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A B S T R A C T   

High-quality cirrus removal plays a crucial role in remote sensing data analysis. Cirrus parallaxes are commonly 
observed within the vicinity of cirrus clouds in the visible and near-infrared (VNIR) bands of Landsat 8/9 images. 
Cirrus parallaxes have a nonnegligible effect on cirrus removal, but the existing methods do not account for the 
correction of parallaxes. Meanwhile, large-scale image processing involves intensive computation that requires 
extensive computing time. To address the effect of cirrus parallaxes and the low processing efficiency, we pro-
pose a fast and robust cirrus removal (FRCR) method. FRCR has achieved the first realization of the statistics law 
of cirrus parallax between the VNIR and cirrus bands, thus realizing the cirrus parallax correction. In addition, 
FRCR introduces an automatic sampling method to obtain the regression samples for practicality. Then, a 
Compute Unified Device Architecture (CUDA) based Newton method with constraints is introduced to parallelize 
the computation, to improve the computational performance. Experiment results of various scenarios demon-
strate that the FRCR method can achieve high-quality cirrus removal by eliminating cirrus parallaxes, and 
significantly improving computational performance.   

1. Introduction 

Cirrus clouds, as a typical type of optically thin cloud(Meyer et al., 
2004; McHardy et al., 2022), are composed of ice crystal particles and a 
small number of gas molecules (Dowling and Radke, 1990). Cirrus cloud 
is partly transparent and difficult to detect with common broadband 
multispectral sensors (Richter et al., 2011). Various radar-based detec-
tion methods (Sassen and Cho, 1992; Winker et al., 2007; Young et al., 
2018; McHardy et al., 2022) have been proposed to detect cirrus clouds, 
providing a reliable database for meteorological studies worldwide. 
Additionally, some multispectral remote sensing satellite sensors are 
equipped with the cirrus band (Dessler and Yang, 2003; Drusch et al., 
2011; Zanter, 2016; Masek et al., 2020). Since the absorption and 
scattering of ice crystals by cirrus cloud modulates the transportation of 
radiation through the Earth’s atmosphere, the atmospheric effect can 
cause inaccurate or deceptive analysis of land surface and environ-
mental observations(Xu et al., 2014). Therefore, cirrus removal is 
essential for enhancing the quality of satellite images. 

There have been many methods developed for removing thin clouds, 
including the subtraction methods of dark objects (Chavez, 1988; 
Makarau et al., 2014), the methods based on image transformation 

(Chen et al., 2015; He et al., 2010; Zhang et al., 2002), and frequency 
domain filtering methods (Du et al., 2002; Mitchell et al., 1977; Shen 
et al., 2014). In the field of dark target methods, Chavez (1988) counted 
the lowest reflectance value in the whole image band by band and 
subtracted it from the corresponding band, treating it as the thin cloud 
interference, so that the radiance bias caused by the cloud could be 
eliminated and the actual surface reflectance could be obtained. The 
most well-known image transformation-based method is haze-optimized 
transformation (HOT) (Zhang et al., 2002). HOT found that the red and 
blue bands of the images have a strong linear correlation when the sky is 
clear, and that this relationship breaks down when clouds are present. 
Therefore, it is possible to achieve thin cloud removal by adjusting the 
cloud pixels to a clear skyline. As for the frequency domain filtering 
methods, they treat clouds as low-frequency noise. For example, Shen 
et al. (2014) used homomorphic filtering to suppress the low-frequency 
features that reflect the cloud component while enhancing the high- 
frequency features that reflect the surface information. However, 
accurately estimating the reflectance of thin clouds in the visible and 
near-infrared (VNIR) spectral bands remains a significant challenge in 
remote sensing. This is primarily due to the complex and diverse nature 
of thin cloud composition. Thin clouds are often a complex 
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amalgamation of different cloud types, characterized by multifaceted 
and complicated attributes. 

Recently, some methods for removing cirrus clouds have been 
developed by utilizing the cirrus band, which is the band carried by 
optical satellites for detecting cirrus clouds, with a central wavelength of 
1.38 μm and strong water vapor absorption properties(Gao et al., 1993). 
In general, estimating cirrus reflectance in each band by assuming a 
linear relationship among bands is common in traditional cirrus removal 
methods (Gao et al., 1998; Gao et al., 2002; Xu et al., 2014; Lv et al., 
2016). However, these methods are limited by homogeneous scenarios 
and linear fitting sample selection. There are also methods for image 
transformation, mainly integrating VNIR bands with the cirrus band, 
and using component analysis techniques to separate the cloud 
component components to be used for cirrus removal (Shen et al., 2015; 
Xu et al., 2019), such as Shen et al. (2015) proposed an independent 
component analysis (ICA) based method to correct for thin clouds. Xu 
et al. (2019) proposed a thin cloud removal method based on a noise- 
adjusted principal components transform (CR-NAPCT) model. Howev-
er, the methods lack an explicit physical property, and the performance 
is not satisfactory in some complex scenarios, sometimes the post- 
process may be required to obtain satisfactory results in cirrus 
removal. For the consideration of scattering law and applicability of 
cirrus removal methods, Zhang et al. (2021) proposed a scattering law- 
based cirrus correction (SLCC) method, which couples band correlation 
with a scattering model to achieve high-fidelity removal of thin cirrus 
cloud. The SLCC method is suitable for almost all thin cirrus removal 
scenarios and has a high degree of universality. The SLCC method is 
suitable for almost all thin cirrus removal scenarios and has a high de-
gree of universality. However, this method does not take into account 
the impact of cirrus parallax. It uses a pixel-by-pixel solution to the 
parameters but does not consider an effective means of optimization, 
resulting in low efficiency when processing the whole image. 

