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Abstract Building the physics-driven mechanism model has always been the core scientific paradigm for parameter estimation
in Earth surface systems, and developing the data-driven machine learning model is a crucial way for paradigm transformation in
geoscience research. The coupling of mechanism and learning models can realize the combination of “rationalism” and “em-
piricism”, which is one of the most concerned research hotspots. In this paper, for remote sensing inversion and dynamic
simulation, we deeply analyze the internal bottleneck and complementarity of mechanism and learning models and build a
coupling paradigm framework with mechanism-learning cascading model, learning-embedded mechanism model, and me-
chanism-infused learning model. We systematically summarize ten specific coupling methods, including preprocessing and
initialization, intermediate variable transfer, post-refinement processing, model substitution, model adjustment, model solution,
input variable constraints, objective function constraints, model structure constraints, hybrid, etc., and analyze the main existing
problems and future challenges. The research aims to provide a new perspective for in-depth understanding and application of the
mechanism-learning coupling model and provide theoretical and technical support for improving the inversion and simulation
capabilities of parameters in Earth surface systems and serving the development of Earth system science.
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1. Introduction

Problems such as climate change and environmental pollu-
tion in the Earth surface process profoundly affect the pro-
duction, life, and health of human beings. To deeply
understand the complex natural and humanistic phenomena
on Earth surface systems and to promote sustainable social
and economic development, comprehensive, complete, and
continuous sensory data is required (Research Group of
Geoscience Development Strategy, 2009). Satellite remote
sensing inversion and dynamic numerical simulation are two

important means to obtain macroscopic and continuous
parameter data of Earth surface systems (Chen et al., 2019).
How to continuously improve the accuracy and capability of
remote sensinzg inversion and numerical simulation is a key
fundamental issue in scientific research on Earth surface
systems.
No matter through remote sensing inversion or dynamic

numerical simulation, building physically interpretable me-
chanism models has always been a core scientific paradigm
(De Bézenac et al., 2019). In remote sensing inversion,
quantitative inversion based on the physical process of ra-
diative transfer is the main way to obtain the parameters of
multiple spheres such as hydrosphere, pedosphere, atmo-

© Science China Press 2023 earth.scichina.com link.springer.com

SCIENCE CHINA
Earth Sciences

† Corresponding author (email: shenhf@whu.edu.cn)
* Corresponding author (email: zlp62@whu.edu.cn)

https://doi.org/10.1007/s11430-022-9999-9
https://doi.org/10.1007/s11430-022-9999-9
http://earth.scichina.com
http://link.springer.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s11430-022-9999-9&amp;domain=pdf&amp;date_stamp=2022-11-03


sphere, and biosphere. Researchers have developed a large
number of remote sensing inversion methods with strict
physical mechanisms (Li, 2005; Liang et al., 2016; Li et al.,
2016) and released a series of quantitative remote sensing
parameter products at global and regional scales (Zhang et
al., 2016). In the numerical simulation, scientists from var-
ious countries have built a variety of atmospheric numerical
models (Skamarock et al., 2005), land surface process
models (Meng and Dai, 2013), hydrological models (Arnold
et al., 1998), etc., and developed Earth System Simulator
based on supercomputing platforms (Chen et al., 2005; Qiu,
2021). In a word, mechanism models based on physical
driving are the “main framework” for the inversion and si-
mulation of parameters of Earth surface systems (De Béze-
nac et al., 2019) and an indispensable tool for geoscience
knowledge discovery (Karpatne et al., 2017b).
In recent years, geosciences have witnessed a major re-

volution from being a data-poor field to a data-rich field
(Karpatne et al., 2019), and people’s ability to acquire and
produce spatiotemporal data is far greater than the ability to
process, analyze, and understand it (Reichstein et al., 2019).
In this context, the fourth scientific paradigm based on big
data has quietly emerged and has become crucial support for
geoscience research (Guo et al., 2014; Song, 2016; Cheng et
al., 2018; Deng et al., 2020; Zhou et al., 2021). Artificial
intelligence technology represented by machine learning is
developing rapidly, is considered the “Golden Key” to tap-
ping the potential of big data (Guo R et al., 2020; Chen J et
al., 2021; Li et al., 2022), and has received extensive atten-
tion and rapid development in the fields of satellite remote
sensing and numerical simulation (Hsieh and Tang, 1998; Li
and Ye, 2005; Gong, 2009; Härter and de Campos Velho,
2010; Zhang, 2018). In the data fusion contest organized by
the IEEE Geoscience and Remote Sensing Society, the deep
learning model has won championships in most tracks in
recent years (Huang et al., 2021). And in quantitative ap-
plications, the machine learning model has been widely used
in the remote sensing inversion of dozens of parameters (Guo
Q et al., 2020; Yuan et al., 2020; Letu et al., 2020; Ran et al.,
2021). At the same time, machine learning has also been
successfully applied to the simulation and prediction of
surface processes such as atmosphere (Navares and Aznarte,
2020), hydrology (Petty and Dhingra, 2018), ocean (De
Bézenac et al., 2019), etc., and has shown great application
potential. Given this, machine learning is expected to be-
come a crucial framework for unleashing data-driven po-
tential and accelerating scientific discovery (Karpatne et al.,
2017b), and some scholars believe it has pushed geoscience
research to the threshold of dramatic progress (Bergen et al.,
2019).
Obviously, the machine learning model supported by big

data has already made an impact on the orthodox mechanism
model (Pei et al., 2019), and some scholars even believe that

