A Variational Gradient-based Fusion
Method for Visible and SWIR Imagery

Huifang Li, Liangpei Zhang, Huanfeng Shen, and Pingxiang Li

Abstract

This paper presents a new variational gradient-based fusion
method for visible and short-wave infrared (SWIR) imagery.
The proposed method enables spatial enhancement and
dehazing of visible imagery. Integrating gradients from SWIR
imagery into visible imagery produces a single image with
true color and sharp gradients. A constraint based on band
correlation is included to improve the enhancement and
implement dehazing. The band correlation is according to
the quantitative relationship between the wavelength and
the atmospheric effect caused by Rayleigh scattering. In this
study, both clear and hazy Landsat ETM+ images are used in
the experiments. By visual assessment, the gradient of the
fused image is more salient than that of the original image,
and the true color is well preserved. With the inclusion of
the band correlation constraint, the proposed fusion method
yields almost haze-free results. Quantitatively, the Metric Q
of the fused images is significantly higher than that of the
original images; the largest increase of the Metric QQ in the
experimental results is from 0.0114 to 0.0611. Moreover, for
the results of the proposed method, the Metric Q increase in
the visible bands declines from blue band to red band.

Introduction

Atmospheric scattering changes the spatial distribution of
energy and causes degradation problems with images
captured by sensors. This scattering depends on the wave-
length of the light and the particle size in the atmosphere
(Nayar et al., 1999). When the particle size is much smaller
than the wavelength, Rayleigh scattering is dominant
(Jacobsen et al., 2000; Su et al., 2006). Clear air is composed
of molecules, whereas haze is comprised of an aerosol,
which is a dispersed system of small particles suspended in
gas (Nayar et al., 1999). Therefore, on a clear or hazy day,
contaminations in visible imagery, such as blurring and
hazing, can be mainly attributed to the Rayleigh scattering.
Due to its long wavelength, infrared imagery is free from
haze degradation and endowed with sharp gradients. Hence,
the proposed method corrects for Rayleigh scattering in
visible imagery by fusing spatial geometry information from
the infrared imagery.
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The proposed correction method is a kind of image-
based correction versus model-based correction. Image-based
correction is independent of in situ measurements of the
atmosphere, the sun and the sensor; therefore, its applicabil-
ity is broad (Chavez, 1996). A number of image-based
correction methods have been previously used, and we
review them here briefly. Dark object subtraction (DOS)
assumes that dark objects have zero radiance (Norjamaki
et al., 2007). Consequently, the radiance of dark objects
responds to the atmospheric path radiance, and it is then
subtracted from the original pixel values. When applied in
dehazing, DOS is based on haze detection, which distin-
guishes hazy and non-hazy regions. Tasseled cap (TC) (Crist
et al., 1984), threshold control (Richter, 1996a; Richter,
1996b) and manual drawing (Liang, 2001) are common
methods of haze detection. Zhang developed haze optimized
transformation (HOT) to detect hazy regions in Landsat
images, and then DOS based on HOT was employed for haze
removal (Zhang et al., 2002; Zhang et al., 2003). Considering
multiplicative effects, He et al. (2010) proposed a virtual
cloud point (vcP) method based on advanced HOT (AHOT) to
remove haze. A classical image processing method,
histogram matching (HM), has also been used for dehazing.
As well as DOS and VCP, HM needs haze-free regions as
references before correcting a single-band image (Stark,
2000; Liang, 2001). The histogram of hazy regions is then
matched to that of the clear regions. Hence, precise haze
detection is essential before haze removal in DOS, VHP, and
HM; if clear regions are absent, these methods fail. Besides,
the above methods are designed for single-band imagery. For
multispectral imagery they must be operated band-by-band.
Multispectral imagery consisting of several bands has
abundant spectral information, and different bands have
different degrees of atmospheric contaminates. Ignorance of
the band correlation in multispectral imagery usually causes
spectral distortion. Therefore, an automatic correction
method for multispectral imagery must involve band
correlation. Once the hazy channels are dehazed, the
spectrum of each pixel in multispectral imagery is restored.
It may enable an increase in the accuracy of applications
such as classification, target detection, change detection,
etc., which usually involve multi-spectral calculation (Huang
et al., 2007; Huang et al., 2008; Zhang et al., 2010).

