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A MAP Approach for Joint Motion Estimation,
Segmentation, and Super Resolution

Huanfeng Shen, Liangpei Zhang, Bo Huang, and Pingxiang Li

Abstract—Super resolution image reconstruction allows the re-
covery of a high-resolution (HR) image from several low-resolu-
tion images that are noisy, blurred, and down sampled. In this
paper, we present a joint formulation for a complex super-reso-
lution problem in which the scenes contain multiple independently
moving objects. This formulation is built upon the maximum a pos-
teriori (MAP) framework, which judiciously combines motion esti-
mation, segmentation, and super resolution together. A cyclic coor-
dinate descent optimization procedure is used to solve the MAP for-
mulation, in which the motion fields, segmentation fields, and HR
images are found in an alternate manner given the two others, re-
spectively. Specifically, the gradient-based methods are employed
to solve the HR image and motion fields, and an iterated condi-
tional mode optimization method to obtain the segmentation fields.
The proposed algorithm has been tested using a synthetic image
sequence, the “Mobile and Calendar” sequence, and the original
“Motorcycle and Car” sequence. The experiment results and error
analyses verify the efficacy of this algorithm.

Index Terms—Joint estimation, maximum a posteriori (MAP),
motion estimation, segmentation, super resolution.

I. INTRODUCTION

IGH-RESOLUTION (HR) images have a variety of ap-
leications in remote sensing, video frame freezing, med-
ical diagnostics, and military information acquisition. However,
low-resolution (LR) images are used more frequently due to
the high cost and physical constraints of the hardware. Conse-
quently, super-resolution (SR) reconstruction has emerged as an
alternative for producing one or a set of HR images from a se-
quence of LR images.

The multiframe SR problem was first formulated by Tsay
and Huang [1] in the frequency domain. Their formulation
was extended by Kim er al. [2], [3] to consider observation
noise as well as spatial blurring. A discrete cosine transform
(DCT) based frequency domain method was developed in [4].
In general, the frequency domain approaches have the strength
of theoretical simplicity and high computational efficiency.
Such methods are limited in their approach, as they are not able
to accommodate spatial domain a priori knowledge, nonglobal
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translational motion models, or spatially varying degradation
[5]. Consequently, many kinds of spatial domain approaches
have been developed to overcome the weaknesses of the fre-
quency domain approaches. Typical spatial domain approaches
include nonuniform interpolation [6] based on the generalized
multichannel sampling theorem [7], [8], iterative back projec-
tion (IBP) [9], projection onto convex sets (POCS) [10]-[13],
maximum likelihood (ML) [14], maximum a posteriori (MAP)
[15], [16], hybrid ML /MAP/POCS [17], and adaptive filtering
[18].

The fundamental notion of SR is to employ either frequency
domain or spatial domain approaches to bring together the ad-
ditional information in each image provided by the subpixel
displacements from a referenced image. Before reconstructing
one frame, this frame must be fixed as a referenced frame and
then all other frames are registered against it (It is noted that
in this paper, the motion field describes the motions between
a current frame and the referenced frame). Hence, motion es-
timation/registration plays a critical role in SR image recon-
struction. Work has been carried out with emphasis on reducing
the effect of registration error in SR. Bose et al. [19] suggested
a total least squares method to improve the solution accuracy
when errors exist in both observations as well as the system ma-
trix. Ng and Bose [20] gave an analysis of the motion errors
on the convergence rate of the iterative approach for solving
the transform based preconditioned system of equations. Lee
and Kang [21] proposed an approach based on channel adaptive
regularization to minimize the effect of the registration error.
Shah and Zakhor [22] considered the registration inaccuracy
by finding a set of candidate motion estimates for each pixel.
As an alternative solution, the simultaneous registration and re-
construction approach reduces the effect of registration error.
Tom and Katsaggelos [23] developed a simultaneous registra-
tion and reconstruction approach, in which they formulated the
SR problem in the form of a Maximum Likelihood problem and
solved it using the expectation—maximization algorithm. Rus-
sell et al. [24] developed an approach within the MAP frame-
work to simultaneously estimate the image registration parame-
ters and the HR image. Segall et al. [25], [26] presented a note-
worthy approach the involved joint estimation of dense motion
vectors and HR image for compressed video. More recently,
Woods et al. [27] presented the complex stochastic methods in
which the parameters of registration, noise and image statistics
are jointly estimated based on the available observations. Using
the Gauss—Newton method, Chung et al. [28] attempted com-
pletely coupled and partially coupled optimizations to improve
the efficiency of their solution.