Various methods have been developed to remove cirrus clouds, but 
their efficiency and parallax correction still need to be investigated. 
Aiming at low-efficiency issues, Graphics processing units (GPUs) are 
designed for image processing and have a large number of parallel 
processing units (typically hundreds to thousands), which provide 
excellent performance when processing large amounts of data (Lind-
holm et al., 2008; Nickolls and Dally, 2010; Owens et al., 2008). GPU- 
based parallel computing has recently been used to improve the 
computational efficiency for remote sensing data, such as synthetic 
aperture radar (SAR) simulation (Balz and Stilla, 2009), image classifi-
cation (Wu et al., 2015; Wu et al., 2017), hyperspectral unmixing (Plaza 
et al., 2011; Jaramago et al., 2019), and spatio-temporal data fusion 
(Gao et al., 2022; Yang et al., 2022). These are all large and intensive 
computing tasks that are suitable for parallel processing. For example, 
Plaza et al. (2011) developed a high-performance hyperspectral 
unmixing technique based on a GPU platform. GPU-based parallelism 
has since become indispensable in improving the computational effi-
ciency in remote sensing. 

Besides the low efficiency, another issue is the absence of correction 
for cirrus parallaxes. Cirrus parallaxes have a significant effect on thin 
cirrus removal methods (Richter et al., 2011; Gao and Li, 2017; Zhang 
et al., 2023). It has been found even the presence of 1 pixel of cirrus 

parallax can degrade the cloud removal quality. (Richter et al., 2011). 
Therefore, correcting for cirrus parallax is essential to achieve a high- 
quality thin cirrus removal. 

In this study, to address the above issues of cirrus parallax, method 
inefficiency, and practicality, we proposed a fast and robust cirrus 
removal (FRCR) method that considers not only the parallaxes but also 
the computational performance. Firstly, we further developed the 
physical scattering model and utilized statistical methods to count the 
cirrus parallax laws of Landsat 8 Operational Land Imager (OLI) (Zanter, 
2016) and Landsat 9 Operational Land Imager-2 (OLI-2) (Masek et al., 
2020) data, thus completing the correction of cirrus parallaxes. Sec-
ondly, we introduced an automatic sampling method based on a box plot 
to enhance the usability of the cirrus removal method. Then, we pro-
posed a Compute Unified Device Architecture (CUDA) based Newton 
method with constraints to solve parameters for parallelizing intensive 
computation to enhance computational efficiency. Finally, a fast, robust, 
and high-quality cirrus removal method for remote sensing images was 
achieved. 

2. Data 

The study used Landsat 8 OLI data and Landsat 9 OLI-2 data. For 
simplicity, Landsat 8/9 OLI will be used throughout the paper. Landsat 
8/9 OLI data can be obtained from the U.S. Geological Survey (USGS; 
https://earthexplorer.usgs.gov), which consists of nine spectral bands, 
including a pan band. In this study, the VNIR and cirrus bands were 
mainly used, including coastal aerosol band (0.435–0.451 µm), blue 
band (0.452–0.512 µm), green band (0.533–0.590 µm), red band 
(0.636–0.673 µm), near-infrared band (0.851–0.879 µm), and cirrus 
band (1.363–1.384 µm). The top-of-atmosphere (TOA) reflectance is 
effective in minimizing the disparities between scenes and adjusting for 
the shape of the solar spectrum to amplify the spectral contrasts between 
cloud spectra and other end elements (Chander et al., 2009). TOA 
reflectance can be calculated using the equation provided in the official 
User’s Handbook (Zanter, 2016). The satellite view azimuth angle data 
is also used which could be obtained from the Landsat 8/9 Collection 2 
Level-1(C2 L1) products, e.g., LC08_L1TP_089083_20131004_20 
200912_02_T1_ANG.txt. This file contains per-pixel solar and sensor 
azimuth and zenith values of each spectral band. 

Quantitatively evaluating cloud removal methods is challenging due 
to the difficulty of obtaining both cloudy and cloud-free images of the 
same scene simultaneously (Xu et al., 2015). Therefore, we assumed that 
there was little feature variation between adjacent time phases of cloud- 
free and cloudy images, with only the atmospheric conditions differing. 
Four different scenes, consisting of both cloudy and cloud-free images 
acquired during adjacent time phases, were selected as the experimental 
data, as shown in Table 1, where cloud-free images are reference images. 

3. Methods 

3.1. Scattering law-based cirrus removal 

The cloudy image model can be expressed simply as follows (Chavez, 
1988; Xia et al., 2018; Zhang et al., 2021): 

ρ*(λ) = ρc(λ)+ ρ(λ)⋅Tc(λ) (1)  

where ρ* is the cloudy image TOA reflectance, λ is the band central 
wavelength, ρc(λ) is the cirrus reflectance, ρ(λ)is the reflectance of the 
ground under the cirrus cloud, and Tc(λ) is the two-way transmittance 
through the cirrus cloud. To obtain a clean image, it is necessary to 
calculate ρc(λ) and Tc(λ). Tc is typically greater than 0.9, which can be 
approximated as 1(Gao et al., 1998; Richter et al., 2011). Therefore, it is 
only necessary to compute ρc(λ) to obtain the cloud-free image ρ(λ). 

To solve ρc(λ), we introduce the Angstrom exponent (Gordon and 
Wang, 1994; Mao et al., 2013) to express the relationship between the 

Table 1 
Landsat 8/9 OLI experimental data.  