Gradient-based image fusion is composed of three steps:
first, gradients are extracted from the input images; then,
the target gradient is defined by fusion rules, which are
manipulated at the feature level; lastly, the final output is
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reconstructed from the given target gradient at the signal
level. In general, gradient-based fusion is a kind of signal-
level fusion; it assumes that the most important input
information is faithfully represented in the fused image at
the signal level (Petrovic et al., 2004). Gradient-based fusion
has been proven to be effective in reducing reconstruction
error artifacts and preserving contrast information. Different
fusion rules at the feature level in the gradient domain have
been employed by researchers to define the target gradient.
The most common rules include combining gradients by a
direct union, decision tree learning, and weighted averaging
(Davis et al., 2007; Aksoy et al., 2009). The weights in
weighted averaging can be determined according to the
specific application (Raskar et al., 2005). A simple choice,
used in the pan-sharpening process, is to weight panchro-
matic and multispectral images as 1 and 0 (Ballester et al.,
2006; Zhou et al., 2010). Socolinsky extended the definition
of gradient for single-band images to multi-band images
through first-order fusion (Socolinsky et al., 1999; Socolin-
sky et al., 2002). Piella did the related work using a struc-
ture tensor to obtain the fused gradient (Piella, 2009). The
above-mentioned techniques have been used to improve
image geometry and visual quality. The variational frame-
work has been frequently adopted in these studies due to its
flexibility and extensibility. It enables terms corresponding
to natural physical conditions (such as the reflectance is
nonnegative, the lightness is spatially smooth, etc.) to be
integrated into the framework. Three terms are contained

in P+XS image fusion (Ballester et al., 2006), four in
perceptually enhanced fusion (Piella, 2009), and five in fast
variational fusion for pan-sharpening (Zhou et al., 2010).
However, with the increasing number of terms, how to
automatically determine the influence weight for each term
is a problem. Therefore, realizing correction by using fewer
limiting terms will improve the automation and minimize
the need for human intervention. The proposed variational
fusion method containing two terms is presented in the
following sections.

Gradient-based Fusion (GF)

Definition
Gradient-based fusion (GF) integrates information from two
or more images into a single image which is more informa-
tive than any of the input images (Burt et al., 1993; Pohl
et al., 1998). Usually, we undertake image fusion in remote
sensing applications to improve the spatial resolution,
which inevitably increases the amount of data. However,
gradient-based fusion aims to enrich images with large
amounts of information by adjusting image contrast rather
than increasing the amount of data. Therefore, results from
gradient fusion do not actually have higher spatial resolu-
tion than the input images, but are more visually pleasing.
Specifically, supposing two images are taken as the
input data, one has abundant color or spectral information
but with poor spatial geometrical information. The other one
is just a single-band image but has sharp and clear edges
and textures. In order to obtain the final colorful, clear, and
sharp image, the second image is considered as the reference
data which provides the ideal gradients. The gradient-based
fusion process is then realized by using the variational
framework expressed as Equation 1, including two terms:
the first term ensures that the final gradient approaches the
reference gradient; the second term ensures the consistency
of the final and original data. Note that this model is based
on the assumption that the result gradient is linearly related
to the reference gradient.
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min F(u) = %//||Vu—Vf||2+a||u—u0||zdxdy (1)
0

where Vu and Vf are gradient vectors of the final result and
the reference data, respectively, which are defined as
Vu = [u, ul)"and Vf=I[f, fI", where u, =u;; , — u;;

and uy = u; +4,; — U; j, Uy is the original data, () is the
region of the imagery, and « is a nonnegative parameter to
balance the weight of the first and second terms.

Moment Matched Gradient-hased Fusion (MGF)
Data from different sources are endowed with distinct
radiometric resolution; 8-bit data has a radiometric resolu-
tion of 0 to 255, for example. However, not all data will take
up the entire range. This is then called the dynamic range of
the data. For example, a certain image in band 7 might have
a dynamic range of 0 to 30. Thus, direct approximation of
Vu to Vfis inappropriate, especially when the dynamic
ranges are notably different. Making the dynamic ranges of
the unknown and referenced variable equal is the first step
before fusion. Since the resulting gradient Vu has linear
correlation with the reference gradient Vf, adjusting the
mean and deviation of Vu is sufficient to achieve this goal.
Moment matching has been successfully used by
researchers to remove stripes in scenes by adjusting DNs
between sub-scenes (Gadallah et al., 2000); it is an efficient
way to regularize one image to another. Hence, moment
matching of Vu and Vf is taken as the pretreatment to unify
the dynamic range before fusion. The adjusted Vu is
expressed as Vu, which will replace Vu in Equation 1:

