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In this paper, we propose a super-resolution image reconstruction algorithm to moderate-resolution

imaging spectroradiometer (MODIS) remote sensing images. This algorithm consists of two parts:

registration and reconstruction. In the registration part, a truncated quadratic cost function is used

to exclude the outlier pixels, which strongly deviate from the registration model. Accurate photo-

metric and geometric registration parameters can be obtained simultaneously. In the reconstruc-

tion part, the L1 norm data fidelity term is chosen to reduce the effects of inevitable registration

error, and a Huber prior is used as regularization to preserve sharp edges in the reconstructed

image. In this process, the outliers are excluded again to enhance the robustness of the algorithm.

The proposed algorithm has been tested using real MODIS band-4 images, which were captured in

different dates. The experimental results and comparative analyses verify the effectiveness of this

algorithm.
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1. INTRODUCTION

High-resolution (HR) images are useful in many applications

such as remote sensing, video frame freezing, medical diag-

nostics and military information gather, etc. However,

because of the high cost and physical limitations of the high-

precision optics and image sensors, it is not easy to obtain the

desired HR images in many cases. Therefore, super-resolution

(SR) image reconstruction techniques, which can reconstruct

one or a set of HR images from a sequence of low-resolution

(LR) images of the same scene, have widely been researched

in the last two decades. Multi-frame SR problem was first for-

mulated by Tsai and Huang [1] in the frequency domain. They

proposed a formulation for the reconstruction of an HR image

from a set of under-sampled, aliased but noise-free LR images.

Kim et al. [2] extended the formulation to consider obser-

vation noise as well as the effects of spatial blurring. They

solved the extended formulation by weighted recursive least

squares method to improve computational efficiency. Later,

Kim and Su [3] extended their work by considering different

blurs for each LR image. Rhee and Kang [4] proposed a

DCT-based algorithm in which the computational costs were

reduced using discrete cosine transform (DCT) instead of dis-

crete fourier transform (DFT). Furthermore, there have been

appeared a couple of papers, which concentrate on wavelet

SR methods [5–7].

In the spatial domain, Ur and Gross [8] suggested a non-

uniform interpolation method based on the generalized multi-

channel sampling theorem of Papoulis [9] and Yen [10]. Irani

and Peleg [11] proposed an iterative back-projection method

adapted from a computer-aided tomography. Stark and

Oskoui [12] proposed a noteworthy projection onto convex

sets (POCS) based formulation to SR image reconstruction

problems. Their approach was extended by Tekalp et al. to

include the observation noise [13] and motion blur [14].

Patti et al. [15] extended the POCS approach accounting for

arbitrary sampling lattices and non-zero aperture time. Using

statistical methods, Tom and Katsaggelos [16] suggested a

maximum-likelihood (ML) formulation for SR reconstruction.

Shultz and Stevenson [17] developed a popular maximum

a posteriori (MAP) formulation to the SR problem. This
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MAP estimator uses a motion compensated sub-sampling

matrix-based observation model and an edge preserving

Huber–Markov random field for the image prior. Hardie

et al. [18] also presented a MAP SR reconstruction procedure

in which the cases of global as well as non-global motion esti-

mation were considered. Ng and Yip [19] used preconditioned

conjugate gradient method to speed up the convergence in

MAP reconstruction. Elad and Feuer proposed a hybrid ML/

MAP/POCS method and an adaptive filtering method in [20]

and [21], respectively. Recently, researchers paid much atten-

tion to color [22], compressed [23, 24] dynamic [25] and

motion-free [26, 27] SR methods.

It is well noted that the first multi-frame SR idea in [1] was

motivated by the requirement to improve the resolution of

Landsat remote sensing images. In 2002, CNES (National

Space Study Center, France) successfully launched the

SPOT5 satellite. Using SR technique, SPOT5 can deliver a

2.5 m panchromatic image through the processing of two

5 m images, which are shifted to half a sampling interval by

a double CCD linear array [28]. Without the shift-controlled

cases, however, the SR techniques are applied to generic

camera images, medical images and video sequence much

more commonly than remote sensing images. Although

some papers in the literature provided the SR results of satel-

lite images, most of them used synthetic images and assumed

known motion parameters. The main reason is that it is very

difficult to obtain data sources and execute accurate sub-pixel

registration. Alternatively, many researchers tackled the

image fusion problem of reconstructing an LR image using

an HR image. A typical example is the use of panchromatic

image for sharpening multi/hyper spectral images [29–34].