Scene Path/row Image type Acquisition date Country 
1 89/83 Cloudy image 2013–10-04 Australia   

Reference image 2013–09-18  
2 119/38 Cloudy image 2021–01-14 China   

Reference image 2021–01-30  
3 123/39 Cloudy image 2021–11-26 China   

Reference image 2021–11-10  
4 129/43 Cloudy image 2020–01-02 China   

Reference image 2020–01-18   
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cirrus reflectance and wavelength in each band, as shown in Eq. (2): 

ρc(λi) =

(
λj

λi

)γ

⋅ρc
(
λj
)

(2)  

where i or j is the band number, belonging to 1, 2, 3, 4, 5, or 9, γ rep-
resents the Angstrom exponent related to the atmospheric state, 
belonging to [0, 4] (Chavez, 1988), where 0 is very cloudy and 4 is very 
clean. 

The atmospheric state is spatially the same for a pixel, so γ can be 
considered a constant for the Landsat 8/9 VNIR and cirrus bands. Hence, 
given the knowledge of the cirrus reflectance in band i, it is possible to 
determine the cirrus reflectance in band j. In general, when cirrus clouds 
are present, the ground reflectance in the cirrus band is almost zero (Gao 
et al., 1993; Zhang et al., 2021), so ρ*(λ9) is equal to ρc(λ9). Therefore, 
the cirrus reflectance for each band i can be calculated according to Eq. 
(3). 

ρc(λi) =

(
λ9

λi

)γ

⋅ρc(λ9) (3) 

Fig. 1. The flowchart of the FRCR method.  

Table 2 
Device and Software Information.   

Specification Details 

CPU Processor number Intel Core i7-9700 K 
Processor base frequency 3.60 GHz 
Cores 8 
Memory 64 GB 

GPU Graphics card NVIDIA GeForce RTX 2070 
GPU architecture Turing 
Compute capability 7.5 
Maximum threads per block 1024 
Maximum number of threads per SM 1024 
Memory bus width 256-bit 
Clock rate 1.65 GHz 
Memory clock rate 7001 MHz 
CUDA version 11.6 
CUDNN version 8.8.0  

Fig. 2. (a)The OLI sub-image shown in RGB (path = 89, row = 83, acquisition date = 20131004, R = Band 4, G = Band 3, B = Band 2). (b)Coastal aerosol band, (c) 
Blue band, (d)Green band, (e)The Red Band, (f)Near-Infrared band, (g)Cirrus band. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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Therefore, it is crucial to find out how to solve for γ. A coupled band 
relationship and scattering model (Zhang et al., 2021) was proposed for 
solving γ. This is because the Landsat 8/9 OLI coastal aerosol band is 

similar in wavelength to the blue band, and there is a sharp linear cor-
relation in the cloud-free land surface region (Lv et al., 2016; Zhang 
et al., 2021), as follows, 

Fig. 3. (a)Cirrus position in a VNIR band (dashed line) and cirrus band (solid line), respectively, (b)Position of the cirrus after correction to the left, (c)The position of 
cirrus in the corrected VNIR band and cirrus band. 

Fig. 4. (a)Landsat 8/9 OLI original satellite view azimuth angle data, (b)Results of l8_angles processing(c)Index map of odd–even SCAs.  

Fig. 5. The cloudy image, cirrus removal results for each method and cloud-free image of adjacent time phase in Scene 1 sub-image shown in RGB, (a)Cloudy image, 
(b)ICA. (c) CR-NAPCT, (d)SLCC, (e)FRCR, (f)Cloud-free reference image, (g)–(k)denote the zoomed red region of Fig. 5, (b)–(f). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 
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ρ(λ1) = a⋅ρ(λ2)+ b (4)  

where λ1 represents the coastal aerosol band, λ2 represents the blue 
band, a and b represent the coefficients of the linear regression. Then, 
the following equations can be obtained. 

ρ*(λ1) = ρc(λ1)+ ρ(λ1)

ρ*(λ2) = ρc(λ2)+ ρ(λ2)

ρc(λ1) =

(
λ9

λ1

)γ

⋅ρc(λ9)

ρc(λ2) =

(
λ9

λ2

)γ

⋅ρc(λ9) (5) 

Combining Eqs. (4) and (5), γ can be solved by a two-sided approx-
imation method with a step size of 0.01 (Zhang et al., 2021), but it is 
time-consuming to solve for all the image pixels. 

Table 3 
Quantitative evaluation of cirrus removal results for each sub-scene data.  

Scene Method SAM SSIM 
Band 1 Band 2 Band 3 Band 4 Band 5 Band 1 Band 2 Band 3 Band 4 Band 5 

1 Cloudy  0.0886  0.1076  0.1273  0.1575  0.0787  0.9901  0.9858  0.9794  0.9690  0.9693 
ICA  0.1182  0.4039  1.8341  2.1510  0.2939  0.6480  0.3585  − 0.1593  − 0.5322  0.6776 
CR-NAPCT  0.0484  0.0650  0.0967  0.1728  0.1737  0.9950  0.9925  0.9796  0.9341  0.7769 
SLCC  0.0414  0.0566  0.0723  0.1036  0.0719  0.9972  0.9963  0.9957  0.9921  0.9745 
FRCR  0.0365  0.0494  0.0718  0.1025  0.0721  0.9985  0.9978  0.9959  0.9920  0.9744 

