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Abstract. We present a robust and efficient approach for zoom-based
super-resolution �SR� reconstruction problems. We employ the total
variation �TV� of the desired image priori in the maximum a-posteriori
estimation. An efficient algorithm based on iterative methods and pre-
conditioning techniques is employed to solve the resulting variational
problem. To suit the proposed algorithm for realistic imaging situations, a
registration method is presented to simultaneously solve the zooming
factors, image center shifts, and photometric parameters. Experimental
results show that the proposed TV-based algorithm performs quite well in
terms of both quantitative measurements and visual evaluation. We also
demonstrate that the proposed algorithm is robust for SR image inpaint-
ing, where some pixels are missed in the SR reconstruction model.
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Introduction

igh-resolution �HR� images are indispensable in applica-
ions such as health diagnosis and monitoring, military sur-
eillance, terrain mapping by remote sensing, etc. How-
ver, due to the high cost and physical limitations of high
recision optics and image sensors, it is not easy to obtain
he desired HR images in many cases. Alternatively, super-
esolution �SR� image reconstruction, which refers to a pro-
ess that increases spatial resolution by fusing information
rom a sequence of images acquired in one or more of
everal possible ways, has been a very hot research field.

The multiframe SR idea was first proposed by Tsai and
uang.1 They used a frequency domain approach to dem-
nstrate the ability to reconstruct a single improved resolu-
ion image from several down-sampled, noise-free versions
f it. Kim, Bose, and Valenzuela2 extended the formulation
o consider observation noise as well as the effects of spa-
ial blurring. They solved the extended formulation by a
eighted recursive least-squares method to improve com-
utational efficiency. Rhee and Kang3 proposed a discrete
osine transform �DCT�-based algorithm in which the com-
utational costs were reduced by using DCT instead of the
iscrete Fourier transform �DFT�. Furthermore, a couple of
apers have appeared that concentrate on wavelet-
ransform-based SR methods.4–6

In the spatial domain, Ur and Gross7 suggested a non-
niform interpolation method. Irani and Peleg8 proposed an
terative back-projection method adapted from computer-
ided topography �CAT�. Stark and Oskoui9 proposed a
091-3286/2007/$25.00 © 2007 SPIE
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noteworthy projections onto convex sets �POCS�-based for-
mulation to SR image reconstruction problems. Their ap-
proach was extended by Tekalp, Qzkan, and Sezan to in-
clude observation noise,10 and by Patti, Sezan, and Tekalp
to include motion blur.11 Patti, Sezan, and Tekalp12 ex-
tended the POCS approach to account for arbitrary sam-
pling lattices and nonzero aperture time. Shultz and
Stevenson13 developed a popular maximum a-posteriori
�MAP� formulation to the SR problem. This MAP estimator
uses a motion-compensated subsampling matrix-based ob-
servation model and an edge preserving Huber–Markov
random field for the image prior. Ng et al. used a precon-
ditioned conjugate gradient method to speed up the conver-
gence in the MAP reconstruction.14–16 Hardie, Barnard, and
Armstrong17 developed an approach to simultaneously es-
timate the image registration parameters and the HR image.
Woods, Galatsanos, and Katsaggelos18 presented stochastic
methods in which the parameters of registration, noise, and
image statistics are estimated jointly based on the available
observations. Also in the MAP framework, Shen et al.19

proposed a joint estimation approach combining motion es-
timation, segmentation, and super-resolution together. Elad
and Feuer20 proposed a unified methodology for SR recon-
struction from several geometrically wrapped, blurred,
noisy, and down-sampled observations by combining the
MAP and POCS approaches. Recently, some researchers
paid much attention to color,21,22 compressed,23,24 and
dynamic25 SR methods.

Traditionally, the researchers use the motion �sensor mo-
tion or scene motion� cue to super-resolve the desired HR
image. In some SR literatures,8,26,27 although the employed

motion models can cover the sensor zoom, the additional
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nformation used for the SR reconstruction is still mainly
ooted in the sensor motion and/or scene motion. However,
t has been demonstrated that the sensor zoom itself also
an be employed as an effective cue for SR problem in
efs. 28 to 31. We called this type of SR techniques zoom

uper-resolution �ZSR�. Using an optical zoom camera, one
an capture images with different zooming factors by ad-
usting the focus length of the camera lens. It is known that
long focus corresponds to higher spatial resolution, but to
narrower coverage of scene. For example, in Fig. 1, only