However, this type of method often destroys the spectral

information, which is very important for the remote sensing

application of multi/hyper spectral images.

In this paper, we propose an SR reconstruction algorithm

applied to real moderate-resolution imaging spectroradiometer

(MODIS) remote sensing images in the same spectral band.

MODIS is a key sensor aboard TERRA satellite, which

observes every point on our world every 1–2 days, and acquires

data in 36 discrete spectral bands at three spatial resolutions

(250, 500 and 1000 m) [35]. Our image processing method is

concentrated on the fourth spectral band, which has the

resolution of 500 m. To get accurate photometric and geometric

parameters among the observed images, we used a truncated

quadratic cost function to exclude the outliers in the sub-pixel

registration part. Then, we use the MAP estimation with

robust L1 norm data fidelity and edge-preserving Huber prior

to get the desired HR image in the reconstruction part. The

proposed SR algorithm is evaluated visually and quantitatively.

The remainder of this paper is organized as follows. In

Section 2, we describe the image observation model. The

image registration method and the reconstruction method are

presented in Sections 3 and 4, respectively. Experimental

results are provided in Section 5. In Section 6, we give some

concluding remarks of this paper.

2. IMAGE OBSERVATION MODEL

The Image observation model relates the desired HR image to

the observed LR images. Therefore, the first step to compre-

hensively analyze the SR image reconstruction problem is to

understand the image acquisition model. A typical model

assumes that the imaging process involves warping followed

by blurring and down-sampling to generate LR images from

an HR image. Let us denote the underlying HR image in

vector form by z ¼ [z1, z2 , . . . , zL1N1 � L2N2
]T, where L1N1 �

L2N2 is the HR image size. Letting L1 and L2 denote the

down-sampling factors in the horizontal and vertical

directions, respectively, each observed LR image is of

size N1 � N2. Thus, the LR image can be represented as

gk ¼ [gk,1, gk,2, . . ., gk, N1 � N2
]T, where k ¼ 1, 2, . . . , P, with

P being the number of the LR images. The typical image

observation model can be represented as [20, 36]:

gk ¼ DBkM kz þ nk; ð1Þ

where Mk is the warp matrix with size of L1N1L2N2 � L1N1

L2N2, Bk represents the blur matrix also of size L1N1L2N2 �

L1N1L2N2, D is a N1N2 � L1N1L2N2 down-sampling matrix

and nk represents the N1N2 � 1 noise vector.

Although this observation model has been used in many SR

papers, this model does not satisfy our application. In remote

sensing imaging, the sun zenith angle and atmospheric absorp-

tion and scattering affect the amount of radiance received by

the sensor. It has been mentioned that the real MODIS

images used in this paper were captured on different dates,

so the photometric effects of zenith angle and atmosphere

should be considered. Fortunately, these effects in many

cases can simply be modeled as a linear system [37, 38],

with which the following image observation model can be

obtained.

gk ¼ h1;kDBkMkz þ h0;kI þ nk; ð2Þ

where I is the N1N2 � 1 unit vector, h1,k and h0,k are, respecti-

vely, the gain and offset of the photometric parameters, which

balance the relative effects of sun zenith angle and atmosphere

condition between different observed images. It is worth

noting that this model may be unsuitable when the images

contain too many clouds or different orientation of very

steep terrain slopes. The de-cover of clouds and terrain correc-

tion are important and independent research directions in the

field of remote sensing image processing, and they are

beyond the scope of this paper.
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3. GEOMETRIC AND PHOTOMETRIC
REGISTRATION

From the observation model in equation (2), we can know that

photometric registration and geometric registration play criti-

cal roles in the SR reconstruction. In this section, we present a

robust registration method with which we can get accurate

geometric and photometric parameters simultaneously.