_ [Vf]std

u=
[Vu]std

where (Vu) mean and (Vf) mean are the means of Vu and Vf, and
(Vu)gq and (Vf)gq are the standard deviations of Vu and Vf.
Therefore, the gradient-based fusion model can be updated
to the moment matched gradient-based fusion (MGF), shown
as follows:

(VU - (Vu)meun] + (Vf)mean (2)

min Flu) = % //||va SV 4 allu— wlfdxdy  (3)
Q

Numerical Solution

The GF model is linear because only L2-norm constraints,
represented by the square of the Euclidean norm, are
included, so that its convergence is obvious. The simplest
method, steepest descent, has been employed to solve this
optimal model. The solution is obtained by the following
iteration:

Uy, = U, — G, m=0 (4)

where t is the step, and G is the gradient of F at u. The
Euler-Lagrange Equation 3 can be expressed as:
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The step and gradient are substituted into Equation 4,
and the result can be obtained after numbers of iterations.

GF Model for Dehazing

It is well known that the atmospheric effect varies in
channels with different wavelengths. Though the wave-
lengths of visible channels are close to each other, differ-
ences and correlations of atmospheric effects exist among
them on both clear and hazy days. However, these differ-
ences and correlations are not considered in the MGF model.

In the optical remote sensing field, atmospheric effects
on the observed intensity of the land surface are closely
associated with the atmospheric optical properties. However,
not all the in situ atmospheric parameters are available as
some archived data lose their attribute data. This is the main
obstacle when undertaking absolute atmospheric correction
(Mahiny et al., 2007; Davranche et al., 2009). Image-based
correction aims to correct the contaminated images to clear
and informative images, without in situ parameters,
attenuating or even eliminating the effects of the uneven
atmosphere.

In terms of the radiative transfer equation, the variation
of the intensity in a certain direction is twofold. On one
hand, the absorbing and scattering in this direction lead to
intensity reduction; on the other hand, scattering from all
the other directions increases the intensity in this direction
and reduces the image contrast. The sum of the intensity of
multiple scattered light accounts for the final intensity in
this certain direction. In a cloudless atmosphere, the
contribution of multiple scattered light decreases rapidly,
and thus the total intensity can be expressed as a finite sum.
In cloudy conditions, the intensity is a sum of all the
scattering orders, which explains why the intensity in hazy
or cloudy areas is usually higher than that in clear regions.
Therefore, reducing intensity and enhancing the contrast in
the hazy and cloudy regions is an effective way of dehazing.

I(/“Ls ¢) = IO (/“L’ QD) - Ia,s(/*‘“’ 4’] + EIS(Mi’ (Pi) (8)

where u and ¢ are the zenith and azimuth angles of the
direction of propagation of the light, (u, ¢) indicates the
light propagating direction, I(u, ¢) is the observed intensity
in the certain direction, I, (u, ¢) is the supposed intensity
without atmospheric influences, I, ¢ (v, ¢) represents the

absorbed and scattered intensity, and X1 (u; ¢;) records the
scattered intensity from all the other directions.

The second term in the above equation causes the
intensity reduction of a pixel, and the third term is the
actual reason for the intensity increase. It can be seen that
the intensity of a pixel is higher when it is hazy than when
it is clear. Thus, intensity reduction is offset by the intensity
increase caused by scattering from all the other directions.
Scattering is the dominant factor for the haze rather than the
absorption. Therefore, roughly, we can assume I, ; (1, @) =

0, S0 I (0, @) = XL (wj ;). Hence, Equation 9 can be
i

simplified to:

I, @) = Iy (1, ) + Ingse (1, @) (9)

Therefore, in order to take the band correlation into
consideration, the next task is to understand the relationship
between the wavelength and the intensity change caused
by haze.
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Relationship between the Wavelength and the Atmospheric Effect

As mentioned before, we deem that Rayleigh scattering
dominates the atmospheric scattering in visible channels on
both clear and hazy days. Therefore, for a particle with a
certain size, suspended in the atmosphere, the intensity of
the scattered light is inversely proportional to the biqua-
dratic wavelength. Briefly, the relationship between the
scattered intensity and the wavelength can be expressed as
(McCartney, 1976; Bucholtz, 1995):

I (i @) = Cy (g @A™

where C; (u;, ¢;) is a parameter associated with the particle
size and the scattering angle. Figure 1 shows the curve of
the scattered intensity versus the wavelength. The scattered
intensity decreases with the increase in light wavelength.
For the 2.2 wm channel, Rayleigh scattering is so faint that it
can be ignored.