it may lead to “the end of theory” (Anderson, 2008). How-
ever, some scholars insist that the “big data hubris” problem
(Lazer et al., 2014) is serious, and the effectiveness of ma-
chine learning is overestimated. For example, Google re-
leased the neural network precipitation forecast model
MetNet (Sønderby et al., 2020), claiming that the neural
network model already outperforms the mechanism model in
the 8-hour forecast. But it has been questioned a lot in aca-
demia, and scholars believe that at least for long-term fore-
casting, large-scale forecasting, etc., the neural network
model still cannot replace the mechanism model (Witt et al.,
2020; Chantry et al., 2021). For the application of machine
learning in geoscience, well-known journals such as Nature
and Science have recently successively published papers
(Bergen et al., 2019; Reichstein et al., 2019; Bauer et al.,
2021), arguing that many factors, including the complexity,
interactivity, multi-scale characteristics of the geoscience
process, the uncertainty of data, the scarcity of realistic
samples, etc., make machine learning model still unable to
replace mechanism model, but the two models have natural
complementary advantages, coupling the two is a promising
development direction!
However, there are great challenges in coupling the ex-

plicit mechanism model with the implicit learning model.
Although some research progress has been made, there is
still a lack of a standard and unified paradigm framework. In
this article, based on fully summarizing existing works, we
build a systematical mechanism-learning coupling paradigm
framework, analyze the characteristics and potentials of
different coupling methods, and look forward to future
challenges. We aim to provide theoretical and application
references for related research, promote the development of
remote sensing inversion and numerical simulation tech-
nology of parameters in Earth surface systems and provide
support for improving the estimation ability of parameters in
Earth surface systems and serving the development of Earth
system science.

2. Advantages and bottlenecks of the current
models

2.1 Mechanism model

“Mechanism” can be broadly understood as any knowledge
that expresses the attributes or elements relationships of
geographic objects (von Rueden et al., 2023), which includes
not only physical knowledge but also geometric constraints
and geological laws. Mechanism models follow objective
laws to establish explicit associations between inputs and
outputs, helping people to recognize and understand the
physical world (Karpatne et al., 2017b). The classical
quantitative remote sensing inversion methods are based on
models such as atmospheric radiative transfer, which estab-
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lishes the correlation between the electromagnetic wave
signals of the earth observation and parameters, and realizes
the area perception of Earth surface systems. The numerical
simulation system obtains the continuous evolution of geo-
graphic objects in time and space through their intrinsic
physical process and dynamic mechanism (Li et al., 2007). It
can be seen that the mechanism model can describe the in-
ternal characteristics of the system clearly, and its out-
standing advantages are rigorous theory, (relatively) stable
models, and interpretable results, but it also has its in-
surmountable shortcomings:
(1) Limitations of mechanism understanding. Earth surface

system is a complex giant system with multi-element mixing,
multi-scale coupling, and multi-process interweaving (Chen
M et al., 2021), and the existing mechanism models are still
difficult to accurately describe all geoscience processes as
some physical processes are still unknown. For example,
there is still a lack of remote sensing mechanism inversion
models for many parameters (such as air temperature, PM2.5,
etc.); and some sub-processes in the numerical model cannot
be accurately modeled physically, where the reduction or
approximation often leads to uncertainty.
(2) Underdetermined system problem. Even if the me-

chanism of some geoscience processes is relatively clear, the
parameter inversion is often an underdetermined system (that
is, the number of observation equations is less than the
number of unknowns), which makes it very difficult to solve
the model and usually requires some assumptions, but when
the assumptions do not match the reality, it will bring a large
solution error. For example, the remote sensing inversion of
surface temperature is to use N observations (number of
bands) to solve the ill-conditioned problem of N+1 un-
knowns (N surface emissivity and surface temperature).
(3) Computational burden problem. The computational

complexity of some mechanistic processes is enormous. For
example, in the atmospheric model of the US National
Center for Atmospheric Research, the calculation of physical
processes takes about 70% of the total model computations
(Krasnopolsky et al., 2005). If the requirements in terms of
resolution and consistency are further improved, the amount
of calculation will increase exponentially, which will bring
great application troubles.

2.2 Learning model

The machine learning model simulates the human “induc-
tion” and “inference” process through “training” and “pre-
diction” and realizes the modeling and solution of typical
problems. Different from the explicit expression of the me-
chanism model, the learning model establishes the implicit
association between variables through training data, namely
the “black box” model. One of the key advantages of the
learning model is that when the mechanism is unknown,

data-driven modeling can be performed directly skipping the
understanding of the physical process. It can usually obtain
high modeling accuracy when sufficient training data is
available. In addition, although machine learning is time-
consuming in the training phase, it generally has high com-
putational efficiency in the testing application phase, which
has also become one of its outstanding advantages. Never-
theless, machine learning models still have many limitations,
especially in complex geoscience applications, which often
have the following problems:
(1) Insufficient generalization. Lack of sufficient training

samples is the most common problem in geoscience appli-
cations of machine learning. Overfitting is prone to occur
when machine learning models learn complex geoscientific
processes on limited data; even if the training samples show
high modeling accuracy, the accuracy of the test application
will be greatly reduced. Moreover, when the actual numer-
ical range, variable relationship, etc., are not covered by the
training samples, the prediction results are more likely to
have great deviations, which is a typical problem of in-
sufficient generalization ability.
(2) Insufficient transferability. Regionality is an essential