In general, the relationship between the observed kth and lth

images can be expressed by:

EðuÞ ¼ kOkðgk � f
ðl;uÞ
k Þk

2
2 ð3Þ

where (x, y) denotes the pixel site, gk (x, y) is a pixel in

frame k, u is the vector contains both the photometric

parameters and the geometric parameters between the two

images, fk
(l,u)(x, y) is the predicted pixel of gk(x, y) from

frame l using parameter vector u, and 1k
(l,u)(x, y) denotes the

model error. By assuming the linear photometric transform

and affine motion model, we obtain

f
ðl;uÞ
k ðx; yÞ ¼ h1;k � gl

ða0;k þ a1;kxþ a2;ky; b0;k þ b1;kxþ b2;kyÞ þ h0;k: ð4Þ

In this model, u ¼ (h0,k, h1,k, a0,k, a1,k, a2,k, b0,k, b1,k, b2,k)
T

contains two photometric and six geometric parameters.

To solve u, there are two common choices for the estimation

criteria. They are based on the minimization of the sum of

squared difference and the sum of absolute difference error

metric [39], respectively. Obviously, the former is in the L2

norm and the later is in the L1 norm. The two minimization

functions can be expressed as:

EðuÞ ¼ kgk � f
ðl;uÞ
k k

2
2 and EðuÞ ¼ kgk � f

ðl;uÞ
k k1;

respectively. Generally speaking, the L2 norm function can

easily be solved by some gradient-based methods, but not

robust to outliers. However, the L1 norm function has some

robustness to outliers, the minimization can only be accom-

plished by some direct search methods, which often gets in

local minima. Some sophisticated methods for solving the L1

norm function are developed, see for instance [40], but the

computational cost is more expensive. Here we solve this

problem using a simple approach. We use a truncated quadra-

tic cost function described as follows:

EðuÞ ¼ kOkðgk � f
ðl;uÞ
k Þk

2
2: ð5Þ

In the objective function in equation (5), Ok is a diagonal

matrix that denotes which pixels are outliers. Each pixel in

gk corresponds to a diagonal element in Ok. If a pixel is an

outlier, its corresponding diagonal element is one otherwise

zero. Using this modified quadratic formulation, the outliers

are truncated from the minimization, which can lead to a

robust estimation of the parameters in the registration part.

Here we remark that the above formulation is used to estimate

the photometric parameters and geometric parameters

between the observed kth and lth images. The corresponding

parameters of other frames can be estimated using the same

approach.

Using the Gaussian–Newton method, the objective function

(5) can iteratively be solved. We just expand the function by

Taylor formula, we obtain

EðuÞ � Eðu nÞ þ
@Eðu Þ

@u n

� �T

ðDuÞ þ
1

2
ðDu ÞTH nðDuÞ; ð6Þ

where n is the iteration number, @E(u)/@un and Hn denote the

gradient matrix and Hessian matrix of E(u) at un, respectively,

expressed as:

@EðuÞ

@un ¼ 2ðJnÞ
TOn

krn; ð7Þ

Hn ¼ 2ðJnÞ
TOn

kJ n þ 2
X

i

rn
i On

k;iiH
n
i : ð8Þ

In equations (7) and (8), rn is the residual vector that is equal

to gk 2 fk
(l,un), Jn ¼ @rn/@un denotes the gradient matrix of rn,

and Hi
n is the Hessian matrix of ri

n. For small r n, we have

the following approximations: Hn
� 2( Jn)TO k

n Jn. Thus,

differentiating equation (6) with respect to Du and setting

the result equal to zero, after some manipulation, we have

ðJnÞ
TOn

kJnðDuÞ ¼ �ðJnÞ
TOn

krn ð9Þ

and

Du ¼ ½ðJ nÞ
TOn

kJ n�
�1
½�ðJnÞ

TOn
krn�: ð10Þ

Then, the parameter vector can be updated by

u nþ1 ¼ u n þ Du: ð11Þ

By considering the above computation, the photometric and

geometric model parameters can be updated iteratively, and

the residual corrections computed by equation (10) will get

small with the increase of iteration numbers. The iteration ter-

minates when the corrections are smaller than a specific stop-

ping criterion.

It must be noted the matrix Ok, which denotes which pixels

are outliers should be updated at each step of the iteration. To

detect the outliers, we use two criteria. The first is a geometri-

cal criterion that requires the predicted location of a pixel

using the current motion parameters is still in the image

field. The horizontal and vertical predicted locations are
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judged by equations (12) and (13), respectively.