he middle three objects can be observed under the longer
ocus condition. ZSR techniques can solve this tradeoff and
btain an image with high spatial resolution and wide
overage.28 Li29 suggests a line-geometric model for the
ideo ZSR problem by assuming that the zooming speed is
onstant. In many cases, this assumption is somewhat re-
tricted, especially for images captured by a still camera. In
ef. 30, Joshi, Chaudhuri, and Panuganti proposed a more
legant MAP method using a Markov prior to solve the
SR problem. To preserve the discontinuities of an image,

he authors include binary linear fields in the cost function
nd solve it using simulated annealing. The inclusion of a
inary linear field can effectively preserve the edge infor-
ation in an image. However, it is known that the simu-

ated annealing often has a very slow convergence. Joshi,
haudhuri, and Panuganti:31 extended their method by us-

ng either a Markov random field �MRF� or a simultaneous
utoregressive �SAR� model to learn the image prior from
he most zoomed image. In theory, this method demands
hat the scene should be homogeneous to some extent.

The main aim of this work is to develop a robust but
fficient ZSR algorithm, with which we can reconstruct an
mage with the entire scene as the least zoomed image and
ith the resolution as the most zoomed image from a se-
uence of images with different zooming factors. In addi-
ion, this algorithm is also expected to employ the image
npainting technique, which refers to the filling in of miss-
ng or corrupted regions in an image based on information
vailable on the observed regions.32–34 Thus, it can perform
nd conduct simultaneous image inpainting and ZSR for
issing/corrupted pixels in the observed images. For this

urpose, we use the total variation �TV� norm to model the
mage priori in the maximum a-posterior estimation to ef-
ectively preserve the edge information in the image. An
fficient algorithm based on fixed-point iterations and pre-
onditioning techniques is investigated to solve the associ-

ig. 1 Illustration of imaging with different focus. , is the shorter
ocus, and ,, is the longer focus.
ted Euler-Lagrange equations of the corresponding varia-
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tional problem. To suit the proposed algorithm for realistic
imaging situations, a registration method is presented to
simultaneously solve the zooming factors, image center
shifts, and photometric parameters. Experimental results
show that the proposed method not only can effectively
deal with the standard zoomed SR problem, but also has the
efficacy to conduct simultaneous inpainting and SR. More-
over, the advantage of the proposed algorithm is further
obvious when it is used to deal with noisy observations.

The rest of the work is organized as follows. In Sec. 2,
we give an image observation model for the ZSR problem.
We propose the TV-based ZSR reconstruction model in
Sec. 3 and a preconditioned solver in Sec. 4. Section 5
presents the simultaneously geometric and photometric reg-
istration method. Experimental results are provided in Sec.
6 and Sec. 7 concludes the work.

2 Image Observation Model
The image observation model mainly relates the desired
image with several observed images. For convenience, we
name the desired image as the HR image and the observed
images as LR images, although the desired image has the
same resolution as the most zoomed observed one.

We assume the depth variation in the scene is not sig-
nificant compared to the distance between the object and
the camera. Thus, a pinhole imaging model can be as-
sumed, and the depth-related perspective distortion in the
image can be neglected.30 We also assume the images are
captured with relatively small aperture, so that we can ne-
glect the effect of blurring due to the defocus. It has been
mentioned that we want to obtain a HR image that has the
same scene as the least zoomed image and the same reso-
lution as the most zoomed image. Assuming the LR size is
respectively N1 and N2 in the horizontal and vertical dimen-
sions, the HR size denoted by HN1 and HN2 can be deter-
mined by

HN1 = round�N1 �
LP

L1
�

HN2 = round�N2 �
LP

L1
� , �1�

where L1 and LP are the zoom factors of the least zoomed
image and the most zoomed image, respectively, and the
mathematical function “round” rounds the value to the
nearest integer.