Nevertheless, for the most part, SR methods [19]-[28] have
not adequately addressed the more complex multiple moving
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objects problem. When scenes contain multiple independently
moving objects, the estimated motion vectors are prone to be in-
accurate around the motion boundaries and occlusion regions,
which results in artifacts in the reconstructed HR image. SR
enhancement of arbitrary scenes is the ultimate goal of such
research effort [29]. Thus, Irani and Peleg [30] proposed an
object-based approach in which the multiple moving objects
are first detected using a tracking algorithm recursively. Sub-
sequently, they employed a back-projection algorithm to im-
prove the resolution of different objects. This approach was
extended by Eren et al. [31] based on the POCS framework.
They assumed that objects of interest are marked on a reference
LR frame interactively. These are then tracked on all available
frames using a mesh-based object-tracking method. Finally, a
POCS approach was used to realize the SR. For the SR recon-
struction of compressed video sequence, Alvarez et al. [32] at-
tempted a method to determine which pixels provide useful in-
formation to estimation of the HR image, and considered only
those observations by modifying the acquisition model.

In this paper, we propose a novel joint estimation approach
for motion estimation, segmentation, and SR reconstruction to
deal with the multiple moving objects problem. Our approach is
based on the following recognitions:

The desired HR image and motion estimates are interdepen-
dent. Accurate subpixel motion estimates are critical for SR
image reconstruction. On the other hand, a high-quality HR
image can also facilitate accurate motion estimates.

Motion estimation and segmentation are also interdependent.
The success of motion segmentation is closely related to the
accuracy of the motion field, and vice versa [33].

Motion segmentation can benefit the SR result, especially for
scenes containing multiple independent moving objects.

As motion estimation, segmentation and SR reconstruction
are mutually interdependent and influence each other, an ideal
approach is addressing them simultaneously. To the best of our
knowledge, only two among these three processes have been si-
multaneously addressed, such as the joint estimation of motion
and reconstruction [23]-[28] and that of motion and segmenta-
tion [33], [34]. In our algorithm, all the three processes are judi-
ciously integrated within a MAP framework. The motion fields
and segmentation fields are iteratively updated along with the
HR image in a cyclic optimization procedure. The algorithm re-
inforces the interdependence among the motion estimates, seg-
mentation map and HR image in a mutually beneficial manner.
In particular, it can suppress the artifacts around motion bound-
aries and occlusion regions without the need of interaction.

The remainder of the paper is organized as follows. In Sec-
tion II, the SR observation model and motion field model are
described. The joint MAP estimation problem is formulated in
Section III. In Section IV, the joint optimization procedure to
solve the motion fields, segmentation fields and HR image is
presented. Experimental results are provided in Section V, and
Section VI concludes the paper.

II. MODELS

Motion estimation, segmentation, and SR involve the basic
image observation model and the motion field model. The image
observation model relates the original HR image to the observed
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Fig. 1. Down-sampling grid.

LR images. A simple but efficient observation model is crucial
for analyzing the SR problem in a comprehensive manner. The
motion field model is a description or representation of a motion
field, which is critical for motion estimation and segmentation.
This section introduces a general image observation model at
first and then describes a motion field model.

A. Image Observation Model

Typically, the imaging process involves warping followed
by blurring and down sampling to generate LR images from
an HR image. Let the underlying HR image be denoted in
the vector form by z = [z1,22....,20, N, x LN, » Where
LiN; X LaN, is the HR image size. Letting L1 and Lo de-
note the down-sampling factors in the horizontal and vertical
directions, respectively, each observed LR image having the
size N1 X N,. Thus, the LR image can be represented as
Y. = [yk,lyyk,Z e -7yk,N1><N2]T’ where & = 17 2./ . .P,
with P being the number of the LR images. Assuming that
each observed image is contaminated by additive noise, the
observation model can be represented as [5], [17], [35]

where M, is the warp matrix with the size of Ly N Ly Ny X
LiNjLy;Ns5, By represents the blur matrix also of size
L1N1L2N2 X L1N1L2N2, D is a NlNQ X LlNlLQNQ
down-sampling matrix, and nj, represents the N1 N2 X 1 noise
vector. It is assumed in this paper that the noise is a zero
mean Gaussian type, and the optical blur functions are uniform
and to be known. The down-sampling is implemented using
an average strategy, with which the LR pixel LS5 is equal to
the average of the four HR pixels H5, H6, H8, and H9 in the
down-sampling grid shown in Fig. 1.