Therefore, as a sum of the intensity of the scattered light
from all the other directions, the haze intensity can be
expressed as:

(10)

Thase = CA 74 (11)

where C = Y C;(u;, ¢;). C can be considered as a constant for

a certain location corresponding to a pixel in the imagery,
but it differs between locations. We cannot estimate the C
for each pixel and calculate the intensity of the scattered
light accurately. Therefore, adding a constraint, derived from
the relationship between the haze intensity and the wave-
length, into a variational function, is a practical way to solve
this dehazing problem. It can be seen that, for a specific
pixel, the ratio of the haze intensity in different visible
bands only relates to the wavelength, i.e.,

Ihuze,)\1 :Ihaze,)\2: s :Ihaze,)\K = )\1_4 :A2_4: LR :/\1?4 (12)
where K is the total number of bands. This relative relation
among the haze intensity provides us with a useful con-
straint. If the intensity change in each visible band agrees
with this proportion, the result should avoid the haze
contamination, along with the physical effects of the
atmosphere. Thus, the next key step is to project the
intensity change calculated from the variational function to
the ratio relation as Equation 12. Taking the K bands as K
samples of one pixel, we intend to find a statistic relating to
the sample entirety, but independent of each single sample.
Here, the mean is taken as this representation, i.e.,

_ c &
1 = — A4 13
haze K ; i ( )
The ratio of I, ,, to I hage 18
Thaze,, K
o haze; (14)

jhaze EK:( /\j )_4 .
TINA
This ratio is a constant for a given channel, which
ensures the proportional relationship among bands. We take
advantage of this ratio value to project the intensity change
in the variational function to the proportional relationship as
Equation 12. The projection map is illustrated by Figure 1.
The right vertex of the average haze intensity line is the
projection center. Assuming that the change intensity mean
of the variational function is I, as labeled in Figure 1,
the vertical line perpendicular to the blue line is the projec-
tion plane. Crossing the projection center, the intensity of
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Figure 1. Mean haze projection ( MHP); it adjusts the relationship of the change
intensity and the wavelength to agree with the Rayleigh scattering rule.

haze is mapped to the projection plane. We then get the
adjusted change intensity in the projected axes:

IAchange,/\l = R, Tchange' (15)

It is easy to prove that the adjusted change intensities
satisfy the exponential relationship and also the propor-
tional relation as Equation 12 is fulfilled, i.e.,

. — \"4.) 4. o) o4
Iz‘lchange,)\1 'Iz‘lchange,)\2 """ IAchange,)\K - /\1 ')\2 """" )\K . (16]

Therefore, the exponential curve can fit the three points in
the new projected axes well, as shown in Figure 1. We
define this central projection as the mean haze projection
(MHP). Moreover, since the imaging wavelengths are arranged
from short to long sequentially, thus R, > R, > . .. Rgand
BRo.x = By > 1, Ry, = Rk < 1, R; € [R,, Ryl. Therefore, the
adjusted change intensity increases monotonically with the
Wavelength’ i'e‘7 IAL‘hange,)\1 > IAL‘hange,)\z > > IAchange,/\k!
which is consistent with light scattering theory.

Constrained MGF (CMGF)

Based on the above definition and analysis of the mean haze
projection (MHP), we propose the constrained MGF (CMGF)
model, taking the MHP as a constraint in the variational MGF
model. The MHP is based on band correlation and is used to
control the iterative process of the variational MGF model. The
CMGF aims to suppress the atmospheric scattering effects and
remove the slight haze while avoiding spectral distortion. As
mentioned before, the numerical solution of the variational
MGF is obtained by the iteration Equation 4, so that tG
corresponds to the change intensity in each iteration I uange .y,
i.e., Lpangea, = tG. If the MHP constraint is implemented in

each iteration, the final adjusted change intensity will fulfill
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the negative exponent relationship. Consequently, the CMGF
can be expressed as:

1 A
min Flu) = E//||Vu—Vf||z+a||u—u0||zdxdy
Q

with the MHP: t44nge = Uachange (17)
where Ugpgnge = tG, and Uggpenge Tepresents the adjusted
Uchange AN Upchanger, = Rillchange- The iteration equation is:

Unp+1 = Um — UAchange- (18)

Taking the MHP in the iteration has the effect of impos-
ing a forcible constraint in the variational model. It is noted
that all the bands of the multispectral image u are solved
simultaneously in the CMGF method, rather than calculating
band-by-band as in the MGF. Also, the correlation among
different bands is considered in the solving process. There-
fore, spectral distortion can be minimized or even avoided
in the results. The convergence of the cMGF will be dis-
cussed in the experimental section.

