to Scene
Radiance or Temperature.’’ NOAA Technical Memorandum, NOAA NESDIS Office of
Satellite Operations. http://www.oso.noaa.gov/goes/goes-calibration/gvar-conversion.htm.

132 P. Wu et al.

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

],
 [

H
ua

nf
en

g 
Sh

en
] 

at
 1

6:
44

 1
3 

D
ec

em
be

r 
20

13
 

http://dx.doi.org/10.1126/science.275.5299.502
http://dx.doi.org/10.1126/science.275.5299.502
http://dx.doi.org/10.1093/comjnl/bxm028
http://dx.doi.org/10.1093/comjnl/bxm028
http://dx.doi.org/10.1109/TGRS.2008.2005780
http://dx.doi.org/10.1016/j.jag.2010.06.007
http://dx.doi.org/10.1029/2002JD002422
http://dx.doi.org/10.1080/01431160500117634
http://dx.doi.org/LSTEFT%3E2.0.CO;2
http://dx.doi.org/LSTEFT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1979)018%3C1172:EISRAT%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1979)018%3C1172:EISRAT%3E2.0.CO;2
http://dx.doi.org/10.1109/TGRS.2007.912448
http://dx.doi.org/10.1016/j.rse.2011.10.014
http://dx.doi.org/10.1109/36.508406
http://dx.doi.org/10.1109/36.602541
http://dx.doi.org/10.1080/0143116031000116417
http://dx.doi.org/10.1016/j.rse.2009.03.009
http://dx.doi.org/10.1109/TGRS.2005.846874
http://dx.doi.org/08.005
http://dx.doi.org/08.005
http://www.oso.noaa.gov/goes/goes-calibration/gvar-conversion.htm


Wu, Y., and K. W. Tam. 2001. ‘‘M-estimation in Exponential Signal Models.’’ IEEE
Transactions on Signal Processing 49 (2): 373�380. doi:10.1109/78.902120.

Xu, T., S. Liang, and S. Liu. 2011. ‘‘Estimating Turbulent Fluxes Through Assimilation of
Geostationary Operational Environmental Satellites Data Using Ensemble Kalman Filter.’’
Journal of Geophysical Research 116 (D9): D09109. doi:10.1029/2010JD015150.

Yu, Y., D. Tarpley, J. L. Privette, L. E. Flynn, H. Xu, M. Chen, K. Y. Vinnikov, D. Sun, and Y.
Tian. 2012. ‘‘Validation of GOES-R Satellite Land Surface Temperature Algorithm Using
Surfrad Ground Measurements and Statistical Estimates of Error Properties.’’ IEEE
Transactions on Geoscience and Remote Sensing 50 (3): 704�713. doi:10.1109/
TGRS.2011.2162338.

Yu, Y., D. Tarpley, J. L. Privette, M. D. Goldberg, M. Rama Varma Raja, K. Y. Vinnikov, and
H. Xu. 2009. ‘‘Developing Algorithm for Operational GOES-R Land Surface Temperature
Product.’’ IEEE Transactions on Geoscience and Remote Sensing 47 (3): 936�951.
doi:10.1109/TGRS.2008.2006180

Zhan, W., Y. Chen, J. Zhou, J. Wang, W. Liu, J. Voogt, X. Zhu, J. Quan, and J. Li. 2013.
‘‘Disaggregation of Remotely Sensed Land Surface Temperature: Literature Survey,
Taxonomy, Issues, and Caveats.’’ Remote Sensing of Environment 131: 119�139.
doi:10.1016/j.rse.2012.12.014.

Zhu, X., J. Chen, F. Gao, X. Chen, and J. G. Masek. 2010. ‘‘An Enhanced Spatial and
Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions.’’
Remote Sensing of Environment 114 (11): 2610�2623. doi:10.1016/j.rse.2010.05.032.

International Journal of Digital Earth 133

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

],
 [

H
ua

nf
en

g 
Sh

en
] 

at
 1

6:
44

 1
3 

D
ec

em
be

r 
20

13
 

http://dx.doi.org/10.1109/78.902120
http://dx.doi.org/10.1029/2010JD015150
http://dx.doi.org/10.1109/TGRS.2011.2162338
http://dx.doi.org/10.1109/TGRS.2011.2162338
http://dx.doi.org/10.1109/TGRS.2008.2006180
http://dx.doi.org/10.1016/j.rse.2012.12.014
http://dx.doi.org/10.1016/j.rse.2010.05.032

	Abstract
	1. Introduction
	2. Methodology
	2.1. STARFM
	2.2. The preliminary calculation function
	2.3. Variation-based model

	3. Data
	3.1. MODIS 1 km LST
	3.2. Landsat TM/ETM+LST
	3.3. GOES imager LST
	3.4. Ground truth data

	4. Experimental results
	4.1. Fusing of MODIS and ETM+LST products
	4.2. Fusing of the GOES and Landsat TM LST products

	5. Conclusion
	Acknowledgements
	References