B. Motion Field Model

The following motion field model is drawn from [33], [34].
Let us denote a 2-D motion field as m; and a motion vector
as my(x) = [mpu(x), My (x)], where £ = [z, z,] is the
pixel site. If the scene consists of R independently moving ob-
jects, then there should exist an underlying segmentation label I,
which assigns each motion vector to one of the R classes. Gen-
erally, each object can be approximated by a parametric model,
such as affine transformation and perspective model. Thus, the
motion field my, can be represented as the sum of a parametric
motion field m;, and a nonparametric residual field m'g, which
accounts for local motion and other modeling errors [36]; that is

@

my(x) = my(z) + mj(z).
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The following eight-parameter perspective models are se-
lected:
M u(Z) = a0 + a1y + a2z, + a6:1:12t + A7T Ty

mk,v(m) =a3 + a4y + A5y + ULy Ty + a7$12; (3)

where ag, a1, . ... a7 are the mapping parameters.

III. PROBLEM FORMULATION

Let the full set of P LR images, motion fields, and seg-
mentation fields be denoted by y =
m =
tively. The purpose is to realize the joint MAP estimate of
motion fields m, segmentation fields 1 and HR image z, given
the observed LR images y. The estimate can be computed by

z,m,l= arg max {p(z,m,l|y)}. (@)

Applying Bayes’ rule yields, (4) becomes
{p('y | zZ,m, l)p(27 m, l) }

p(y)

2,m,i: arg max %)
Since p(z,m,l|y) is independent of y, (5) can be rewritten
as

zm,

=arg max {p(y|z,m,)p(z,m|l)p(l)}
zm)l

=arg max {p(y|z,m,l)p(z|l,m)p(m|l)p(l)}.(6)
zm,l

Assuming different y,,, my, and I;, are independent, respec-
tively, we obtain

z,m,l
=arg max {H[p(y“z my, l)p(z |1, mk)p(mk|lk)p(lk)]}.
zml |7,

)

Using the monotonic log function, it can be expressed as (8),
shown at the bottom of the page.

At the outset, we define two diagonal matrices which will be
used to set up some of the four PDF functions in (8). The pres-
ence of occlusion regions and the restriction of motion estima-
tion methods lead to pixels that cannot be predicted from the ref-
erenced HR image and that have poor and conflicting motion es-
timates in the un-referenced HR images. The same term “unob-
servable” is used to denote the two types of pixels as that in [32].
To denote the observable pixels in the HR image z;, = Mz, a
diagonal matrix OZ with the size of L1 N1 LoNo X L1 Ny LoNs is
defined. Each HR pixel in 2z corresponds to a diagonal element
in OZ. If a HR pixel is observable, its corresponding diagonal el-
ement is 1, otherwise 0. Once a pixel in HR image 2, is detected
as unobservable, all the pixels in the corresponding LR image
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y;. dependent on it using the observation model (1) are also con-
sidered unobservable. Another N1 N, X N1 N, diagonal matrix
O, is defined with the similar signification as O" . The method
to detect the pixels that are observable or unobservable will be
presented in Section IV (C).

The first probability density function (PDF), p(y, | z, my, l),
provides a measure of the conformance of the present HR image,
motion field and segmentation field to the observed LR frame k.
y), and y}, denoting the vectors containing the observable and
unobservable pixels, respectively, the PDF can be calculated as
follows:

(Yl z,mi, 1) = p(yil 2, me, L)p(yi) z,m L), (9)

Since the unobservable pixels should not be considered in SR
reconstruction, p(y| z,my,lx) can be regarded as a constant.
The central task then comes down to defining p(y}| z, my, I ).
One choice is to determine ¥}, and its corresponding down-sam-
pling matrix D’ first, then g}, and D’ are used to give the PDF
function [15], [32]. An alternative method is that the original
form of y,, and D are used by affiliating the diagonal matrix Ofc
into the PDF function, given by

2
Hoéc(yk - DBkMkZ)H

2
207,

1
(Yl 2, mi, le) = aexp -

(10)
where C| is a constant, and a,% is the error variance.

The second density function p(z | li, m;) models the image
prior. In most cases which consider the joint estimation of mo-
tion and HR image, it is assumed that this prior is independent
[24]-[26]. In theory, it is possible to obtain some prior informa-
tion from the segmentation field. For example, regions located at
the segmentation boundaries, to some extent, tend to be sharper
than other regions. However, it is hard to utilize such informa-
tion for improving the SR result because there is a high require-
ment on the segmentation accuracy. Hence, it is assumed the
HR image prior is independent of motion field m;, and segmen-
tation field I. In this paper, the following prior model is used:

el leome) = p(2) = e {-M Q") (b
where \; is a parameter that controls the variance of the prior
distribution, and @, represents a linear high-pass operation that
penalizes the estimation which is not smooth. @ is chosen as a
2-D Laplacian in this paper.