feature of geography, and different regions are not only re-
presented by differences in geographical elements but also
by differences in the relationship between various elements.
Thus, machine learning models trained in one area are often
difficult to transfer to other areas for application. In addition,
elements of Earth surface system and their interrelationships
are in the process of continuous change, and the influence of
human activities has made the changes more severe, so the
models of different time spans in the same area are often
difficult to generalize. Furthermore, insufficient scale
transferability is another dilemma in geoscience applica-
tions.
(3) Insufficient interpretability. The goal of scientific re-

search is not only to develop a usable model, but also to
discover the internal causal relationships and driving patterns
between different variables, and use them to explain theories
and hypotheses, thereby promoting the advancement of sci-
entific knowledge (Karpatne et al., 2017a). A particular
problem of machine learning is the lack of interpretability.
Although it can obtain relatively high accuracy under certain
conditions, it cannot explain the internal mechanism process.
It can be seen from the above analysis that although the

mechanism model and the learning model have their re-
spective advantages, they have insurmountable short-
comings, and there is an obvious natural complementarity
between the two (Ganguly et al., 2014; Wu et al., 2015). The
coupling of mechanism and learning models can realize the
combination of “rationalism” and “empiricism”, can effec-
tively adjust the “bias” of the mechanism model, and avoid
the “hubris” of the learning model (Chantry et al., 2021), so it
is an inevitable choice.
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3. Coupling paradigms of mechanism and
learning models

The coupling of mechanism and learning models has re-
cently become a research hotspot in various fields. In fact,
since the end of the last century, whether in the field of
numerical simulation (Chevallier et al., 1999) or remote
sensing inversion (Aires et al., 2001), there have been ideas
and successful cases of the coupling of mechanism and
learning models; however, limited by the level of cognition
and technical conditions, the research in this direction has
not received enough attention and development. Until re-
cently, with the re-emergence of neural networks, especially
deep learning technology, the mechanism-learning coupling
has become a research hotspot in many fields, including
geoscience.
In recent years, many terms have appeared in literature to

express the coupling of mechanism and learning models,
which can be represented by any combination of optional
words in each of the three columns shown in Figure 1, such
as “Physics Informed Machine Learning”. However, the
various combination terms above place too much emphasis
on “learning” and put “mechanism” on the back burner.
Actually, there are various coupling modes between the two,
where the proportions of “mechanism” and “learning” are
different, so it would be best to maintain a balance between
the two, for which Shen et al. (2022) proposed the expression
of “Coupling of Mechanism and Learning”.
In this article, we propose that in the inversion and simu-

lation of geoscience parameters, the coupling of mechanism
and learning models can be classified into three basic para-
digms: mechanism-learning cascading model, learning-em-
bedded mechanism model, and mechanism-infused learning
model (hereinafter referred to as cascading, embedded, in-
fused), as shown in Figure 2. Mechanism learning cascading
is to connect these two models in series, and the output of one
model is used as the input of the other model. Learning-
embedded mechanism model uses the mechanism model as
the main and the learning model as a supplement, which
embeds the learning model into the mechanism model to
replace or optimize the original uncertain process. Mechan-
ism-infused learning model takes the learning model as the
main framework and integrates physical knowledge into it to
realize the constraint guidance of the learning process. In
addition, the three paradigms can be combined into a hybrid
mode to take advantage of them.

3.1 Mechanism-learning cascading model

The simplest coupling between the mechanism model and
the learning model is cascading, which is a straightforward
combination through sequential modeling. According to the
functional stage and importance of the two models in the

whole system, it can be divided into three specific ap-
proaches: preprocessing and initialization, intermediate
variable transfer, and post-refinement.

3.1.1 Preprocessing and initialization
(1) Quality control. Quality control of the input data in the

mechanism model using the learning model can effectively
improve the accuracy of subsequent parameter estimation.
For example, remotely sensed data often suffer from noise,
missing pixels, etc. Before the parameter inversion based on
the mechanism model, machine learning is firstly used for
image denoising, gap-filling, and other processing, which
can effectively improve the accuracy and reliability of the
mechanism model.
(2) Parameter optimization. Mechanism models often re-

quire multiple input parameters, and their effectiveness is
significantly limited by the accuracy of the input parameters
(Zhang et al., 2012). Machine learning can be used to obtain
more accurate parameters to provide better initial conditions
for subsequent calculations in the mechanism model. For
example, Beck et al. (2016) proposed a scheme for re-
gionalization of hydrologic model parameters, which was
successfully applied on a global scale; Sawada (2020) used a
Gaussian process regression model to optimize the para-
meters of the land surface model, effectively improving the
performance of the model simulation.
(3) Sample generation. In many geoscience applications,

the real database required for training machine learning
models is often difficult to obtain. At this point, the me-

Figure 1 English terms of mechanism-learning coupling.

Figure 2 The basic paradigm of mechanism-learning coupling.
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chanism model can be used to generate training samples. For
example, Aires et al. (2001) generated a training database
with the radiative transfer model in microwave remote sen-
sing. The parameters such as atmospheric water vapor, land
surface temperature, and emissivity were then retrieved
based on the machine learning method. Besides, radiative
transfer models have been widely used to generate sample
databases for machine learning in applications such as land
surface temperature retrieval based on thermal infrared re-
mote sensing (Mao et al., 2007), leaf area index retrieval
based on optical remote sensing (Campos-Taberner et al.,
2016), gross primary productivity retrieval (Wolanin et al.,
2019), and vegetation water content retrieval (Trombetti et
al., 2008).
(4) Transfer learning. To avoid overfitting due to in-

sufficient real samples, the mechanism model can be used to
generate coarser training datasets for pre-training. When the
model is relatively stable, it is then finely trained based on a
small number of high-precision real samples (Figure 3). To
predict lake water temperature, Jia et al. (2021) simulated
datasets with a physics-based General Lake Model, which
were used to pre-train a long short-term memory network,
effectively reducing the reliance on real samples (Read et al.,
2019).