2 Cloudy  0.1414  0.1591  0.1768  0.1935  0.1780  0.9756  0.9697  0.9629  0.9463  0.9234 
ICA  0.0584  0.0725  0.0935  0.1183  0.1575  0.8810  0.8560  0.8226  0.7887  0.8006 
CR-NAPCT  0.0514  0.0707  0.0918  0.1258  0.1583  0.9797  0.9739  0.9707  0.9652  0.9440 
SLCC  0.0583  0.0734  0.0888  0.1180  0.1417  0.9884  0.9850  0.9841  0.9744  0.9461 
FRCR  0.0570  0.0701  0.0888  0.1176  0.1412  0.9910  0.9884  0.9850  0.9751  0.9466 

3 Cloudy  0.1132  0.1388  0.1718  0.2305  0.1350  0.9801  0.9731  0.9672  0.9396  0.9434 
ICA  0.0492  0.0742  0.1307  0.2461  0.1509  0.8554  0.8088  0.7614  0.6544  0.8986 
CR-NAPCT  0.0556  0.0741  0.1003  0.1547  0.1233  0.9913  0.9885  0.9876  0.9733  0.9469 
SLCC  0.0411  0.0572  0.0752  0.1251  0.1187  0.9948  0.9934  0.9935  0.9831  0.9490 
FRCR  0.0358  0.0497  0.0740  0.1233  0.1185  0.9958  0.9946  0.9935  0.9828  0.9493 

4 Cloudy  0.1555  0.1848  0.2040  0.2645  0.2775  0.8980  0.8784  0.8766  0.8462  0.7079 
ICA  0.1013  0.1233  0.1395  0.2386  0.4249  0.9631  0.9546  0.9544  0.8745  0.5992 
CR-NAPCT  0.0922  0.1104  0.1233  0.1554  0.2179  0.9747  0.9632  0.9454  0.9531  0.7687 
SLCC  0.0951  0.1152  0.1245  0.1594  0.1984  0.9809  0.9761  0.9730  0.9549  0.7912 
FRCR  0.0872  0.1088  0.1230  0.1408  0.1959  0.9843  0.9805  0.9738  0.9579  0.7954  

Fig. 6. The cloudy image, cirrus removal results for each method and cloud-free image of adjacent time phase in Scene 2 sub-image, (a)Cloudy image, (b)ICA, (c)CR- 
NAPCT, (d)SLCC, (e)FRCR, (f)Cloud-free reference image, (g)–(k)denote the zoomed red region of Fig. 6. (b)–(f). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 

T. Jiang et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103691

6

3.2. Proposed fast and robust cirrus removal (FRCR) method 

The implementation of the FRCR method is described in this section. 
There are three main steps in the FRCR method, as shown in Fig. 1, 
which are: 1) an automatic sampling method based on box plots has 
been introduced as a replacement for manual sampling in regression 
analysis; 2) the solution for γ is reconstructed using the Newton method 
based on the CUDA, which is an NVIDIA-developed parallel computing 
model (https://developer.nvidia.com/cuda-toolkit) for general GPU 
computation and parallelization; and 3) the proposed method takes into 
account the cirrus parallaxes and uses a statistical method to count the 
cirrus parallax law, and then the law is employed to correct the cirrus 
parallax for VNIR bands based on the cirrus band. 

3.2.1. Box-plot-based automatic sampling 
It is recognized that the coastal aerosol bands of OLI data have 

similar wavelengths to the blue band, and they show a strong linear 
relationship at the cloud-free land surface regions. Nonetheless, the 
correlation between the two bands varies considerably among images. 
Cloud-free pixels should be selected as samples for all Landsat 8/9 image 
processing. In general, the regression samples are usually selected 
manually to ensure diversity and homogeneity of pixels. However, we 
propose an empirical threshold filtering method based on box plots to 
obtain accurate samples automatically. The method initially sets an 
empirical threshold (τ) for the TOA reflectance value for the cirrus band, 
where pixels larger than τ are considered cloudy; otherwise, they are 
considered cloud-free. It was determined from comprehensive statistical 
analysis in this study that by setting τ equal to 0.0012, more accurate 
and cleaner pixels can be acquired. Then, according to the threshold, we 

segment the cirrus band into cloudy and cloud-free areas, where the 
cloudy area is recorded as logical value 1, and the cloud-free area is 
recorded as 0. Consequently, the cloudy and cloud-free index map 
consists of logical values 0 and 1. Initial sample data S′ can be derived 
from this map. Furthermore, we utilize the box plot method to clean S′. 
The upper and lower whiskers of the box plot are recognized as the limits 
of the data distribution. The data over the upper or lower whiskers are 
outliers and need to be eliminated. Therefore, the final sample S is ob-
tained. Finally, we introduce robust linear regression (Holland and 
Welsch, 1977) to fit S to obtain a and b. 

3.2.2. Cuda-based parallel Newton method for solving γ 
In contrast to the fixed-step iterative solution, we further derive Eq. 

(5) as Eq. (6) and introduce the Newton method to solve γ as follows: 

a⋅
(

λ9

λ2

)γ

−

(
λ9

λ1

)γ

=
a⋅ρ*(λ2) + b − ρ*(λ1)

ρc(λ9)
(6)  

where a and b can be obtained in Eq. (4), and then it is only necessary to 
solve for γ. 

Based on Eq. (6), the function F(γ) can be constructed in terms of γ, 
where γ belongs to [0,4]. It can be seen from Eq. (7) that F(γ) contains 
two exponential functions and a constant. The Newton method is used to 
solve for the optimal γ value, which is an iterative optimization algo-
rithm for solving nonlinear equations or optimization problems with fast 
convergence and global search capability. 