The a priori density of the motion p(my, | li) is modeled in
such a way that there is an interaction between the motion field
and the segmentation field

p(my |11)
= Cig exp{—)\z ZHOZ(mk(X)—Thk(X))HQ_)\g ”szkuz}
(12)

zm, A

z,1,1 = arg max {H llog p(y |z, ma, L) + log p(z | L, m.) + log p(my | 1) + logp(lk)]} ®)
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The first term in (12) aims to minimize the deviation of the
motion field my(x) from the parametric motion field 7 (x);
thus, it enforces a minimum norm estimate of the residual mo-
tion field mj, (x) [33]. It should be noted that the constraint is
enforced only on the observable pixels by affiliating the diag-
onal matrix OZ. The second term imposes spatial smoothness on
the estimated motion vectors. The operator @, is an improved
Laplacian, using which the spatial smoothness is not enforced
on motion vectors generated by different objects in the neigh-
borhood. The parameters Ao and A3 control the relative contri-
bution of the two terms.

The last distribution function in (7) provides a prior proba-
bility of the segmentation field, which is modeled such that the
object discontinuities coincide with spatial intensity boundaries
[37]

o) = - expd =3 3 Vollu(e).bus,)
II,',,: II:']'GQ

(13)

where @ denotes the neighborhood system of x;, and the clique
potential V¢(-) encourages the stochastically estimated labels
to match a predetermined spatial segmentation field

otherwise )

Ve(li(®i), lk(z))) = { =,

+7, (1

Substituting (10)—(13) into (8), the minimization cost func-
tion is obtained in (15), shown at the bottom of the page.

This cost function is used in the optimization procedure in-
troduced subsequently.

IV. OPTIMIZATION PROCEDURE

As the cost function (15) consists of three large sets of un-
knowns (motion estimates, segmentation labels, and HR pixel
values), using direct search techniques is intractable. Therefore,
acyclic coordinate descent optimization procedure is developed
to solve the unknowns. The motion fields, label fields and HR
image are found in an alternate manner given the two others, re-
spectively.

A. Updating the HR Image

Given a fixed motion field m;, and segmentation field I}, the
parametric motion field m;, and the two diagonal matrices OZ
and OL can also be regarded as known quantities because they
can be easily obtained (see Section IV-C). Thus, if the full set
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of motion fields m and segmentation fields I is known, the de-
sired HR image can be updated by minimizing the following
cost function

i(z) = Y [Ohtwe ~ DBM2)|| + M l@uzl® (16)
k

which is composed of two terms in (15) that contain the sole
unknown quantity z. A gradient descent procedure is designed
to minimize the cost function. Differentiating (16) with respect
to z and setting the result equal to zero, we have

VE(z) =-2Y M} B;D"(0})" O}y, — DB:M;z)
k

+20Q7Q,z=0. (17)

Since O, is diagonal, (0})7 0! = O}. Thus, the HR image
is solved by employing the successive approximations iteration

2L =3 4 o (18)

where
r =" MTBIDIOL(y. — DBiM;") - M QT Q, 2"
k

19)
and " represents the step size at the nth iteration which is crit-
ical for the convergence. If it is too small, the convergence will
be very slow. On the other hand, if it is too large, the algorithm
will be unstable or divergent. Differentiating E1(2" + o™r")
with respect to a™ and set the result equal to zero, after some
manipulation, the optimal step size is solved by

n\T ,.n
Q" = (") . . Qo)
> ||0kDBM ||+ A @y
k

B. Updating the Motion Field

Given the estimate of the HR image z and segment field I,
the cost function to update the motion filed m;, can be given

Ea(m.) = || Ok (. - DBkMkz)H2
00 Y [Obtmue) — ()| + As Il Qumal®. 1)
r

Since all the three terms are differentiable, the gradient-based
optimization method is used again. Differentiating (21) with re-
spect to my, and setting the result equal to zero
8Mkz

8mk
+2X2(0})T O} (my,(z) — T (z)) + 2X03Q3 Qumy, = 0. (22)

VEy(my,) = =2 B DT (0,)T0\(y, — DBLM}z)

A A 2 2
201 =arg min, {Z |0k - DBuMuz)| "+ 21 1Qu2” + 22 30 S 0l () — s ()|
Ml (7 k z

+)‘32“Q2mk“2+22 > VC(lk(zi)vlk(zj))} (15)

kE T; p.cN
zEJE
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Noting that O, and O} are both diagonal matrices, the gra-
dient descent update for the motion field is given by

oM,
my T =)+ ag{ am';szT,DZOL(yk — DB, M,z)

— X200 (my,(z) — 1 (x)) — AgQngmk} (23)

where a7, is the step size at the nth iteration again, and it must
also be selected to be small enough to prevent divergence and
large enough to provide faster convergence. As the adaptive se-
lection of a7 is beyond the scope of this paper, o}, is chosen
heuristically. The derivative in (23) is computed on a pixel-by-
pixel basis, given by

OMyz(zy, )  2(xy+ mput+ 1,0,) —2(Tu+mp—1,7,)

8mk7u 2
OMy2(zy,20)  2(Tu, Tu+Mp 1) —2(Ty, Ty +mp , —1)
8mkyv B 2 ’
(24)

Noting that my, ,, and my, ,, are always fractional values, some
interpolation methods are needed to implement the above equa-
tions. A bilinear interpolation method is adopted in this paper.