To obtain the grid of the desired HR image, the simplest
method is to divide the least zoomed image that has the
entire scene into HN1 by HN2 units. This approach works
well when the relative zoom factor LP /L1 is an integer
value. However, when LP /L1 is fractional, it seems not to
be perfect. In Fig. 2�a�, the real line represents the LR grid
of the least zoomed image, the dotted is the grid of the most
zoomed image, and the dashed is the HR grid obtained by
the method mentioned earlier. It can be seen that the most
zoomed image needs to be resampled to fit the current HR
grid. It is known that the sampling process will inevitably
blur the edges and textures in the image. Since the most
zoomed image has the same resolution as the desired HR

image, it is better to directly move its pixels into the HR
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rid without any geometric sampling. Therefore, we sug-
est slightly adjusting the HR grid to satisfy this require-
ent �see Fig. 2�b� for illustration�.
In the grid system, each observed LR pixel can be re-

arded as a weighted sum of several HR pixels. Here, the
eights relate with the relative zooming factor LP /Lk �k is

he image number� and the pixel position of the LR pixel in
he HR grid. For example, in Fig. 3, the LR pixel g1, which
overs the HR pixels z1, z2, z5, and z6 partly or fully, can be
xpressed by

1 = �0.25 � z1 + 0.5 � z2 + 0.5 � z5 + z6�/�1.5 � 1.5� , �2�

here LP /Lk is equal to 1.5. In this way, the relationship
etween the HR image and the observed LR image can be
odeled in matrix notation as

k = DkCkz + nk. �3�

n this expression, gk is the lexicographically ordered LR
mage and z denotes the lexicographically ordered HR im-
ge. Ck is a cropping operator on z needed to handle the
hrinkage of the view angle during the zooming process. It
rops out the unobservable pixels from the HR image at an
ppropriate position.28 Dk denotes the down-sampling ma-
rix expressing the average relations in Eq. �2�. Here nk is
he model noise.

In the prior image observation model, it is assumed that
he image center does not change. Actually, the image cen-
er always move translationally as the lens parameters such

ig. 2 Illustration of the adjustment of HR grid, �a� before and �b�
fter the adjustment.
Fig. 3 Illustration of the relation between HR pixels and LR pixels.
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as focus or zoom are varied, even if the camera is fixed.30

With this in mind, we rewrite the observation model as

gk = DkCkzak
+ nk, �4�

where zak
�x ,y�=z�x−ak,1 ,y−ak,2� with x and y denoting the

pixel locations, and ak= �ak,1 ,ak,2� represents the shift vec-
tor of the optical center due to zooming by the lens system
for the k’th observation.

3 Total Variation Zoom Super-Resolution Model
It is clear that ZSR reconstruction is an example of an
inverse problem, where the source of information �desired
HR image� is estimated from the observed data �zoomed
LR images�. In general, this inverse problem is ill-posed,
because the information contained in the observed LR im-
ages is not sufficient to solve the desired HR image. There-
fore, it is necessary to include regularization to stabilize the
problem. Traditionally, regularization has been described
from both algebraic and statistical perspectives.35 Regular-
ization can be regarded as some prior information of the
desired image to constrain the image to some specific so-
lution space.

We describe the ill-conditioned inverse problem from
the statistical perspective using the maximum a-posteriori
�MAP� estimator. Let the full set of P LR images be de-
noted as g= �g1 ,g2 , . . .gP�. The purpose is to realize the
MAP estimate of HR image z, given the observed LR im-
ages g. The estimate can be computed by

ẑ = arg max
z

p�z	g� . �5�

Applying Bayes’ rule, Eq. �5� becomes:

ẑ = arg max
z

p�g	z�p�z�
p�g�

. �6�

Since p�z 	g� is independent of g, p�g� can be considered a
constant, and hence Eq. �6� can be rewritten as

ẑ = arg max
z

p�g	z�p�z� . �7�

Assuming the LR images are independent, we obtain

ẑ = arg max
z 
�

k

p�gk	z��p�z� . �8�

Using the monotonic log function, it can be expressed as

ẑ = arg max
z 

�

k

log p�gk	z�� + log p�z�� . �9�

Usually, the noise nk in Eq. �4� is assumed as a white zero
mean Gaussian type, thus we give the likelihood distribu-
tion p�gk 	z� as

p�gk	z� =
1

A1
exp
−

�Ok�gk − DkCkz�k
��2

2�2 � , �10�

where A1 is a constant, and �2 is the error variance that is
assumed to be the same in different observed images. Here,

Ok is a diagonal matrix denoting which pixels are missing
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n gk. Each pixel in gk corresponds to a diagonal element in
k. If a pixel is missing, its corresponding diagonal element

s 0, otherwise 1. The use of Ok removes the effects of the
issing pixels from the distribution function, and provides

he possibility to conduct the simultaneous inpainting and
SR.