F(γ) = a⋅
(

λ9

λ2

)γ

−

(
λ9

λ1

)γ

−
a⋅ρ*(λ2) + b − ρ*(λ1)

ρc(λ9)
(7) 

Fig. 7. The cloudy image, cirrus removal results for each method and cloud-free image of adjacent time phase in Scene 3 sub-image, (a)Cloudy image, (b)ICA, (c)CR- 
NAPCT, (d)SLCC, (e)FRCR, (f)Cloud-free reference image, (g)–(k)denote the zoomed red region of Fig. 7. (b)–(f). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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When F(γ) = 0, it is possible to obtain the first-order derivative 
Taylor expansion of F(γ). 

F(γ) = F(γ0)+F′(γ0)(γ − γ0) (8) 

It is usually assumed that γ1 is closer to the solution F(γ) = 0 than γ0, 
and the next iteration is started with γ1. The iteration formula can be 
simplified as follows: 

γn+1 = γn −
F(γn)

F′(γn)
(9)  

s.t. γn+1 = max(0,min(4, γn+1) ) and 0 ≤ γn+1 ≤ 4 (10) 

The primary objective of parallel implementation is to transfer the 
time-intensive components to the GPU execution. In addition, it is 
necessary to pay attention to the optimization and allocation of memory, 
reducing the input and output (I/O) transfer frequency between the 
central processing units (CPUs) and the GPUs (Wu et al., 2017). As the 
atmospheric state constant γ varies for each pixel, it is essential to solve 
for γ pixel by pixel, and the solutions corresponding to each pixel are 
independent. However, this is time-consuming for the whole Landsat 8/ 
9 image processing in CPUs. In this study, we found that the best 
approach was to assign the computation of each pixel to a separate 
thread to achieve a parallel solution for each image pixel and improve 
the efficiency of the method. Thus, we designed a GPU-based parallel 
Newton method for solving γ. The method pseudocode is shown in Al-
gorithm 1.  

Algorithm 1. CUDA-based parallel Newton method for solving γ 

Input: TOA of Coastal band ρ*(λ1), TOA of Blue band ρ*(λ2), TOA of Cirrus band 
ρ*(λ9), center wavelength of Coastal band λ1, Blue band λ2 and Cirrus band λ9, 
Linear fitting parameters a, b 

Output: Atmospheric state constant γ 

(continued on next column)  

(continued ) 

Algorithm 1. CUDA-based parallel Newton method for solving γ 

Initialisation: maxIterations←100, γ0←2.0, ∊←1e − 6 
For each pixel do 
col←threadIdx.x + blockIdx.x× blockDim.x; 
row←threadIdx.y + blockIdx.y× blockDim.y; 
If (col < width) and (row < height) then 
tid←col + row× width; 
//Allocation of shared memory based on wrap 
ρ*

shared(λ1)[32][32]; ρ*
shared(λ2)[32][32]; ρ*

shared(λ9)[32][32]; 
//Load frequently used arrays into shared memory to minimise global memory 

accesses 
ρ*

shared(λ1)[threadIdx.y][threadIdx.x]←ρ*(λ1)[tid]; 
ρ*

shared(λ2)[threadIdx.y][threadIdx.x]←ρ*(λ2)[tid]; 
ρ*

shared(λ9)[threadIdx.y][threadIdx.x]←ρc(λ9)[tid];
synchronize threads within the block 
Fori←0tomaxIterationsdo 

f←F

⎛

⎜
⎜
⎜
⎜
⎜
⎝

γ0, a, b, λ1, λ2, λ9,

ρ*
shared(λ1)[threadIdx.y][threadIdx.x],

ρ*
shared(λ2)[threadIdx.y][threadIdx.x],

ρ*
shared(λ9)[threadIdx.y][threadIdx.x]

⎞

⎟
⎟
⎟
⎟
⎟
⎠

; 

f′←F′(γ0, a, λ1, λ2, λ9); 
Δγ0←f/f′; 
γ0←γ0 − Δγ0; 
γ0←max(0,min(4, γ0) ); 
If Δγ0 < ∊ then 
break; 
γ[threadId]←γ0;  

The main parts of Algorithm 1 are as follows  

1) Optimization of the memory I/O transfers: In this study, we focused 
on optimizing the data communication between the CPU and GPU to 
minimize the data transfer overhead. Once the data were in the GPU, 

Fig. 8. The cloudy image, cirrus removal results for each method and cloud-free image of adjacent time phase in Scene 4 sub-image, (a)Cloudy image, (b)ICA, (c)CR- 
NAPCT, (d)SLCC, (e)FRCR, (f)Cloud-free reference image, (g)–(k)denote the zoomed red region of Fig. 8. (b)–(f). (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.) 
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we used the shared memory mechanism to cache frequently accessed 
arrays, thereby reducing the frequency of the global memory ac-
cesses. This optimization strategy improves the execution efficiency 
of GPU kernels.  

2) Dynamic allocation of kernel function threads: From a hardware 
perspective, the streaming processor (SP), which is also called the 
CUDA core, is the fundamental processing unit of a GPU. The 
streaming multiprocessor (SM) is assembled utilizing several CUDA 
cores, where CUDA cores in each SM are related to the GPU 

architecture, with a count of 1024 CUDA cores per SM for the Turing 
architecture examined in this study, as shown in Table 2. A single- 
instruction multiple-thread (SIMT) architecture is utilized by the 
SM, with a warp (a bundle of threads) serving as the fundamental 
execution unit. Each warp carries out identical instructions with 
varying data resources across 32 parallel threads. Considering that 
the standard size of a warp is 32, blocks typically consist of a multiple 
of 32 threads. The maximum thread number per block is 1024, if 
block.x of a block is 1024, then block.y must be 1, and vice versa. In 
other cases, ensuring that a multiple of 32 is advisable. To execute a 

Fig. 9. The cloudy image, cirrus removal results for each method and cloud-free image of adjacent time phase in the whole Scene 4 image, (a)Cloudy image, (b)ICA, 
(c)CR-NAPCT, (d)SLCC, (e)FRCR, (f)Cloud-free reference image, (g)–(k)denote the zoomed red region of. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 

Table 4 
Quantitative evaluation of cirrus removal results for the whole scene 1 image.  