C. Updating the Segmentation Field

Assuming that HR image z and segment field m;, are known,
the cost function to the segment field I, is given by

1) = 22 3 O ms(a) — (o)

+3° ) Vell(mi), li(z)).  (25)

T; g .cN
',,.’BJE

The segmentation optimization is carried out using the iter-
ated conditional modes (ICM) procedure [38]. The ICM method
is a deterministic procedure that aims to reduce the computa-
tional load of the stochastic annealing methods. It can best be
conceptualized as the “instant freezing” case of the Metropolis
algorithm when the temperature is set to zero for all iterations.
Similar to simulated annealing, the ICM procedure is imple-
mented at each pixel site separately and cyclically. However,
it is in the way by choosing the value at each site that gives the
maximum local conditional probability rather than obtaining a
value based on the conditional probability distribution; hence, it
facilitates faster convergence [33]. This method has been widely
applied to the field of image segmentation [34], [39]-[41].

At every iteration step of our ICM segmentation procedure,
each pixel is labeled as one of the numbers 1,2, ....R under
the constraint of minimizing the cost function (25), where R is
the number of the independent moving objects. In this process,
parametric motion vector 7 () in (25) is obtained by (3) with
the old mapping parameters which are estimated during the last
iteration. After the labeling process, these mapping parameters
are updated using the least squares estimation according to the
current segmentation map. In order to obtain accurate renewed
mapping parameters, motion vectors that significantly deviate
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Fig. 2. Diagram of the joint MAP algorithm.

from the old parameters are not used in the estimation. The
available vectors are determined using the following standard:

[t (@) + [, )]

2

<d (26)
where d is a setting threshold.

When the ICM iterations are over, the pixels that were not
used to update the mapping parameters in the last step are la-
beled as 0. These pixels are unobservable because they deviate
from all the K motion models. Thus, the diagonal matrix 0’,1.’
can be updated. Once O is determined, matrix O, can be ob-
tained according to the observation model. Let us review Fig. 1
and assume that the HR pixel HS has been detected as unobserv-
able. If the optical blur is neglected in the observation model,
only the LR pixel L5 which contains HS is considered unob-
servable. However, if a 3 x 3 blur is considered, the LR pixels
L1, L2, L4, and LS, which contain one or more HR pixels of
the 3 x 3 neighbor of HS, are dependant on HS according to the
observation model. Hence, all the four LR pixels are considered
unobservable.

D. Initialization

Before updating, the HR image, motion fields and segmenta-
tion fields must be initiated. The initial HR image is obtained
using the bilinear interpolation. The motion estimates are initi-
ated by implementing a blocking matching algorithm, followed
by a further estimate using the simple version of (23) by ab-
breviating the second term in the big bracket. Given the initial
motion field, a procedure similar to [42] is adopted to initiate
the segmentation. In this procedure, the image is divided into
small blocks at first. Then, a set of perspective parameters is es-
timated for each block. Finally, a k-mean method clusters the
candidate perspective parameters in the eight-dimensional pa-
rameter space. This results in R regions, each with an initial set
of perspective parameters. It is noted that finding the number of
segments is still an open and challenging problem. The number,
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Fig. 3. HR image synthesis in experiment 1: (a) “fruits” image, (b) “flowers”
image, (c) “vegetables” image, and (d) the synthetic image.

R, is assumed to be known in the initial segmentation. Actu-
ally, when the number of moving objects is not very large, we
can easily determine it by a visual estimation on the video se-
quence.

A block diagram of the whole optimization procedure is
shown in Fig. 2.