3.1.2 Intermediate variable transfer
Some parameters affected by factors such as mechanism
cognition and technical limitations are difficult to obtain by
full physical processes. At this point, the joint application of
the mechanism model and the learning model can be realized
through the transfer of intermediate variables. That is, the
intermediate variables are calculated using the mechanism
model, and then the target parameters are estimated using the
machine learning model. For example, effective full-physics
inversion models in remote sensing are still lacking for
parameters such as near-surface air temperature and atmo-
spheric PM2.5. However, land surface temperature and
aerosol optical depth have strong correlations with air tem-
perature and PM2.5, respectively, which have relatively ma-
ture physical inversion methods. Therefore, the land surface
temperature and aerosol optical depth estimated by me-
chanism models can be used as inputs to machine learning
models for the retrieval of air temperature and PM2.5 (Shen et
al., 2018, 2020), as shown in Figure 4. In addition, inter-
mediate variables can also be estimated by numerical si-

mulations of dynamic models (Xiao et al., 2017). For
example, Liang et al. (2020) forecasted the concentration of
Chlorophyll using a long short-term memory network, based
on six water quality variables simulated by the water quality
model.

3.1.3 Post-refinement
In order to enhance the outputs of mechanism models such as
remote sensing inversion and dynamic simulation in terms of
accuracy, resolution, etc., machine learning models can be
used for post-refinement, which is a relatively traditional
way of coupling the mechanism model with the learning
model. It includes various specific categories such as error
correction, downscaling, and ensemble optimization.
(1) Error correction. Machine learning-based error cor-

rection methods have been widely used for the calibration of
parameters from remote sensing inversions and model si-
mulations. The accuracy or consistency of the original out-
puts is improved with post-correction by establishing a
mapping relationship between the model outputs and ground
observations or other reference data. Rasp and Lerch (2018)
used neural networks for the systematic error correction of
ensemble weather forecasts, which improved the original
model considerably in terms of accuracy and efficiency; Ivatt
and Evans (2020) corrected the outputs of the atmospheric
chemistry transport model through gradient-boosted regres-
sion trees, which effectively improved the simulation accu-
racy of ozone; Noori et al. (2020) calibrated the outputs of
the SWAT hydrological model using a machine learning
approach with station observations as references, effectively

Figure 3 The coupling approach of transfer training.

Figure 4 Schematic diagram of PM2.5 retrieval with mechanism-learning cascading.
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improving the simulation accuracy of three key water quality
parameters.
(2) Downscaling. The spatial resolution of data from large-

scale remote sensing inversions and model simulations is
generally coarse, which cannot easily meet the requirements
of fine monitoring and analysis. Based on the inversion or
simulation of mechanism models, machine learning can be
further used for downscaling to improve the spatial resolu-
tion of the outputs. Currently, machine learning has become a
general downscaling method for remote sensing parameters
such as precipitation (Wang et al., 2021), soil moisture
(Alemohammad et al., 2018), and surface temperature (Li et
al., 2019). Meanwhile, machine learning models such as the
neural network (Wilby et al., 1998; Cannon, 2011) and
support vector machine (Ghosh, 2010) have been widely
used to downscale numerical simulation data. In addition to
conventional downscaling methods, machine learning super-
resolution techniques in image processing have also been
introduced to improve the resolution of Earth System Model
outputs (Vandal et al., 2017).
(3) Ensemble optimization. Due to the limitations of me-

chanism cognition and differences in parameterization
schemes, the output results of different mechanism models
often have large inconsistencies. Combining the outputs
from different models is an effective way to obtain more
reliable results. In the field of machine learning, ensemble
learning can achieve “drawing upon the strengths of others”
by combining multiple machine learners, which is widely
used for land cover classification and mapping in remote
sensing (Du and Samat, 2013). Similarly, machine learning
can also realize ensemble optimization of multiple me-
chanism models, as shown in Figure 5. Monteleoni et al.

(2011) integrated the predictions of multiple climate models
based on the hidden Markov model with improved accuracy;
On this basis, McQuade and Monteleoni (2012) further de-
veloped a multi-model ensemble framework with higher
spatial resolution. Krasnopolsky and Lin (2012) used a
neural network to integrate multiple models, which effec-
tively improved the accuracy of precipitation forecasting.

3.2 Learning-embedded mechanism model

Leveraging the advantages of the mechanism model, such as
physical interpretability, the learning model is embedded into
the mechanism model to replace, adjust or optimize the so-
lution of the original uncertain sub-processes. It is a typical
coupling paradigm with a dominant mechanism model and a
supplementary learning model, which is a hot topic in current
mechanism-learning coupling research.

3.2.1 Model replacement
Model replacement is a coupling approach in which machine
learning is used to replace sub-processes of the mechanism
model, as shown in Figure 6. In the modeling process of the
mechanism model, especially the dynamic model, the spatial
scale of some sub-processes is likely to be smaller than that
of the original model, so it is difficult to directly model with a
strict mechanism model. Thus, it is necessary to design an
applicable parameterization scheme for expression. Para-
meterization is a processing scheme for the indirect expres-
sion of physical processes that cannot be directly modeled
and is an approximate or idealized representation of complex
physical processes (Stensrud, 2007). Therefore, the para-
metrization of the model is fundamentally different from the

Figure 5 The coupling approach of ensemble optimization.