We assume the image prior p�z� in Eq. �9� has the Gibbs
orm

p�z� =
1

A2
exp�− �U�z�� , �11�

here A2 is also a constant, � is an adjusting factor, and
�z� is the prior energy functional. Substituting Eqs. �10�

nd �11� in Eq. �9�, after some manipulation, the maximi-
ation of this posteriori probability distribution is equiva-
ent to the following minimization problem

ˆ = arg min
�
k

�Ok�gk − DkCkz�k
��2 + �U�z�� , �12�

here the first term �k �Ok�gk−DkCkz�k
��2 provides a force

f the conformance of the present HR image to the ob-
erved LR images according to the image observation
odel. The second term is the prior energy functional U�z�,
hich forces the prior on the image. �=2��2 is the confi-
ence parameter or regularization parameter, which bal-
nces the two competing terms.

Traditionally, the Laplacian prior and Gauss-Markov im-
ge prior are commonly employed in the fields of image
estoration and reconstruction. They regularize the corre-
ponding ill-posed problem by forcing spatial smoothness
n the image. However, some high frequency energy in the
mage tends to be removed in the use of these priors. This
roblem is more obvious when the images are contami-
ated by noise. Some edge-preserving priors have been
sed13,21,26,36,37 in the literature. One of the successful
ethods is the TV prior, whose energy functional looks

ike37

�z�	 = �
�

	�z	dxdy = �
�

�	�z	2dxdy , �13�

here � is the 2-D image space. It is noted that the previ-
us expression is not differential when �z=0. Hence, a
ore general expression can be obtained by slightly revis-

ng Eq. �13�, given as

�z� = �
�

�	�z	2 + �dxdy . �14�

ere, � is a small positive parameter, which ensures the
ifferentiability. Thus the discrete expression is written as

�z� = ��z�TV = �
x

�
y

�	�zx,y	2 + � , �15�

2
here 	�zx,y	 can be approximated as
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	�zx,y	2 = �z�x + 1,y� − z�x,y��2 + �z�x,y + 1� − z�x,y��2.

�16�

By substituting Eq. �15� in Eq. �12�, the following minimi-
zation function can be obtained

ẑ = arg min
�
k

�Ok�gk − DkCkz�k
��2 + ���z�TV� . �17�

The distinctive feature of TV prior is that edges can be
effectively preserved. The use of TV prior for image resto-
ration has been proposed by Rudin, Osher, and Fatemi.37

Chan and Shen38 proposed a TV inpainting model for
filling-in missing pixels and proved that the use of TV
norm is desirable for the image inpainting problem. The TV
prior has also been employed for the motion-based SR
problem in some literatures,36,39,40 in which the gradient
descent algorithm, which often has slow convergence, is
commonly used to solve the desired HR image. In the next
section, we introduce a more efficient method for the opti-
mization problem of Eq. �17�.

4 Numerical Optimization
For expression convenience, we rewrite z�k

in matrix form
as Mkz=z�k

, with Mk being the shift operator corresponding
to the shift vector ak. Thus, the Euler-Lagrange equation for
the energy function in Eq. �17� is given by the following
nonlinear system

�E�z� = �
k

Mk
TCk

TDk
TOk

T�OkDkCkMkz−gk� − �Lzz = 0, �18�

where Lz is the matrix form of a central difference approxi-
mation of the differential operator

� · � �

�	�z	2 + �
� .

here, �· is the divergence operator.
For this optimization problem, Rudin, Osher, and

Fatemi37 proposed the artificial time marching scheme as
the steady state of a parabolic partial differential equation.
Indeed, it is equivalent to employing the following gradient
descent �GD� method to solve the minimization problem

zn+1 = zn − dt � E��zn� , �19�

where n is the iteration number, and dt�0 is the time-step
parameter restricted by stability conditions �i.e., dt has to
be small enough so that the scheme is stable�. The main
drawback of this method is the slow convergence.

In Ref. 41, the lagged diffusivity fixed point iteration is
introduced. This method consists of linearizing the nonlin-
ear differential term by lagging the diffusion coefficient

1
�	�z	2 + �

one iteration behind. It has been shown in Ref. 41 that the
method is monotonically convergent. Using this strategy,

n+1
z can obtained as the solution to the linear equation:
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�
k

Mk
TCk

TDk
TOk

TOkDkCkMk − �Lzn�zn+1 = �
k

Mk
TCk

TDk
TOk

Tgk.