E. Parameter Determination

Cost function (15) has four parameters A1, A2, A3, and 7y [see
(14)], which control the weights of the second, third, fourth and
the fifth terms relative to the first term. The parameter \; bal-
ances the data fidelity (the first term) and the image regular-
ization (the second term) in the reconstruction part. Two dif-
ferent approaches which automatically determine this parameter
were used in [21] and [35], respectively. However, it is found
A1 = 1072 is an acceptable choice for most sequences which
are not over noisy and smooth in our experiments. Parameter A3
controls the contribution of the motion regularization in the mo-
tion estimation part, and we also set it as a fixed value in all the
experiments, i.e., \3 = 10*. The parameter A\, can be chosen as
a large value to emphasize the third term if the motion field can
be well modeled by the eight-parameter model in (3). It is, oth-
erwise, appropriate to choose a smaller value. As for v, Chang
et al. [34] suggest that it is selected as 1 < Ay/y < 5, also
depending on how well the motion field conforms to the para-
metric model. Parameter v, in (23) should be carefully selected
because an over small value results in a very slow convergence
speed and an over large value often leads to divergence. We set
itas o = 105 in our experiments. Furthermore, the threshold
value (d) in (26) must also be set. In the next section, we will
demonstrate how it affects the SR results. Our experimental re-
sults indicate that d = 0.25 is a desirable threshold for most se-
quences. Lastly, the issue is how to terminate the iterations. Al-
though the proposed algorithm may have different convergences
for different image sequence, we can always obtain the desirable
results in ten iterations. Therefore, we set N = 10 as the termi-
nation criterion (/N is the iteration number). As the processing
of each iteration becomes faster with the increase of the iteration
number, this choice will not increase much computation time.
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TABLE 1
SHIFTS OF THE HR IMAGES (HR PIXEL)

. Fruits Flowers Vegetables
Image Atiribute
H v H A% H v
0 Referenced 0 0 0 0 0 0
1 Unreferenced 0 1 0 3 1 3
2 Unreferenced 1 0 1 | -1 -2
3 Unreferenced 1 1 1 4 3 3

To sum up this subsection, we have fixed the parameters \;
, A3, a, and iteration number N, but have chosen different
values for parameters )\, and «y according to different sequences
in our experiments. Our experimental results also indicate that
a desirable selection for threshold d is d = 0.25.

V. EXPERIMENTAL RESULTS

Three datasets were employed to illustrate the performance of
the proposed algorithm. They are a synthetic image sequence,
the “Mobile and Calendar” sequence, and the “Motorcycle
and Car” sequence. The following peak signal-to-noise ratio
(PSNR) was employed as a quantitative measure in the first two
sets of experiments:

27)

2
PSNR — 1010g10 (255 * L1N1L2N2>

12 = 2|2

where L N1 Ly Ns is the total number of pixels in the HR image,
and 2z and z represent the reconstructed HR image and the orig-
inal image, respectively.

A. Synthetic Image Sequence

In the first set of experiments, three block images, i.e.,
“fruits,” “flowers,” and “vegetables,” were used to produce the
LR data set. The three images are shown in Fig. 3(a)-(c), re-
spectively. The size of “fruits” is 200 x 200, and the “flowers”
and “vegetables” are both 60 x 60. Using the image of “fruits”
to simulate the background and regarding “flowers” and “veg-
etables” as two independent moving objects in the scene, we
created four HR images at first. One of the resulting images is
shown in Fig. 3(d). In order to simulate the camera pan, not only
“flowers” and “vegetables,” but also “fruits” were translated to
different shifts, which are shown in Table I. After obtaining the
HR images, they were down-sampled by a factor of 2 in both
horizontal and vertical dimensions to obtain the LR images.

The four resulting LR images were then provided to the pro-
posed algorithm, where A\ = 10% and v = \2/5 = 2 x 10?
(The determination of other parameters is discussed in Sec-
tion IV(E)). To test the influence of the threshold d defined in
(26) on the estimation process, it was chosen as 0.15, 0.20, 0.25,
and 0.30, respectively.

First, the segmentation maps from image 2 are taken as an
example for illustration. The interim segmentation maps at
the iteration steps 0, 3, 6, and 9 with d = 0.25 are shown in
Fig. 4(a)—(d), respectively. Many unobservable pixels labeled
as “0” exist in the initial segmentation map, as the error of
motion estimation is relatively larger. With the increase in
iterations, the number of unobservable pixels decreases and
further improved segmentation maps are generated. The effect
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Fig. 4. Interim segmentation maps of image 2 with d = 0.25: (a) Iteration =
0, (b) Iteration = 3, (c) Iteration = 6, and (d) Iteration = 9.

(b)

© (d)

Fig. 5. Segmentation results of image 2 with (a) d = 0.15, (b) d = 0.20,
(c) d = 0.25,and (d) d = 0.30.

of threshold d to segmentation is demonstrated in Fig. 5. The
smaller the value of d, greater the number of labeled unobserv-
able pixels in the segmentation map. It is found that this has a
direct effect on the motion estimation and SR reconstruction.