Figure 6 The coupling approach of model replacement.
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aforementioned parameter optimization. The most widely
used coupling approach for model replacement is that the
machine learning model is used to replace the para-
meterization scheme in the mechanism model.
(1) Model “emulator”. Since the computation of some

parameterization schemes is very time-consuming, a com-
mon alternative is to build a machine learning “emulator” of
the mechanism model by training the input-output data pairs
of the sub-model to improve the computational efficiency, so
that it has close accuracy and higher efficiency compared to
the original model. Chevallier et al. (1999) applied machine
learning to the construction of a new generation of radiative
transfer models. Embedding the multi-layer perceptron into
the physical modeling process to replace long-wave radiation
from the top of the atmosphere to the land surface. The
computational efficiency is 22 times higher than that of the
traditional band model and 106 times higher than that of the
line-by-line model. Subsequently, the method and its im-
provements were operationally applied to the 4D Variational
Assimilation System of the European Centre for Medium-
Range Weather Forecasts. For the Community Atmosphere
Model (CAM) of the National Center for Atmospheric Re-
search, Krasnopolsky et al. (2005) introduced a neural net-
work to simulate and replace the original long-wave
radiation parameterization method and further applied it to
the parameterization of convection and other processes
(Krasnopolsky et al., 2013), which can improve the com-
putational efficiency by 10–105 times compared to the ori-
ginal model (Krasnopolsky, 2020). Based on the GEOS-
Chem atmospheric chemical transport model, Keller and
Evans (2019) attempted to replace its chemical integrator
with a random forest approach, resulting in a viable alter-
native that provided an important foundation for efficiency
optimization.
Since the machine learning model can replace some sub-

processes of the mechanism model and achieve similar ac-
curacy as the original model, it is natural to wonder whether
they can replace more sub-processes or even the whole
complex mechanism model. Sargsyan et al. (2014) used a
sparse learning method to simulate the land surface model,
which showed certain application potential. Based on the
global forecast system of the National Centers for Environ-
mental Prediction, Krasnopolsky et al. (2009) attempted to
replace all subprocesses except radiative transfer with ma-
chine learning models and found that not all outputs could
reach the level of the original model. Dueben and Bauer
(2018) constructed an atmospheric model emulator using
deep learning, which performed well for regional short-term
predictions, but struggled to achieve the expected results for
long-term predictions. Scher andMessori (2019) showed that
using machine learning to replace the whole mechanism
process of atmospheric models including a seasonal cycle
remains challenging.

(2) Model “enhancer”. Machine learning alternatives can
further improve the estimation accuracy if sufficient real
samples exist. In the simulation of ocean parameters, Bolton
and Zanna (2019) further optimized the model by introdu-
cing real observations and machine learning. Even with only
local observations, the prediction accuracy of the model can
be improved on a large scale. Hunter et al. (2018) effectively
improved the prediction of salinity by embedding the neural
network and simple regression model in the simulation of
river parameters. Kraft et al. (2022) embedded a neural
network into global hydrological models for the simulation
of parameters such as soil moisture, groundwater, and snow,
and obtained better local adaptivity than the mechanism
model. It can be seen that replacing uncertain mechanism
processes with machine learning is an effective way to en-
hance models by fully utilizing high-precision ground-based
observations, satellite remote sensing images, and other data.
However, the training samples required for machine

learning are often difficult to obtain. To this end, simulated
data can be generated using a higher-resolution mechanism
model, which can be used as “pseudo-observation” data to
train the learning model, and then the trained model can be
applied to the lower-resolution mechanism model, as shown
in Figure 7. This approach has been widely used in para-
meterization schemes of atmospheric models (Krasnopolsky
et al., 2013; Schneider et al., 2017; Brenowitz and Breth-
erton, 2018). It has been proved to be effective in capturing
the spatiotemporal information on the sub-grid scale, ob-
taining higher accuracy than the original parameterization
schemes, and even having better prediction ability for ex-
treme events (Krasnopolsky et al., 2009).

3.2.2 Model adjustment
As mentioned above, existing global and regional dynamic
models often contain complex parameterization schemes,
leading to uncertainties in model outputs (Li et al., 2007).
Data assimilation technology can integrate direct or indirect
observations from different sources and at different resolu-
tions within the dynamic framework to effectively adjust the
trajectory of the mechanism model, thus enhancing the ac-
curacy and predictability of the model (Li X et al., 2020,
2021). Variational approaches and Bayesian filtering are two
types of data assimilation methods commonly used at pre-
sent. Some scholars have mathematically analyzed the the-
oretical equivalence of data assimilation and machine
learning (Bonavita et al., 2021). In recent years, the appli-
cation of machine learning methods to data assimilation has
become a hot research direction. Based on data assimilation,
embedding machine learning methods into the dynamic
framework of model simulation is an effective way to couple
mechanism and learning. The difference between this ap-
proach and the aforementioned model replacement is that it
optimally adjusts the model instead of directly replacing the
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original mechanism process.
Hsieh and Tang (1998) earlier used machine learning for

data assimilation in meteorological and oceanographic
models. Researchers have theoretically explored data as-
similation using machine learning models such as the neural
network (Härter and de Campos Velho, 2008) and support
vector machine (Gilbert et al., 2010), and have gradually
applied them to real applications. There are three main ways
for data assimilation with machine learning: Firstly, using
machine learning to simulate the existing assimilation al-
gorithm, the purpose of which is to improve the efficiency of
assimilation processing. For example, the neural network
approach is 274 times more efficient than the Local En-
semble Transform Kalman filter for the same accuracy in a
global surface temperature assimilation study (Cintra et al.,
2016). Secondly, developing new machine learning assim-
ilation methods. For example, Lu et al. (2018) effectively
improved the prediction accuracy of precipitation using a
neural network-based assimilation algorithm. Finally, com-
bining machine learning with the existing data assimilation
method to improve the applicability of the model through
error correction (Bonavita and Laloyaux, 2020; Farchi et al.,
2021).