�20�

To solve Eq. �20�, any linear optimization solution can
e employed. Generally, the preconditioned conjugate gra-
ient �PCG� method is desirable. Given a matrix equation
x=b, there are two criteria for choosing a preconditioner

or A. First, the preconditioner should be a “good” approxi-
ation to A. Second, it must be easily inverted.
To suit the specific matrix structures in image restoration

nd reconstruction, several preconditioners have been
roposed.42–45 Our experimental results indicate that an ef-
cient way to solving the matrix equations arisen from
igh-resolution image reconstruction is to apply the factor-
zed sparse inverse preconditioner �FSIP�.45 Let A be a
ymmetric positive definite matrix, and let its Cholesky fac-
orization be A=GGT. The idea of FSIP is to find the lower
riangular matrix L with sparsity pattern S, such that

I − GL�F

s minimized, where � · �F denotes the Frobenius norm. Ko-
otilina and Yeremin45 showed that L can be obtained by the
ollowing algorithm.

1. Compute L̂ with sparse pattern S, such that �L̂A�x,y

=�x,y, �x ,y��S.

2. Let D̂= �diag�L̂��−1 and L= D̂1/2L̂.

ccording to this algorithm, n small linear systems need to
e solved, where n is the number of rows in the matrix A.
hese systems can be solved in parallel. Thus, the previous
lgorithm is also well suited for modern parallel comput-
ng. Motivated by the FSIP, we consider the factorized
anded inverse preconditioner �FBIP�, which is a special
ype of FSIP. It approximates the Cholesky factor G by
anded lower triangular matrices.42 In this work, the FBIP
lgorithm is employed to solve the ZSR problem by pre-
onditioning the coefficient matrix in Eq. �20�.

Registration
n most realistic situations, the relative zooming factor and
he shift of image center are unknown. They should be
stimated by some geometric registration method before
mplementing the SR scheme. Also, because of the possible
llumination change across the scene and the automatic gain
ontrol �AGC� or automatic white balancing of the camera,
he same objects often have different intensities in different
cquired images. Therefore, the registration part should not
nly include geometric registration, but also include photo-
etric registration, which refers to the estimation of the

hotometric transformations.
In Refs. 28, 30, and 31, the relative zooming and shift

arameters between two observations are solved using a
earch strategy by minimizing the mean squared distance
etween an appropriate portion of the zoomed images. The
hotometric difference is separately registered and cor-
ected. Here, we present a method to implement the geo-
etric registration and photometric registration simulta-

eously. By using the global linear photometric

ransformation �suppose the illumination changes across the
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scene are global and can be expressed by a gain parameter
and an offset parameter�, which is commonly assumed,26,46

the relation between the l’th and k’th images can be ex-
pressed as

gk�x,y� = hk,1 · gl�qkx + ak,1,qky + ak,2� + hk,0 + �k�x,y� . �21�

In this equation, hk,1 and hk,0 are the gain and offset values
of the linear photometric transformation, respectively; qk is
the relative zooming factor; ak,1 and ak,2 are respectively
the horizontal and vertical shifts �we remark that here the
shift parameters are the LR versions, but we still use the
same notations as their HR counterparts introduced in Sec.
2 for expression convenience�; and �k�x ,y� denotes the
model error. Let � denote the vector that contains both the
two photometric parameters and four geometric parameters,
and

fk
�l,���x,y� = hk,1 · gl�qkx + ak,1,qky + ak,2� + hk,0

denote the predicted pixel of gk�x ,y� from frame l using
parameter vector �. Thus, Eq. �21� can be rewritten by

gk�x,y� = fk
�l,���x,y� + �k�x,y� . �22�

The following quadratic cost function is employed as the
minimization function

E��� = �Ok�gk − fk
�l,����2

2. �23�

Here, Ok is used to remove the effects of the missing pixels
as in the reconstruction part. Using the Gaussian-Newton
method, the parameter vector � can be iteratively solved by

	� n = ��Jn�TOkJ
n�−1�− �Jn�TOkr

n� , �24�

and

� n+1 = � n + 	� n, �25�

where n is the iteration number, 	�n denotes the correction
vector of �n, rn is the image residual vector that is equal to
gk− fk

�l,�n�, and Jn= ��r /���n denotes the gradient matrix of
rn.