Since the real motion vectors are known, the motion estima-
tion was evaluated quantitatively using the mean absolute error
(MAE)

; [mu(x) — 100 ()| + My (2) — 10, ()]
MAE = 2L, N, LNy

(28)

where m,(x) and m,(x) are the estimated parameters, and
m,, (x) and m,, (x) are the known values. The MAEs of the three
unreferenced images versus the number of iterations are plotted
in Fig. 6(a)—(c), respectively. As mentioned previously, the ini-
tial motion estimates were obtained using a simple version of
(23) without the use of segmentation fields, their MAEs corre-
spond to the first points of the curves. It can be clearly observed
that most of the curves are monotonously descending, which
proves that the proposed algorithm provides more accurate es-
timations. Besides, the threshold d significantly influences the
motion estimation. In this experiment, the optimal value for mo-
tion estimation was 0.25 because it provided accurate and stable
results for all the three images.
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Fig. 6. MAEs versus the iteration numbers with different thresholds d,
(a) image 1, (b) image 2, and (c) image 3.

Now the emphasis is on the evaluation and analysis of the
reconstructed HR images. The referenced LR image is shown
in Fig. 7(a). Its bilinear interpolation version is shown in
Fig. 7(b), which is viewed as the initial result of the desired HR
image in SR reconstruction. The SR result of the conventional
MAP algorithm without consideration of the segmentation
of unobservable pixels during the reconstruction is shown in
Fig. 7(c). Fig. 7(d)—(g) illustrates the reconstruction of the pro-
posed algorithm with different threshold d. Detained regions
cropped from Fig. 7(c)—(g) and the original image Fig. 3(d) are
depicted in Fig. 8(a)—(f), respectively. It is found that the image
reconstructed by the conventional MAP algorithm has better
visual quality than the interpolated image in most regions.
However, artifacts are displayed around the moving object
boundaries and/or occlusion regions. The proposed algorithm
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(2)

Fig. 7. HR estimates of the synthetic image sequence. (a) The referenced
LR image, (b) bilinear interpolation, (c) conventional MAP algorithm and
(d)—(g) the proposed algorithm with d = 0.15,d = 0.20,d = 0.25, and
d = 0.30, respectively.

makes an improvement that it is best described as a suppression
of these artifacts and achieves better results under the scenarios
of d = 0.20 and d = 0.25. The two reconstructed results are
almost indistinguishable visually. However, when d = 0.15,
the reconstructed image is too smooth around the motion
boundaries as too many pixels are labeled as unobservable and
are not considered in the reconstruction. On the other hand, the
artifacts are not effectively suppressed when d = 0.30 because
some real unobservable pixels are not excluded. Quantitative
measure agrees with the visual evaluation. PSNR values of
Fig. 7(b)—(g) are equal to 24.181, 28.951, 32.020, 32.397,
32.351, and 31.975 dB, respectively. Fig. 9 shows the evolution
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(b

(a)—(f) Detained regions cropped from Figs. 7(c)—(g) and 3(d), respec-
tively.

33
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Fig. 9. PSNRs versus the number of iterations in the synthetic image experi-
ment.

of the PSNRs for the proposed algorithm versus the number
of iterations. It is apparent that the proposed algorithm has a
slowest convergence when d = 0.15, and it is very unstable in
the case of d = 0.30.

B. “Mobile and Calendar” Sequence

In the second set of experiments, the “Mobile and Calendar”
sequence was used. These experiments differ from the first set
in three ways. First, subpixel motion vectors between image
frames are not defined explicitly any longer. They now corre-
spond to the inherent motion within the scene, as introduced by
the camera and the objects. Second, the motions are more com-
plicated: the background moves toward the right due to camera
pan; the calendar moves up and down; the train moves from right
to left; and there is even a revolving ball in the scene. Thirdly, a
3 X 3 Gaussian blur was considered in this set of experiments.
Although the frame size is 704 x 576 pixels in this sequence,
our processing was restricted to a typical 352 x 288 pixel re-
gion to reduce computational expense. The same parameter set
was used as in the case of the synthetic sequence except for that
v = A = 10%. The threshold d was set to be 0.25.

The initial and final motion estimates of frames 2 and 4 are
shown in Fig. 10. It can be found that improvement is obvious
after implementing the proposed algorithm. Visual judgment il-
lustrates that the final estimated motion vectors are more con-
sistent with the inherent motions than the initial values. Seg-
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d

Fig. 10. Motion estimates of the “Mobile and Calendar” sequence. (a) Initial
estimates of frame 2, (b) final estimates of frame 2, (¢) initial estimates of frame
4, and (d) final estimates of frame 4.