3.2.3 Model solution
In some parameter estimation processes, the optimal model
is often established based on the forward process and the
related physical mechanism, and solved by gradient descent
iterative process, etc. However, problems often arise in the
specific solving process, such as the gradient cannot be
calculated or the computation is too large even if it can be
solved. In this case, the model can be optimally solved by
machine learning. In terms of theoretical research, machine
learning is applied to solve partial differential equations,
which has received extensive attention in the field of applied
mathematics (Han et al., 2018). In terms of applications,
Davis et al. (1993) trained the scattering model using a neural
network to obtain a conversion model from parameters to
bright temperature in the retrieval of passive microwave

snow parameters, which was used in an iterative inversion
algorithm. Based on a similar solution idea, various para-
meters were further retrieved, such as soil moisture, near-
surface air temperature, vegetation water content, etc. (Davis
et al., 1995). Venkatakrishnan et al. (2013) developed a
“plug-and-play” mechanism-learning coupling method,
which can embed the machine learning model into the
iterative solution of variational optimization for remote
sensing applications such as SAR data reconstruction (Alver
et al., 2019) and multi-source data fusion (Dian et al., 2021).

3.3 Mechanism-infused learning model

The third type of coupling paradigm is to integrate the me-
chanism knowledge into the machine learning model, that is,
machine learning is the main framework, and the mechanism
knowledge is used to constrain the learning process. The
whole model adopts an “end-to-end” computing form. Ac-
cording to the application mode and role of mechanism
constraints in the machine learning model, it can be divided
into input variable constraints, objective function constraints,
model structure constraints, etc., as shown in Figure 8 (tak-
ing neural network as an example).

3.3.1 Input variable constraints
Input variable constraints refer to the introduction of new
input variables into the machine learning model through the
calculation of the mechanism model or the guidance of
mechanism knowledge, so that the learning process is more
in line with specific mechanism constraints. For example, in
the study of Karpatne et al. (2017b) (see Figure 9), the
driving data is used as input to carry out the mechanism
simulation of the dynamics, and then the output data of the
mechanism simulation and the original driving data are used
as the input variables of the machine learning model. At this
point, there is a corresponding physical mapping relationship
between the two sets of input variables in machine learning.
Experiments show that this coupling method has higher
prediction accuracy than pure data-driven models. Li et al.
(2017) introduced a spatiotemporal correlation factor into the
input variables in the remote sensing parameters inversion,
which effectively took into account the first law of geo-
graphy and imposed effective spatiotemporal geography
constraints on the machine learning model.

3.3.2 Objective function constraints
In general, machine learning solves the model by minimizing
the objective function. Therefore, introducing mechanism
constraints to the objective function is a straightforward and
widely used integration method (Kashinath et al., 2021).
Overall, the objective function of the mechanism-con-
strained neural network can be summarized as the following
basic form (Karpatne et al., 2017b; Willard et al., 2020):

Figure 7 The model replacement with pseudo observations.
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L L x x R w L x= ( ) + ( ) + ( ), (1)d true pred phy pred

where, the first item Ld represents the supervision error be-
tween the real sample data xtrue and the model prediction data
xpred, which can be defined as the sum of squared errors,
absolute error, cross entropy, etc.; the second term R(w) is a
general regularization term, used to compress the solution
subset, w is the solution parameter of the model; the third
term Lphy(xpred) is the constraint imposed on the basis of
general regularization based on specific mechanism knowl-
edge to further narrow the search space for parameter solving
and overcome the overfitting problem (Reichstein et al.,
2019); α and β are hyperparameters used to adjust the
weights.
The Lphy(xpred) can directly impose corresponding con-

straints according to the distribution characteristics of the
predictor variable xpred. Erichson et al. (2019) added Lya-
punov stability constraints to the objective function, which
effectively reduced the uncertainty of sea surface tempera-
ture prediction. To strengthen the constraint ability, the
variable z is widely introduce that has a mechanism re-
lationship with xpred. It can be either a model input variable or
other related variables. Then, the constrain can be expressed
in the form of Lphy=L(z, A, xpred), where A is the mechanism
correlation model, and L is the penalty function. For ex-
ample, Karpatne et al. (2017b) made full use of the physical
relationship equation of temperature and density into the lake

temperature simulation, and applied the relationship con-
straint of density to depth in the construction of Lphy. This
method is further improved to construct Lphy based on con-
straints on the input-output heat flux, so that the predicted
temperature and lake water environmental changes conform
to the law of conservation of energy (Read et al., 2019; Jia et
al., 2021). In the long-wave radiation simulation process,
Beucler et al. (2019) simultaneously considered the con-
servation laws of heat, mass, solar radiation, and surface
radiation, and imposed corresponding physical constraints in
the objective function. Besides, in the fusion and down-
scaling of remote sensing data, the forward model between
the input data y and the output data xpred can be used for the
construction of Lphy (Lin et al., 2022), such as