It is worthy to note that the registration parameters
should be initiated before implementing this iteration pro-
cess. In most cases, the center shift parameters ak,1 and ak,2
and the luminance offset hk,0 can be initialized as 0, and the
luminance gain hk,1 can be initialized as 1. The relative
zooming factor qk, however, should be initiated more care-
fully. Otherwise, the optimization procedure could get
trapped in a local minimum. Here, we employ the hierar-
chical searching strategy to obtain the initiated relative
zooming factor from coarse to fine scales. Generally, the
sum of squared difference �SSD� and the sum of absolute
difference �SAD� are the two most commonly used match-
ing criterions. However, the correlation coefficient criterion
is more appropriate in our case, because it is not affected by
linear transform. Thus, the effects of two photometric pa-
rameters can be neglected in the search process. The corre-

lation coefficient is expressed as
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C =
�gf

�g� f
. �26�

ere, CC and �gf are respectively the correlation coeffi-
ient and covariance between gk and fk

�l,��, and �g and � f
re their standard deviations.

Once the parameters are finally obtained after the initia-
ion and iteration processes, the observed images first can
e photometrically corrected by the photometric param-
ters, then the photometrically corrected images and the
eometric parameters �the relative zooming factors and
enter shifts� are provided to the ZSR algorithm.

Experimental Results
e tested the efficacy of the proposed algorithm using a

equence of experiments. The Cameraman image was first
sed for synthetic simulations. Then, we used two real se-
uences to provide a more realistic demonstration of reso-
ution improvement of the proposed algorithm.

ig. 4 HR estimates from noise-free observations in the synthetic
xperiment. �a� The least zoomed image, �b� the middle zoomed

mage, �c� the most zoomed image, �d� the bilinear interpolated im-
ge, �e� SR result using Laplacian prior, and �f� SR result using TV
rior.

ig. 5 PSNR values versus the confidence parameter in the Cam-

raman synthetic experiment on noise-free observations.
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6.1 Results Using Synthetic Images
In the synthetic simulations, we experimented on the Cam-
eraman image. The following peak signal-to-noise factor
�PSNR� was employed as a quantitative measure.

PSNR = 10 log10�2552 * HN1 * HN2

�ẑ − z�2 � , �27�

where HN1*HN2 is the total number of pixels in the HR
image, and ẑ and z represent the reconstructed HR image
and the original image.

Following the image observation model, we created
three LR images with the relative zooming factors being 1,
1.6, and 1.9. These images are respectively shown in Figs.
4�a�–4�c�. Figure 4�d� is the bilinear interpolated image of
the three LR images, which are obtained by interpolating
the least zoomed image �L=1� first, then replacing the cor-
responding part by the interpolated version of the middle
zoomed image �L=1.6�, and finally replacing the corre-
sponding pixels by the original pixels of the most zoomed

Fig. 6 HR estimates from noisy observations in the synthetic ex-
periment. �a� The least zoomed image, �b� the middle zoomed im-
age, �c� the most zoomed image, �d� the bilinear interpolated image,
�e� SR result with the highest PSNR using Laplacian prior, �f� SR
result with the highest PSNR using TV prior, �g� SR result with rela-
tive large confidence parameter using Laplacian prior, and �f� SR
result with relative large confidence parameter using TV prior.

Fig. 7 PSNR values versus the confidence parameter in the Cam-

eraman synthetic experiment on noisy observations.
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mage �L=1.9�. It is clear that the peripheral regions of this
mage are much smoother than those at the center. To ob-
ain more desirable images, we implemented the proposed
SR scheme regarding the bilinear interpolated image as an

nitial guess. The commonly employed Laplacian prior �the
rior energy function is �Qz�2, where Q is the 2-D Laplac-
an operator� was also tested to make a comparative analy-
is with the TV prior. It is noted that the Laplacian prior
enerally has stronger constrain on the image than the TV
rior, because its energy function is a square term and not
xtracted like that of the TV prior, so it should need a
maller confidence parameter than the TV. In fact, we
hould respectively choose the optimal confidence param-
ters � for the two different priors to ensure fairness in the
omparison. With this in mind, we tried a series of confi-
ence parameters for both the two priors. Figure 5 demon-
trates the PSNR values against the confidence parameter
. The PSNR of bilinear interpolation is also plotted for
omparison, although it has no relation with the confidence

ig. 8 HR estimates in the synthetic experiment with missing/
orrupted pixels in the observations. �a� The least zoomed image,
b� the middle zoomed image, �c� the most zoomed image, �d� the
ilinear interpolated image, �e� SR result using Laplacian prior, and
f� SR result using TV prior.