GF for Landsat ETM + images

Landsat ETM+ images consist of eight spectral bands with a
spatial resolution of 30 m for bands 1 to 7, and 15 m for band
8 (panchromatic). The spectral window of the sensor ranges
from 0.45 pwm to 12.50 wm and includes visible, near-infrared,
SWIR, and long-wave infrared bands. Contamination caused by
the atmosphere in the scenes varies in the different channels
because atmospheric scattering is highly wavelength depend-
ent (Wu et al., 2005); this causes the land surface features to
be presented in different ways. The combination of visible

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING



bands can present a scene with true color, which satisfies the
human visual perception; however, this scene is usually hazy
or cloudy because visible channels are sensitive to atmos-
pheric conditions. In contrast, the NIR and SWIR channels with
long wavelengths are insensitive to the semi-transparent
atmosphere, so that scenes in these bands are usually free of
haze and clouds.

Visible bands of ETM+ data, including bands 1 to 3 with
low contrast, are the initial inputs in the variational gradient
fusion model. The next problem is how to select a reference
gradient data from three of the infrared channels, including
band 4, 5, and 7. Given the assumption of gradient linear
correlation, the task is to find one channel whose image
gradient has the highest linear correlation or similarity to
that of the visible channels. Since gradient calculation is a
linear operator, the problem comes down to searching for
the channel most highly related to the visible channels.
Images taken in the near-infrared band 4 (0.76 to 0.90 wm)
usually show opposite contrast or gradient to that of the
visible channels, owing to the high reflection of vegetation
and high absorption of water. In his study of the aerosol-free
vegetation index (AFRI), Karnieli et al. (2006) demonstrated
that AFRI,, performs better than AFRI, 5, where AFRI,; =
(pnir — 0.5 p24)/(pnm + 0.5 p,4) and AFRI s = (pyr — 0.66
p16) (pnr + 0.66 pig). Taking ETM+ data, the grey level
correlation coefficients are calculated and shown in
Figure 2. It can be seen that high self-correlation exists in
the three visible bands, and band 7 has the highest correla-
tion with visible bands among all the infrared bands.

The SWIR (2.1 to 2.2 um) channel in remote sensing has
been implemented in vegetation detection (Kaufman, 1994;
Karnieli et al., 2001) and aerosol depth estimation (Fallah-
Adl et al., 1996; Fallah-Adl et al., 1997) due to its two
special characteristics:

1. The wavelength is long enough to penetrate the atmosphere,
including that containing amounts of aerosols such as
smoke. Thus, scenes imaged in the SwiR channel show clear
and sharp edge and texture information, avoiding the
atmospheric effects.

2. Even though reflection varies in different spectral bands,
linear correlation exists between visible and swir bands.
Especially for vegetation, reflection reduction caused by
chlorophyll absorption in the red band is consistent with the
same phenomenon caused by liquid water absorption in
plants in the swirR band.

The first characteristic ensures that scenes in SWIR are
haze/cloud free and reflects their potential assistant effects for

Figure 2. Grey level correlation coefficient matrix of
EM + data.
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haze/cloud removal of visible scenes. The second characteris-
tic was studied and demonstrated by Kaufman, and the linear
correlations were expressed as pg49 = 0.25 p,; and pygs = 0.5
p21 (Kaufman et al., 1997). Various land surface types were
employed to verify these linear relations, of which the highest
fitting error (around 0.03) appeared in urban and soil areas.
Karnieli supplemented the relationship of 0.55 um and
2.1 wm channels, written as pgs5 = 0.33 p,,, and developed a
new haze/cloud independent vegetation index, AFRI, using the
2.1 wm channel (Karnieli et al., 2001). He assumed that the
linear correlation was global and could be used for different
land surface types. Vegetation and bare soil were involved in
this study, the reflectance of which ranged from 0 to 0.8.
Considering the previous achievements and the analysis,
we chose to take band 7 of the ETM+ data as the ancillary
data supplying source gradients in the gradient-based fusion
method.