L y Ax=phy pred
2
, that is, the model is constrained by the

known relationship matrix A to improve the fidelity of the
model solution.
In specific applications, the introduction of domain

knowledge can be achieved by directly improving Ld. For
example, when the target variable of machine learning does
not have corresponding real sample data, the objective
function cannot be directly constructed. However, if there is
an associated variable z that has a definite mechanism re-
lationship with the target variable, the objective function can
be constructed indirectly based on the mechanism relation-

ship between the two variables, such as L z Bx=d pred
2
,

where B is transformation models between variables. De
Bézenac et al. (2019) took the motion field parameters as the
target variable of the neural network in the estimation of sea
temperature, and used the physical relationship between the
sea temperature and motion field parameters to establish an
energy function to realize the joint solution of the two.
Without introducing associated variables, Li T et al. (2021)
established a spatiotemporal geographic weighting con-

straint function L w x x= ( )d true pred
2
(w is the spatio-

temporal weight) in remote sensing quantitative inversion,

Figure 8 Mechanism constraints of the neural network model.

Figure 9 A form of input variable constraint.
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that is, by taking into account the autocorrelation char-
acteristics of the variables, the inversion accuracy of the
model is effectively improved.

3.3.3 Model structural constraints
Generally, the solution process of machine learning is a
“black box”. Imposing constraints on the “black box” is a
way of introducing mechanism knowledge. This kind of
coupling is a challenging way, which needs to have a clear
understanding of the internal structure of machine learning
and mechanism process, and it is also necessary to find the
sweet spot between them. Li T et al. (2020) developed a
spatiotemporal geographic weighted learning method, which
improved the pattern layer and summation layer of the neural
network structure, and multiplied the weighted summation
nodes and arithmetic summation nodes by the corresponding
spatiotemporal weights respectively to fully consider the
geoscience laws associated with space and time. This method
is similar to the aforementioned objective function spatio-
temporal constraint method (Li T et al., 2021), but this
method is difficult to apply to other neural network struc-
tures. In the simulation of lake water temperature, Daw et al.
(2020) added an activation function directly behind the ori-
ginal long short-term memory neural network, and used the
output of the activation function to illustrate the constraint
relationship between lake water depth and density. Beucler et
al. (2019) added a physical relationship expressing energy
conservation to the back of the neural network (Figure 10) as
a model structure constraint method and compared it with an
objective function constraint method. It is shown that both
methods can effectively improve the simulation of longwave
radiation.
Besides neural network models, some machine learning

models have been proposed for model structure constraints.
For example, Gaussian process regression is a nonparametric
model that regresses data using a Gaussian process prior. It
works well for small sample data and can analyze forecast
uncertainty (Willard et al., 2020). Camps-Valls et al. (2018)
put physical constraints on the relationship between multiple
variables by introducing differential equations into the
Gaussian process machine learning model for the multi-
output regression problem, and took the leaf area index and
photosynthetically active radiation as example to verify the
effectiveness of the model.

3.4 Comparison and hybrid application of coupling
paradigms

As mentioned above, the coupling between the mechanism
model and the learning model includes three basic para-
digms: cascade, embedding, and integration, each of which
has its own advantages and limitations. The advantage of the
cascading paradigm is that it is simple to apply, does not

require any changes to the internal processes of the two
models. It is suitable for most application scenarios, and can
significantly improve accuracy. However, the theoretical
breakthrough of the cascade paradigm is limited, it lacks a
fundamental solution to the model problem, and it is difficult
to give full play to the complementary advantages of the
models. Relatively speaking, the embedding paradigm can
make targeted improvements according to the shortcomings
of the mechanism model. Since it maintains the basic
structure of the mechanism model and has stronger physical
interpretability, it is more suitable for application scenarios
where the mechanism model is relatively mature. However,
replacing the sub-process of mechanistic models with ma-
chine learning requires a large number of intermediate
variables for training, and the availability of these data be-
comes a limiting condition in some applications. The in-
tegration paradigm maintains the “end-to-end” computing
framework of the machine learning model, and realizes ef-
ficient processing and application by integrating the me-
chanism knowledge into the learning model. It is more
suitable for scenarios where the mechanism model is im-
mature and there are a large number of real training samples.
However, it is difficult to modify the “black box” model
structure of machine learning, and the introduction of me-
chanism knowledge will be restricted accordingly.
Therefore, the three coupling paradigms have no absolute

advantages or disadvantages, which have different applica-
tion scenarios for different conditions, and they can also be
mixed in some applications. For example, Schneider et al.
(2017) used neural networks to replace parameterization
schemes in Earth System Models (ESM), which belongs to
the embedding coupled paradigm. However, it incorporates
physical constraints into the objective function of the neural
network, which further uses the integration coupled para-
digm. Read et al. (2019) integrated three coupling paradigms
in the study of water temperature estimation (Jia et al., 2021).
First, the cascade coupling paradigm is applied to generate
simulated data based on the mechanism model, which is
further used for the pre-training of the machine learning
model; secondly, in the fine training stage, the driving data
and the output of the mechanism model are used as the input
of the machine learning model, that is, the integration cou-
pling paradigm; Furthermore, a physical constraint is added
to the energy function of the machine learning model, that is,
the embedding coupling paradigm. Through the joint appli-
cation of different coupling paradigms, the complementary

Figure 10 Structural constraints of neural network models.
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advantages of the mechanism model and the learning model
can be fully utilized.