Scene Method SAM SSIM 
Band 1 Band 2 Band 3 Band 4 Band 5 Band 1 Band 2 Band 3 Band 4 Band 5 

1 Cloudy  0.1627  0.2125  0.3133  0.4301  0.2941  0.9842  0.9779  0.9622  0.9378  0.8485 
ICA  0.0943  0.1376  0.2538  0.3917  0.3008  0.9870  0.9816  0.9666  0.9383  0.8191 
CR-NAPCT  0.1261  0.1757  0.2857  0.4208  0.2969  0.9859  0.9803  0.9677  0.9469  0.8613 
SLCC  0.0995  0.1443  0.2523  0.3788  0.2835  0.9889  0.9847  0.9744  0.9572  0.8704 
FRCR  0.0934  0.1382  0.2482  0.3762  0.2834  0.9893  0.9851  0.9745  0.9583  0.8722  

Table 5 
Time to solve γ for data of different sizes (unit: seconds).  

Methods 400 ×
400 

800 ×
800 

1600 ×
1600 

3200 ×
3200 

Raw 
Size 

SLCC  2.553  8.634  39.517  163.273  816.629 
FRCR  0.621  2.411  9.777  39.155  152.185 
FRCR (with 

OpenMP)  
0.208  0.588  1.654  6.599  23.072 

FRCR (with 
GPU)  

3.74E-04  1.62E-03  5.42E-03  1.67E-02  0.111  

Table 6 
Total runtime of the program for data of different sizes (unit: seconds).  

Methods 400 ×
400 

800 ×
800 

1600 ×
1600 

3200 ×
3200 

Raw size 

ICA  0.919  28.557  50.863  115.049  2516.491 
CR- 

NAPCT  
0.131  0.478  1.832  7.932  51.750 

SLCC  2.696  9.696  40.807  167.312  832.766 
FRCR  0.285  0.416  0.918  2.824  18.255  
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kernel function on the GPU, only one grid can be used, where thread 
block numbers called in this grid are correlated with the input data, 
and calculated as grid.x = (width+block.x − 1)//block.x, and grid.y =

(height+block.y − 1)//block.y, where the width and height are the 
columns and rows of the input data, respectively.  

3) Parallel implementation for solving γ: The method unrolls the pixel 
loop, allocating each pixel to a thread in the thread blocks within the 
employed GPU grid. Since the input data size determines the threads 
initialized by the kernel, it is ensured that each element of the image 
is assigned to a thread, resulting in parallelization. 

3.2.3. Statistics laws and correction of cirrus parallaxes 
The parallax problem is usually because different spectral bands are 

set up within the focal plane module, and each spectral band is viewed at 
a different angle, causing them to be biased when recording the same 
ground feature (Richter et al., 2011; Gao and Li, 2017). A cirrus parallax 
image is unfolded band by band, and then the shape and position of the 
cirrus clouds on each band are observed and analyzed, as shown in 
Fig. 2. It can be found that the cirrus parallax is especially obvious in the 
presence of sharp cloud edges, and the cirrus parallax problem is mainly 
caused by different cirrus positions in various bands of the OLI image 
(Zhang et al., 2023), as can be seen in Fig. 2(b)–(f). Thus, this study 
simplifies the problem of cirrus parallax. The impact of cirrus clouds on 
different spectral bands decreases as the VNIR wavelength increases, 
resulting in distinct cirrus shapes and positions. The defference in cirrus 
clouds between different bands is considered cirrus parallax. 

Fig. 2(g) shows the cirrus band of the OLI data, designed for cirrus 
cloud detection. However, a misalignment is observed mainly in the 
high-altitude cloud region, attributed to OLI sensor settings. The Landsat 
8/9 OLI detector consists of fourteen Sensor Chip Assemblies (SCAs), 
including seven identical pairs of odd–even SCAs (Zanter, 2016). 
Overlapping regions exist between adjacent odd–even SCAs, however, 
the misalignment is primarily a result of the differing cirrus cloud po-
sitions in neighboring odd–even SCAs within the cirrus bands. Looking 
closely at Fig. 2(g), it is apparent that compared to the cirrus clouds in 
the visible bands, the position of the cirrus clouds on both sides of this 
strip is slightly lower on the left and slightly higher on the right. 

Cirrus parallax correction is significant but challenging with model- 
based methods. To address the parallax issue, we divided the whole 
scene image into 14 image strips, including seven odd and seven even 
image strips. In this study, we adopted statistical methods to count the 
parallax laws based on the cirrus band between the VNIR and cirrus 
bands to correct the cirrus parallaxes. Then, it was found that there are 
two opposite cirrus parallax laws in an image, i.e., the cirrus parallax 
laws between VNIR and cirrus bands of the odd SCAs are opposite to that 
of the even SCAs. Since the types of pixels in the visible bands are very 
complex, the most effective approach is to correct the cirrus band ac-
cording to parallax laws. Then, for each visible band, the new corre-
sponding corrected cirrus band can be obtained. 