Results and Discussion

The gradient-based fusion improves image quality by
enriching the information of edges and textures. To test its
validation, five Landsat ETM+ data were selected, encom-
passing forest, water, urban, farmland, and soil land surface
types. The data were captured on two different dates:

19 March 2002, with a clear sky, and 13 October 2002, with
the sky partially covered by haze.

Clear Data

On a day with clear sky, the atmosphere is almost transpar-
ent and the main scattering is Rayleigh scattering, which
reduces the image contrast evenly in the spatial domain.
Results of MGF and CMGF are compared and shown in
Figure 3 and Figure 4.

Three types of land surface: forest, water, and urban
areas, are contained in Figure 3. In the original image, the
detailed textures are blurred and vague, whereas they are
enhanced and clear in the results of MGF and CMGF, as
shown in Figure 3b and 3c, and the detailed regions
cropped from 3b and 3c. This can be attributed to the
integration of the spatial information extracted from band 7.
The divisions in water regions caused by different suspen-
sion and sediment distribution are weakened in the result of
MGF because water with different qualities is treated equally
in band 7. However, these divisions are retained well in the
results of CMGF, thanks to the MHP constraint. In the urban
areas, because of the existence of abundant edges and
textures, over-enhancement appears in the result of MGF, as
shown in Figure 3h. All the edges, such as roads and the
transitions between two regions, are highlighted in the fused
results, whereas some of them are neglected in the original
scenes. The intensity of urban areas is usually higher than
the other regions; consequently, the amount of high values
appearing in urban areas leads to over-enhanced results.
However, CMGF controls the over-enhancement efficiently by
adding the MHP constraint based on the band correlation.
This constraint obeys the physical mechanism of the
atmospheric scattering so that it ensures the high similarity
of the resulting spectra and the true spectra. The contrast
between pixels is retained while the edge information is
enhanced, as shown in Figure 3i.

To evaluate the GF results, the basic statistics, including
the means and variances of the different channels in an
image, are shown in Table 1. The means of the two fused
images are approximately equivalent to the original mean,
which ensures the basic color consistency. The variance of
the result of MGF declines when compared with the original
variance, which is due to the existence of large areas of
water surface and the deflation of the result data range.
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Figure 3. Results of the first clear image mainly covered by forest and water: (a) The original image;

(d), (g), and (j) are the three detailed regions cropped from (a); (b) The result of MGF, apyer = 0.2;
(e), (h), and (k) are the three detailed regions cropped from (b); (c) The result of
and (f), (i), and (l) are the three detailed regions cropped from (c).

(©)

®

@

0]

CMGF , Aoyvgr — 02,

TABLE 1. MEANS AND VARIANCES OF DIFFERENT CHANNELS

Band 1 Band 2 Band 3
Mean Original 93.853 75.631 72.860
MGF 93.854 75.629 72.859
CMGF 93.852 75.630 72.860
Variance Original 5.603 7.712 14.163
MGF 5.227 7.269 13.371
CMGF 6.610 7.898 14.222
6 September 2012

However, the variance increases in the result of CMGF,
especially in band 1, and the shorter the wavelength, the
larger the increment. This outcome indicates that the results
of MGF are not globally optimal; the MHP constraint works
for obtaining the global optimum because it regularizes the
intensity adjustment in each iteration, and then the fluctua-
tion of the result data range is limited.

In Figure 4, the ground is almost covered by farmland,
ponds and vegetation. The edges of farmland are all
enhanced in the results of both MGF and CMGF, as shown in
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detailed regions cropped from (b); (c) The result of
detailed regions cropped from (c).

Figure 4. Results of the third clear scene mainly covered by farmland: (a) The original image; (d) and (g)
are the two detailed regions cropped from (a); (b) The result of
CMGF, acyer = 0.2; and (f) and (i) are the two

MGF, ayer = 0.2; (e)and (h) are the two

Figure 4b, 4c, 4e, and 4f. Since wetlands and water areas
are both dark in band 7, the contrast in the original visible
bands is attenuated in the fused result of MGF. Therefore,
the edges of some areas with high humidity, such as ponds
and vegetation areas, are smoothed in Figure 4b, 4e, and
4h. The results of CMGF retain the clear edges of humid
areas and suppress noise in fields, as shown in Figure 4c,
4f, and 4i.