4. Main issues and challenges

Although the mechanism-learning coupling has been ex-
plored in the field of remote sensing inversion and numerical
simulation, gratifying progress has been made in some ty-
pical applications. However, this research direction is still in
a relatively primary development stage, and needs to be
further developed in both breadth and depth. In terms of
breadth, there are relatively many studies on atmospheric
numerical simulation, but there are still few studies on land
surface process and hydrological simulation, remote sensing
parameter inversion, and comprehensive breakthroughs in all
directions are urgently needed. In terms of depth, there is still
a huge research space on how to embed a robust learning
process in the mechanism model and how to integrate more
complex mechanism knowledge into the machine model
architecture. Under the background of the rapid development
of geoscience big data and artificial intelligence, the cou-
pling research of mechanism model and learning model faces
unprecedented opportunities and challenges, including but
not limited to:
(1) Integrated learning and fusion of multi-source hetero-

geneous geoscience big data. Machine learning is a data-
driven computing paradigm, so the coupling of mechanism
and learning is largely dependent on the available reference
data. Although various types of data such as ground-based
observations, remote sensing observations, numerical simu-
lations, and social perception have been developed rapidly,
the existing model coupling research is mostly aimed at
single-type or few-type data. How to take into account the
differences and complementarity of multi-source hetero-
geneous data in terms of accuracy, scale, spatiotemporal
continuity, and integrate machine learning modeling and
fusion applications is an important development trend
(Zhang and Shen, 2016). Besides, due to the lack of real
reference data, making full use of multi-source and multi-
scale observation and simulation data to obtain more suffi-
cient training samples through transfer learning and active
learning is an effective way to improve the performance of
existing models.
(2) Selective surrogate modelling of mechanism process.

Using machine learning to surrogate the uncertain sub-
process in the mechanism model is a coupling paradigm with
great potential, which maintains the original physical process
mechanism and has strong physical interpretability. How-
ever, in the specific implementation process, which sub-
process mechanism model is replacement? When is the re-
placement required? Which machine model to use instead?
These are all affected by a variety of factors, and currently it

is mainly selected by domain experts based on experience,
which brings certain uncertainties. Therefore, the future de-
velopment trend is to construct adaptive learning alternative
mechanisms for mechanistic processes. That is, according to
the operation of the mechanism model and the current data
conditions, the computer automatically determines which
machine learning model to use, when and where to replace
the mechanism sub-process (von Rueden et al., 2020).
(3) New architecture of deep learning network for geos-

ciences. As the most representative machine learning method
at present, deep learning is becoming an important technical
support for the estimation of earth surface parameters and the
coupling of mechanism and learning. However, existing
methods are mainly based on general neural network archi-
tectures, such as Google neural network (GoogLeNet)
(Szegedy et al., 2015), densely connected convolutional
network (DenseNet) (Huang et al., 2017), residual network
(ResNet) (He et al., 2016), deep belief network (DBN)
(Hinton et al., 2006), etc. On the original basis, the in-
troduction of mechanism or prior knowledge through struc-
tural modification will affect the improvement effect of the
model due to the limitation of the inherent network structure.
Therefore, how to design a new deep neural network archi-
tecture according to the uniqueness of geoscience applica-
tions is a challenging direction to break through the existing
limitations.
(4) The coupling of geoscience knowledge graph and

machine learning. Knowledge-guided machine learning
methods are an important development direction. The ex-
pression of knowledge has various forms, and knowledge
graph is one of the most concerned directions at present (von
Rueden et al., 2023). Geoscience Knowledge Graph is a
geoscience knowledge base and “inference engine” that can
be understood and calculated by machines. It is a knowledge
system formed by effectively organizing relevant geoscience
knowledge in a structured graph mode, which is used to
express various geographical entities, concepts and the se-
mantic relationships between them (Zhou et al., 2021). As
we all know, symbolism, connectionism and behaviorism are
the three major schools of artificial intelligence, and
knowledge graph and deep learning are the representatives of
symbolism and connectionism, respectively. The combina-
tion of the two in the field of geoscience is bound to have
great application potential.

5. Conclusion

For the inversion and simulation of parameters in Earth
surface systems, mechanism models often have problems
such as cognitive limitations, underdetermined systems, and
computational burdens, while learning models often have
shortcomings in generalization, transferability, and inter-
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pretability. The coupling of mechanism and learning models
can effectively adjust the “bias” of mechanism models and
avoid the “hubris” of learning models (Chantry et al., 2021),
which is an important concern in many disciplines, such as
geoscience. In this article, for the remote sensing inversion
and model simulation of parameters, we establish a coupling
paradigm framework of mechanism-learning cascading
model, learning-embedded mechanism model, mechanism-
infused learning model, and their hybrid applications. We
systematically summarize ten coupling modes based on
specific application examples, and look forward to prospects
such as integrated learning and fusion, selective surrogate
modelling, new deep learning network architecture, and the
coupling of knowledge graph and deep learning. Mechan-
ism-learning coupling is a combination of “rationalism” and
“empiricism”, which will become a “booster” for the de-
velopment of Earth science research (Bergen et al., 2019). It
is noteworthy that the mechanism model involves rigorous
geoscientific processes and physical derivation, while the
learning model needs to establish a complex information
transmission mechanism. Thus, there is an urgent need for
multi-disciplinary cross-integration to break through the key
scientific problems of mechanism-learning coupling, im-
prove the accuracy and efficiency of inversion and simula-
tion of parameters in Earth surface systems, and show
stronger support in Earth system scientific research and re-
sponse to resource and environmental problems.
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