Fig. 3 shows the process of parallax correction. Fig. 3(a) is the offset 
of the cirrus cloud position within the cirrus band from the cirrus cloud 
position within the VNIR band initially. Fig. 3(b) is the result after the 
cirrus band has been corrected to the left. Fig. 3(c) represents the final 
result after the cirrus band has been corrected. It should be noted that 
the near-infrared band is less affected by the thin cirrus cloud and that 
parallax occurs mostly in the visible bands so parallax correction is not 
required for the near-infrared band. 

Because the parallax laws are related to the odd–even SCAs, the 
index map of the SCAs must be known if we want to achieve high-quality 
cirrus removal for whole remote sensing imagery. However, no standard 
index data are provided on the USGS website. Furthermore, processing a 
whole OLI image is a considerable challenge. To overcome this limita-
tion, we found that the distribution of the satellite view azimuth angle 
(VAA) data provided by the USGS is similar to the SCA index map, as 
shown in Fig. 4(a). Then, we processed the angle coefficient file using 
the Landsat 8/9 angle calculation tool (l8_angles, https://landsat.usgs. 

gov/sites/default/files/documents/L8_ANGLES_2_7_0.tgz), provided on 
the official website. Since our purpose was to obtain the index map of 
the SCAs, we modified the tool to set the satellite azimuth calculation to 
1. The initial index results for all SCAs can be obtained as Fig. 4(b), 
where the white area is 5730, the overlapping area is 2865 (the gray 
area) and the black area is 0. For the SCA overlapping area, there is no 
need to perform cirrus correction, so in this study, we set the value of 
2865 to 0 to make it the same as the background value, and the value of 
5730 was set to 1. The SCAs could be labeled as 1 to 14 regions using the 
connectivity principle. The connectivity regions were labeled as odd 
numbers for the odd SCAs and even numbers for the even SCAs. The final 
index map has three unique values, as shown in Fig. 4(c), where 0 is the 
background and SCA overlap of the image, appearing in black, 1 is the 
index for the odd SCA, appearing in gray, and 2 is the index for the even 
SCA, appearing in white. 

4. Experiments 

4.1. Comparison of cirrus removal results 

To validate the effectiveness of the FRCR method, ICA(Shen et al., 
2015), CR-NAPCT(Xu et al., 2019), and SLCC(Zhang et al., 2021) were 
also selected for comparison. It should be noted that CR-NAPCT uses a 
mask to segment the whole image and addresses cloudy pixels. The 
corrected pixels were combined with cloud-free pixels. In practice, we 
find a color disparity between cloud-free and corrected pixels. There-
fore, we use a Poisson fusion method to post-process CR-NAPCT results. 
We calculate the cloud removal and reference pixels and assess the 
methods using the spectral angle mapper (SAM) (Yuhas, 1992) and 
structure similarity index measure (SSIM) (Wang et al., 2004). The SAM 
value is in the range [0, 1], the smaller the SAM, the higher spectral 
similarity; the SSIM value is in the range [-1,1], and the larger the SSIM, 
the higher the image structure consistency. Cloud-free images of adja-
cent time phases are selected as reference data. SAM and SSIM evaluate 
the spectral similarity and structural consistency between images. 

Four Landsat 8/9 OLI sub-images showcasing diverse surface fea-
tures were chosen for experiments, as demonstrated in Fig. 5(a) to Fig. 8 
(a). The cirrus removal results show that the cirrus clouds have been 
removed from the cloudy images. However, predominantly blue-violet 
parallaxes remain in the results, except for the FRCR results. Accord-
ing to the zoomed result (the geographic area in red box) displayed, the 
effect of cirrus parallaxes is effectively eliminated by FRCR. However, 
the residual cirrus parallax is noticeable in the results of the other three 
methods. From the visual perspective, the FRCR results are smoother 
and show clearer surface information. 

Table 3 lists the quantitative evaluation of cirrus removal results for 
all methods, where the optimal results are in bold. In most cases, the ICA 
method performs poorly. The FRCR method outperforms the other 
methods in all the scenes. The SAM results shown in Fig. 5 are 0.1119 
(cloudy vs. reference), 0.9602 (ICA vs. reference), 0.1113 (CR-NAPCT 
vs. reference), 0.0692 (SLCC vs. reference), and 0.0665 (FRCR vs. 
reference). The SAM results shown in Fig. 6 are 0.1698, 0.1000, 0.0996, 
0.0960, and 0.0950, respectively. The SAM results shown in Fig. 7 are 
0.1579, 0.1302, 0.1016, 0.0835, and 0.0802, respectively. The SAM 
results shown in Fig. 8 are 0.2172, 0.2055, 0.1398, 0.1385, and 0.1311, 
respectively. The lowest SAM values of 0.0665, 0.0950, 0.0802, and 
0.1311 indicate that the spectral similarity between the cirrus removal 
results obtained using FRCR and the reference is better than that of the 
other methods. The SSIM results shown in Fig. 5 are 0.9787, 0.1985, 
0.9356, 0.9912, and 0.9917, respectively. The SSIM results shown in 
Fig. 6 are 0.9556, 0.8298, 0.9667, 0.9756, and 0.9772, respectively. The 
SSIM results shown in Fig. 7 are 0.9607, 0.7957, 0.9775, 0.9828, 
0.9832, respectively. The SSIM results shown in Fig. 8 are 0.8414, 
0.8692, 0.9210, 0.9352, and 0.9384, respectively. The highest values 
are 0.9917, 0.9772, 0.9832, and 0.9384, respectively. The SSIM results 
indicate the structural consistency between the cirrus removal results 
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obtained using FRCR and the reference, which is also better than that of 
the other methods. Based on the results, it can be concluded that the 
FRCR method is capable of eliminating the cirrus parallax residuals 
which leads to improved image integrity, structural consistency, and 
spectral similarity. As a result, the images become smoother with more 
natural transitions and better color consistency. In summary, the FRCR 
method significantly enhances the overall quality of the images. 