In order to assess the ability of GF methods to enhance
image gradient quantitatively, we took an image structure
measurement, Metric QQ, as the evaluation factor. The
definition of Metric Q is expressed as:

§17 8

Q=s (19)

1
S+ S,

where, s, and s, are the singular values of the gradient
matrix G over an N X N window w; in an image, and s, is
intimately related to the sharpness of the local region. G is
defined as:
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gl [ kew,

G=| g (20)

where k denotes the k™ pixel in the window w;. Metric Q
is properly correlated with the noise level, sharpness, and
intensity contrast of the structured regions of an image
without any prior knowledge (Zhu et al., 2010). It reveals
the signal-to-noise ratio of an image, so the larger the
Metric Q, the better the result. Table 2 lists the Metric Q
values of the two clear data sets and the GF results of them.
It can be seen that the Metric Q values of the GF results are
greatly increased compared to the original values. Results
of MGF and CMGF are almost equal, and CMGF performs a
little better than MGF. With the exception of band 1 of the
clear data 1, a higher value appears in the result of MGF,

as smoothing in water areas raises the performance of
Metric Q.
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Hazy Data TABLE 2. METRIC Q OF THE CLEAR DATA
After investigating the application of gradient-based fusion
models on clear scenes, we then investigated the effect of Band 1  Band 2  Band 3
these models when applied to hazy scenes. Three images
partially covered by haze and thin cloud were selected as

Clear data 1 Original  0.0141 0.0217 0.0304

. . . . t MGF 0.0300 0.0312 0.0321

shown in Plate 1, Figure 5, and Figure 6. The main ground (water) CMGF 0.0286 0.0316 0.0350
types covered by these scenes were urban areas, lakes,

rivers, farmland, and bare soil. Clear data 2 Original  0.0211 0.0245 0.0292

From the overall scenes and detailed regions in Plate 1, (farmland) MGF 0.0257  0.0258  0.0256

we can see that edges and detailed textures are both CMGF 0.0267 0.0270 0.0370

(@) (b) (c)

(d) (e) )

(9) (h) (i)

0) (k) 0]
Plate 1. Results of the first hazy scene mainly covered by urban areas: (a) The original image; (d), (g),
and (j) are the three detailed regjons cropped from (a); (b) The result of MGF, ayer = 0.01; (e), (h)and (k)
are the three detailed regions cropped from (b); and (c) The result of CMGF, agyer = 0.01; (f), (i) and (I)
are the three detailed regions cropped from (c).
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enhanced in the results of MGF and CMGF, no matter what
the land surface types. In general, the CMGF outperforms MGF
in hazy regions, as the three detailed regions cropped from
the overall scenes show in Plate 1. This result is because the
MHP constraint in CMGF takes the band correlation into
consideration. Gradients are properly enhanced while
avoiding spectral distortion. However, the MHP constraint
also enhances the tiny intensity contrast in the isotropic
areas, as well as enhancing edges and textures. As the third
detailed region in Plate 11 shows, even though the shape of
the bridge on the water surface is highlighted, the hetero-
geneity of the water is also enhanced, which brings some
noise into the result. With the reduction of the parameter,
the contrast of the whole image grows, which means that the
haze contamination is attenuated while the homogeneity is
depressed. Therefore, the parameter a is the key to balance
the contrast and the homogeneity. In the experiment, o was

determined by considering the visual quality and the Metric
Q of the image.

The results of CMGF in Figure 5 and Figure 6 are more
satisfactory for haze and thin cloud removal than the results
of MGF. All the edges and textures are clear enough to be
distinguished and the overall gray tone is preserved. In
particular, the river shows salient changes in the shape and
tone in both Figure 5 and Figure 6. Note that the areas
immediately adjacent to the river are bright, and the center
of the river is dark in the fused images. Thus, the river in
the fused results seems narrow when compared with the
original scene. This result is due to the water quality of the
Yangtze River. Water in the Yangtze River is rich in sus-
pended silt, so that the color of the river itself resembles the
color of bare soil. The components of the areas immediately
adjacent to the river are complicated and highly affected by
human activities. Thus, the corresponding intensity of these

@

(d)

@

(i) are the three detailed regions cropped from (c).

(b)

(€)

(h) 0}

Figure 5. Results of the second hazy scene mainly covered by farmland and bare soil: (a) The original
image; (d)and (g) are the two detailed regjons cropped from (a); (b) The result of
(e) and (h) are the two detailed regions cropped from (b); (c) The result of

(©)

®

MGF, apygr = 0.01;
OMGF, agugr = 0.01; (fand
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@) (b) (©)

(d) (e) 0)

()] (h) 0]

Figure 6. Results of the third hazy scene mainly covered by farmland, bare soil and the Yangtze River:
(a) The original image; (d) and (g) are the two detailed regions cropped from (a); (b) The result of
aper = 0.01; (e) and (h) are the two detailed regions cropped from (b); (c) The result of

0.01; and (f) and (i) are the two detailed regions cropped from (c).