ig. 9 PSNR values versus the confidence parameter in the Cam-

raman synthetic experiment on observations with missing pixels.
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parameter. The PSNR value of the bilinear interpolation is
fixed at 28.968. Using the Laplacian and TV priors, we can
obtain the best PSNRs of 31.355 and 32.139 when � is
equal to 0.000064 and 0.032768, respectively. The SR im-
ages corresponding to the best PSNR values are shown in
Figs. 4�e� and 4�f�, respectively. It is found that both Figs.
4�e� and 4�f� are much clearer than Fig. 4�d�. In addition,
Fig. 4�f� has better visual quality than Fig. 4�e�, especially
around the edges. The visual evaluation agrees with the
quantitative measurement.

We further tested our algorithm on the noisy observa-
tions. We added a zero mean Gaussian noise with variance
65.025 on Figs. 4�a�–4�c� in the experiment. The resulting
noisy versions are demonstrated in Figs. 6�a�–6�c�. Figure 7
demonstrates the PSNR values of the bilinear interpolation,
Laplacian prior, and TV prior results versus the confidence
parameter in the noisy case. The bilinear interpolation im-
age has a constant PSNR value of 27.276 and is shown in
Fig. 6�d�. The best PSNR value for the Laplacian prior is
27.773, with confidence parameter � being 0.0256. Note
that this PSNR value is not much higher than that of bilin-
ear interpolation. Using the TV prior, however, we obtained
a best PSNR value of 29.347 when � is equal to 1.6384.
The images corresponding to the best PSNR values are
shown in Figs. 6�e� and 6�f�, respectively. It is observed
that both the two images are still noisy to different extents.
Therefore, we also give the results with larger confidence
parameters. The parameter of the Laplacian is 1.6384, and
the TV 3.2768. The SR results are shown in Figs. 6�g� and
6�h�, respectively. It is clear the Laplacian-based algorithm
fails to effectively remove the noise, even with a large �,
and smoothes much detailed information in the image. The
TV-based algorithm can provide simultaneous denoisng
and edge preservation. The PSNRs of these two images are
23.245 �Laplacian� versus 29.112 �TV�.

We also tested our algorithm for simultaneous inpainting
and ZSR. Figures 8�a�–8�c� are the simulated observations.
In this case, the quality of the bilinear interpolated image is
very poor �see Fig. 8�d��. The PSNR is only 12.698. In the
SR reconstructions, we again tried a series of confidence
parameters to find the best PSNR results in the SR recon-
structions. The Laplacian and TV priors obtained the best
PSNR values of 29.648 and 30.417 with �=0.00004 and
�=0.02048, respectively. PSNR values versus � are shown
in Fig. 9. Visually, the missing regions can be more desir-
ably inpainted and SR reconstructed using the TV-based
algorithm, especially around the image edges. Please see
the arrow-indicated regions in Figs. 8�e� and 8�f�.

In the previous three experiments �noise-free, noisy, and
missing cases�, the parameter � in Eq. �15� was fixed as

−5

Table 1 PSNR values of TV reconstructions for various ��s.

10−1 10−2 10−3 10−4 10−5 10−6

Noise-free 32.107 32.116 32.130 32.130 32.139 32.138

Noisy 29.347 29.347 29.347 29.348 29.347 29.348

Missing 30.262 30.272 30.287 30.394 30.417 30.316
10 . The authors of Ref. 41 have shown that taking small
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Fig. 10 Convergence performance of the FBIP algorithm compared to the GD algorithm. �a� Noise-
free case measured by gradient norm, �b� noise-free case measured by PSNR value, �c� noisy case
measured by gradient norm, �d� noisy case measured by PSNR value, �e� missing case measured by
gradient norm, and �f� missing case measured by PSNR value.
ptical Engineering December 2007/Vol. 46�12�127003-8
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ut positive � gives minimizers that are close to minimizers
btained with �=0 in the denoising problem. Here, we also
ested the effect of � on the ZSR reconstruction results. The
SNR values for various ��s in the prior three cases are
hown in Table 1 �for each case, the confidence parameter
s fixed�. We can see the robust performance of the TV
lgorithm is not sensitive to the choice of �.