(d)

Fig. 11. Segmentation maps of the “Mobile and Calendar” sequence. (a) Initial
result of frame 2, (b) final result of frame 2, (c¢) initial result of frame 4, and
(d) final result of frame 4.

mentation maps corresponding to these motion estimates are il-
lustrated in Fig. 11. It can be similarly concluded that in the
“Mobile and Calendar” sequence, segmentation maps can also
be improved by applying the proposed algorithm. Fig. 12(a)—(d)
shows the bilinear interpolated image, the conventional MAP
reconstruction result, the result by the proposed cyclic coor-
dinate-descent algorithm, and the original HR image, respec-
tively. Detained regions cropped from Fig. 12(b)—(d) are shown
in Fig. 13(a)—(c), respectively. The computed PSNR values for
the bilinear, conventional and the proposed methods were equal
to 31.079, 33.513, and 34.979, respectively. Evidently, the pro-
posed algorithm outperforms the conventional MAP algorithm
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Fig. 12. HR estimates of the “Mobile and Calendar” sequence. (a) Bilinear
interpolation, (b) conventional MAP algorithm,(c) the proposed algorithm and
(d) the original HR image.

in terms of both the quantitative measurements and visual evalu-
ation. This once again validates the performance of the proposed
algorithm, which can suppress artifacts around motion bound-
aries and occlusion regions. The evolution of the PSNR on this
sequence is shown in Fig. 14. Due to the effects of the com-
plicated motions, the relative symmetrical tonality in the image
and the considered Gaussian blur, the increase of PSNR in the
iteration is not as large as that in synthetic sequence. Neverthe-
less, it is still a monotone increasing exponential curve.

C. “Motorcycle and Car” Sequence

In each of the two sets of experiments, the sequence is first
down sampled, and then the selected referenced frame is re-
constructed to the original dimensions using the proposed algo-
rithm. In the third set of experiments, we tested our algorithm
on an original sequence, the “Motorcycle and Car,” which was
captured using a commercial camera. Again, the processing was
restricted to a typical 260 x 130 pixel region to reduce compu-
tational cost. We used five frames with frame 3 (the referenced
frame) which is shown in Fig. 15(a). The parameters was set as:
A2 = 103, and v = (1/5)\2 = 2 x 102 for frame 2 and frame
4 and v = Xy = 103 for other two frames. The threshold d was
set to be 0.25 again. Fig. 15(b)-(d) shows the bilinear interpo-
lated image, the conventional MAP reconstruction result, and
the result by the proposed algorithm, respectively. It is apparent
the proposed algorithm obtained more desirable result than the
bilinear interpolation and the conventional MAP algorithm. The
motion field and segmentation field of frame 2 are, respectively,
shown in Figs. 16 and 17 as illustrative examples. To illustrate
the convergence behavior of the estimator, the MAP cost func-
tion in (15) is plotted in Fig. 18 against the iteration number.

VI. CONCLUSION

Reconstructing an HR image from several LR images using
SR techniques becomes complicated when the scenes contain
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Fig. 15. HR estimates of the “Motorcycle and Car” sequence. (a) Original LR
image (frame 3), (b) bilinear interpolation, (c) conventional MAP algorithm,
and (d) the proposed algorithm.

(b)

(c)

Fig. 13. (a)—(c) Detained regions cropped from Fig. 12(b)—(d), respectively.
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Fig. 14. PSNR versus the number of iterations in the experiment of “Mobile
and Calendar” sequence.

multiple independently moving objects. To address this chal-
lenge, we proposed a joint MAP formulation combining mo-
tion estimation, segmentation, and SR together. The formulation
is solved by a cyclic coordinate decent process that treats the
motion fields, segmentation fields, and HR image as unknowns
and estimates them jointly using the available data. The advan-
tage of this algorithm is that the motion estimates, segmenta-
tion maps and HR image can benefit each other. The proposed
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Fig. 16. Motion estimates of frame 2 of the “Motorcycle and Car” sequence.

Fig. 17. Segmentation map of frame 2 of the “Motorcycle and Car” sequence.
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Fig. 18. Cost function value versus the number of iterations in the experiment
of the “Motorcycle and Car” sequence.

algorithm was tested on a synthetic image sequence, the “Mo-
bile and Calendar” sequence and the original “Motorcycle and



SHEN et al.: MAP APPROACH FOR JOINT MOTION ESTIMATION

Car” sequence. Experiment results validated that motion esti-
mates and segmentation maps can be noticeably improved by
implementing this algorithm. Moreover, the proposed algorithm
suppresses artifacts around motion boundaries and occlusion
regions and provides more desirable reconstructed HR image
when compared with the conventional algorithm. Nevertheless,
there may still be room for the improvement of our optimal
method to increase the computational efficiency. Using more ro-
bust regularizations for the image and/or the motion field—e.g.,
Huber [15], total variance (TV) [43], and bilateral-TV [44],
[45]—may further improve the SR results. These will be ad-
dressed in our future work.
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