CMGF, agyer =

T\ 0014 T 0014 T
\ 001 \ 001 ‘
o 001 \ . 001 \
oot ‘\\M“ 0.004 \SMM‘ 0.004 \‘-‘-“‘d
0 ; 10 15 ZUM X % . 30 k) 40 5 50 0 5 10 15 ZUM X % . 5 0 5 10 15 ZUM X % . 3'[! k) 40 5 50
@) (b) (©)
Figure 7. lteration error curves of the above three hazy data.
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Figure 8. The intensity change curves of 50 iterations:
the dashed curves represent the intensity change
calculated from the variational function; the solid curves
represent the adjusted intensity change after adding the
MHP constraint.

areas is relatively high, approaching the intensity of man-
made urban areas, so that vast contrast appears in the areas
immediately adjacent to the river. This reason also explains
the halo appearing in Figure 6b, 6h, 6c, and 6i. Moreover, it
is noted that the change in the appearance of the Yangtze
River is more distinct in the result of CMGF than the result of
MGF. This result can also be attributed to the MHP constraint,
which attenuates the atmospheric effect over the Yangtze
River.

Metric Q was also employed to quantitatively assess the
GF results of the hazy data, as listed in Table 3. A large
increase in Metric Q appears in all the bands of the hazy
image, and the CMGF outperforms the MGF, especially in the
first two bands. In the result of CMGF, it is worth noting that
the increase in Metric Q becomes less as the wavelength
increases. This change agrees with the changing tendency
of atmospheric effects between bands.

Convergence of CMGF

As a forcible constraint was added in the iteration of the
CMGF solving process, we need to discuss the convergence of
CMGF. The relationship curves of the iteration error and the
iteration number are shown in Figure 7a, 7b, and 7c,
corresponding to the above three hazy data sets. No matter

TAaBLE 3. METRIC Q OF THE HAzy DATA

Band 1 Band 2 Band 3

Hazy data 1 Original 0.0117 0.0166 0.0202
(urban) MGF 0.0232 0.0268 0.0291
CMGF 0.0357 0.0282 0.0262

Hazy data 2 Original 0.0182 0.0265 0.0396
(farmland and MGF 0.0451 0.0494 0.0582
bare soil) CMGF 0.0666 0.0667 0.0520
Hazy data 3 Original 0.0114 0.0187 0.0344
(farmland and MGF 0.0585 0.0604 0.0690
Yangtze River) CMGF 0.0611 0.0685 0.0627

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

what the land-cover types, the CMGF converges well within
50 iterations. This process suggests that CMGF is robust and
does not take too much time to reach a stable solution.
Furthermore, in order to observe the impact of the MHP
constraint on the intensity change quantitatively, we ran-
domly selected a pixel from the first hazy data and tracked
its intensity change in the three visible bands, as shown in
Figure 8. The dashed curves represent the intensity change
calculated in the variational equation solving process; they
are totally composed of mathematical values. The solid
curves show the adjusted intensity change after adding the
MHP constraint. It can be seen that in each iteration the
intensity change in the visible bands agrees with the
negative exponent relation. This result means that the
intensity changes in accordance with the physical character-
istics of the atmospheric scattering. Therefore, stable and
haze-free results can be obtained by the CMGF method.

Conclusions

The gradient-based fusion of visible and SWIR imagery is an
effective method for the enhancement of spatial information
and restoration of true color. The MGF is a practical model
of GF, designed for single-band imagery; however, it fails to
de-haze hazy images. In order to implement dehazing, the
MHP constraint based on the band correlation was intro-
duced. With the inclusion of the MHP constraint, the CMGF is
not only able to enhance the gradient, such as the MGF, but
is also able to de-haze the hazy image. Since spatial and
spectral information are integrated into one image, the
results are endued with true color and clear edges, without
haze contamination.

Both clear and hazy Landsat ETM+ data were used in the
tests. The qualitative and quantitative experimental results
demonstrated that the fused image of the CMGF is better than
that of the MGF. Besides, it was noted that an appropriate
parameter «, balancing the contrast and the homogeneity in
the variational function, is important for yielding a good
result. The smaller « is, the sharper the gradients of the
fused image are, and the more homogeneity is destroyed.
How to automatically select a proper parameter o will be the
subject of our future work. Furthermore, technically, the
proposed method has no limitations with regard to image
resolution. Experiments on remote sensing data with other
resolutions will be implemented in the future.
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