The next issue is on the evaluation of the efficiency of
he proposed algorithm. We compare the employed the
BIP preconditioning algorithm to the gradient descent
GD� algorithm. In Fig. 10, the left shows the evolution of
he gradient-norm-based convergence condition
�E�zn� � / ��E�z0�� against the computational time, and the
ight is the demonstration of PSNR value versus the com-

ig. 11 HR estimates in the Text experiment. �a� The least zoomed
mage, �b� the most zoomed image, �c� the bilinear interpolated im-
ge, �d� Laplacian SR result with �=0.002, �e� Laplacian SR result
ith �=0.064, and �f� TV SR result with �=1.

ig. 12 HR estimates in the Face experiment. �a� The least zoomed
mage, �b� the most zoomed image, �c� the bilinear interpolated im-
ge, �d� Laplacian SR result with �=0.01, �d� Laplacian SR result
ptical Engineering 127003-
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putational time. It is noted that the selection of the step-size
dt in the GD algorithm is not easy, because an overly small
value results in a very slow convergence speed, and an
overly large value often leads to divergence. Therefore, in
the noise-free and noisy cases, we respectively give the
results using two carefully selected step sizes �at least one
of them is almost the best� to compare to the FBIP algo-
rithm. Here, the confidence parameters were respectively
fixed as 0.016384 �noise-free� and 1.6384 �noisy�. In the
missing case, since the convergence of the GD algorithm is
extremely slow when the confidence parameter is equal to
that of the FBIP algorithm ��=0.0248�, we also give the
result with a larger confidence parameter �=0.1. From both
the gradient norm and PSNR convergence criterions, the
FBIP algorithm greatly outperforms the GD algorithm.

6.2 Results Using Real Images
Now we consider applying the proposed algorithm to real
zoomed images obtained with a consumer-level digital
camera. The registration method introduced in Sec. 5 is
used to obtain the zooming, shifted, and photometric pa-
rameters. To reduce the computational expense, our pro-
cessing was restricted to typical regions in the original
images.

The first realistic imaging experiment was on the Text
sequence, which contains six zoomed observations. The
least and most zoomed images are respectively shown in
Figs. 11�a� and 11�b�. Figure 11�c� is the bilinear interpo-
lated image. Figure 11�d� is the ZSR result using the La-
placian prior with relatively small confidence parameter
0.002. There are obvious artifacts in the image. Figure
11�e� is also the Laplacian result, but with relatively large
confidence parameter 0.064. It can be seen that the artifacts
are still perceptible. Moreover, the characters around the
image boundary have been oversmoothed with the increase
of the �. We show the SR result of the proposed algorithm
with �=1 in Fig. 11�f�. Obviously, this result is more visu-
ally attractive than the two former ones.

The second was on a Face sequence. Nine zoomed im-
ages were obtained under dark illumination conditions,
which led to images contaminated by noise. The least and
most zoomed images and the reconstructed results are
shown in Fig. 12. In this experiment, we obtained similar

Fig. 13 �a� through �e� The first series of detained regions cropped
from Fig. 12�a� and Figs. 12�c� through 12�f�.

Fig. 14 �a� through �e� The second series of detained regions

cropped from Fig. 12�a� and Figs. 12�c� through 12�f�.
ith �=0.64, and �e� TV SR result with �=1.6.
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onclusions as in the synthetic experiment on noisy obser-
ations. From Figs. 12�d� and 12�e�, which are respectively
he results using the Laplacian prior with �=0.002 and �
0.64, we can see that the Laplacian prior does not remove

he noises with a small confidence parameter, and it overly
mooths the image if the confidence parameter is too large.
he proposed TV-based algorithm, however, is more robust

o noise �please see Fig. 12�f��, which is the result of using
he TV prior with �=1.6. For convenience of visual judg-
ent, two series of detained regions cropped from Figs.

2�a� and Figs. 12�c�–12�f� are shown in Figs. 13�a�–13�e�
nd Figs. 14�a�–14�e�, respectively.

Conclusions
e propose an effective and efficient algorithm for zoom-

ased SR image reconstruction. We employ the TV prior to
et up the ZSR model and use the FBIP preconditioning
lgorithm to find the solution. For realistic imaging situa-
ions, a registration method is presented to simultaneously
olve the zooming factors, image center shifts, and photo-
etric parameters. Experiment results validate that the pro-

osed reconstruction algorithm is very robust and efficient,
nd its advantage is further obvious when it is used to deal
ith noisy observations. We also demonstrate that the pro-
osed algorithm also can effectively conduct simultaneous
mage inpainting and ZSR.
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