In addition, the different methods were tested using the whole image 
of scene 1 with various clouds and surface features. The results of cirrus 
removal for all methods are as Fig. 9. Most of the cirrus clouds have been 
removed from the whole image. The zoomed images provide a more 
detailed comparison, as displayed in Fig. 9(g) – (j). From the zoomed 
images, it can be seen that the manifestation of parallaxes is more pro-
nounced in the complex cirrus structures, especially in their boundaries 
and interior regions. Thus, the residual parallaxes are not apparent in 
the results for the entire image but are obvious in the local areas. In 
comparison, the parallaxes have been corrected in the FRCR result. 
Table 4 provides the SAM and SSIM values for the cirrus cloud removal 
results compared to the reference data, with the optimal results in bold. 
The FRCR results appear to be significantly better than the other 
methods. It indicates that the FRCR results have higher spectral simi-
larity and structural consistency. It is clear from the comparison results 
that the FRCR method is capable of handling the whole image, making it 
suitable for practical engineering applications. 

4.2. Assessment of efficiency 

The efficiency experiment was divided into two parts: 1) the time for 
solving γ; and 2) the total runtime of the program. A whole Landsat 8/9 
OLI data was selected and divided into subsets of different sizes, which 
were 400 × 400, 800 × 800, 1600 × 1600, 3200 × 3200, and the raw 
size, respectively, for the experimental test. All methods employed were 
implemented using C/C++ or CUDA programming languages. 

4.2.1. The time for solving γ 
The SLCC and FRCR methods, which include γ calculation, are used. 

The experiment only compared the computational performance without 
data I/O. We recorded the computing time for solving γ in SLCC, FRCR, 
FRCR with Open Multi-Processing (OpenMP), and FRCR (with CUDA), 
respectively. Table 5 illustrates that the time required to solve γ in-
creases exponentially with the size of the experimental data. When using 
the original image size as the test data, SLCC required 816.629 s 
(approximately 15 min) to solve γ. In contrast, FRCR took 152.185 s, 
showing an improvement of over six times when compared to SLCC. 
With OpenMP parallelism, the runtime of FRCR was reduced to 23.072 s, 
showing more than a six times improvement over the non-optimized 
FRCR. In addition, the GPU-based FRCR displayed an exceptionally 
rapid runtime of only 0.111 s, indicating a 1,370 times improvement 
over non-parallel optimization and about 207 times over FRCR with 
OpenMP parallelism. The comparison results show that GPU accelera-
tion is effective, with a significant improvement in the speed of the 
intensive computation. 

4.2.2. The total runtime of the program 
The entire program includes data I/O and core processes. For the 

FRCR method, some solving that needs to be performed on the CPU, such 
as obtaining the SCA index map and the parallax correction, are opti-
mized in parallel using OpenMP. The implemented methods, including 
ICA, CR-NAPCT, SLCC, and FRCR, were compared. It should be noted 
that the runtime of CR-NAPCT is without poisson fusion post-processing. 
The runtime of the methods has been listed in Table 6. It illustrates that 
the runtime of the entire program increases exponentially with the 
increasing image size. When the test data size is small, such as 400 ×
400, the runtime differences between each method are not obvious. 
However, as the data size grows, the discrepancy between the methods 
becomes more evident, and the benefits of GPU-based parallelism 

become increasingly significant, leading to a considerable reduction in 
program runtime. 

5. Conclusions 

In conclusion, a fast and robust cirrus removal (FRCR) method has 
been proposed. FRCR can effectively eliminate the parallaxes in the 
corrected results of Landsat 8/9 images. An automatic sampling method 
in FRCR is proposed to replace manual sampling. The processing of a 
whole image is time-consuming, so FRCR adopts GPU-based paralleli-
zation to improve computational efficiency. Four group Landsat 8/9 
images are selected as the test data. The SAM and SSIM are employed as 
the quantitative metrics to assess the effectiveness of the different cirrus 
removal methods. From the qualitative analysis, it has been demon-
strated that the FRCR method is effective in removing the cirrus cloud in 
Landsat 8/9 images and that the cirrus parallaxes can also be eliminated. 
Quantitatively, the FRCR method achieves significantly smaller SAM 
values and greater SSIM values compared to ICA, CR-NAPCT, and SLCC. 
In addition, we compared the computational efficiency of each method 
on different test data sizes and found that the FRCR method achieved 
optimal performance with minimal time, especially for processing whole 
images. Faster and more robust cirrus cloud removal is achieved by 
FRCR, overcoming cirrus parallaxes and lower computational efficiency. 

The FRCR method can effectively remove thin cirrus clouds. How-
ever, when dealing with thick cirrus clouds (close to thick clouds), the 
method may not accurately restore the feature or surface information 
below the clouds, and there will still be some cirrus information 
remaining. There are still some thin clouds that cannot be detected by 
the cirrus band, and this type of thin cloud cannot be removed by this 
method. The method is currently only applicable to Landsat 8/9 OLI 
data and cannot be applied to data from other sources. The odd–even 
SCA index map in FRCR is derived from satellite VAA data, which has 
high accuracy, but it would further improve the processing workflow if 
we could obtain the official SCA index map. 
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