0 � a0;k þ a1;kxþ a2;ky � N1; ð12Þ

0 � b0;k þ b1;kxþ b2;ky � N2: ð13Þ

Here, N1 and N2 are, respectively, the horizontal and vertical

size of the observed image. The second criterion is a photo-

metrical one. An absolute displaced frame difference criterion

jg
k
(x, y) 2 f k

(l,un) (x, y)j , d is often employed to determine

whether a pixel is outlier [17, 41]. In this criterion, the left-

hand side jg
k

(x,y) 2 fk
(l,un) (x, y)j represents the mapping

error using the current registration parameters. It is clear that

if the mapping error is too large the corresponding pixel

should be regarded as an outlier. So d in the right-hand side

acts as a scale threshold. However, we note that the

mapping error in sharp regions is more possible to be larger

than that in smooth regions with the same registration error.

To balance this difference, we use the following relative

criterion:

jgkðx; yÞ � f
ðl;unÞ

k ðx; yÞj , d �s
k
ðx; yÞ; ð14Þ

where sk (x, y) is the standard deviation at site (x, y) of the kth

image. Using equation (14), we can obtain more desired

outlier distribution in the experiments.

Because registration parameters are significantly over-

determined by the data and outliers are excluded in the

minimization, we believe that the use of modified L2 norm

in equation (5) is robust enough. To prove our approach, we

have tested the L1 norm using the Matlab ‘fminsearch’ func-

tion with the L2 norm solution as an initial guess, and got

very similar results with the the L2 norm. However, the L1

norm function takes more considerable computational time

than our proposed method.

4. IMAGE RECONSTRUCTION ALGORITHM

In many situations, the problem of SR is an ill-posed inverse

problem because the information contained in the observed

LR images is not sufficient to solve the HR image. Thus, the

solution for the HR image can be constructed by applying

the MAP technique, which has the following minimization

cost function:

ẑ
MAP
¼ arg min

X
k

Lðgk; zÞ þ lRðzÞ

" #
; ð15Þ

where the first term
P

k L(gk, z) is the data fidelity term that

provides a force of the conformance of the present HR

image to the observed LR images according to the image

observation model; the second term R(z) is the regularization

term that penalizes the estimation by some a priori constraint;

and l is the regularization parameter that balances the two

competing terms.

For the data fidelity, the linear least square term which is in

the L2 norm is widely used. However, there has been a

growing interest in using L1 norm for image restoration and

image reconstruction in the literature [40, 42–44]. It has

been proved that the L1 norm method is more effective than

the L2 norm when the images have random noises [40], inevi-

table motion estimation error [42] and data outliers [42, 44].

Although we use the modified L2 norm method in the regis-

tration, we have ample reasons to use the L1 norm method

here such as the inevitable motion error and under-determined

condition. According to the observation model (2), we can get

the straightforward L1 norm data fidelity term,

X
k

Lðgk; zÞ ¼
X

k

kgk � h1;kDBkMkz � h0;kIk1: ð16Þ

In order to increase the effectiveness of the SR algorithm, the

outliers should also be excluded in the image reconstruction

part as in the image registration part. Although the outliers

in the registration part and in the reconstruction part maybe

have some differences, we ignore such differences as they

are usually small. Thus, we can directly obtain the information

about the outliers from the registration results. In this manner,

we rewrite the data fidelity term as follows:

X
k

Lðgk; zÞ ¼
X

k

kOkðgk � h1;kDBkM kz � h0;kIÞk1; ð17Þ

where Ok has been defined in Section 2.

For the regularization term, Tikhonov regularization and

Gauss–Markov prior are commonly used. Tikhonov

regularization has the following form

RðzÞ ¼ kQzk22; ð18Þ

where Q is often chosen as a linear high-pass operation that

penalizes the estimation which is not smooth. Differently,

the regularization term using Gauss–Markov prior can be

expressed as:

RðzÞ ¼
X
x;y

X
c[C

rðdcðzx;yÞÞ: ð19Þ

In this expression, c is a clique within the set of all image

cliques C, the quantity dc(zx,y) is a spatial activity measure

to pixel zx,y, which is often formed by first-order or

second-order differences, and r (.) is a quadratic potential

function

rðiÞ ¼ i2: ð20Þ
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A common criticism to these two regularizations is that the

sharp edges in the SR estimates tend to be overly smoothed.

To solve this problem, some edge-preserving regularization

has been used in the literature. For instance, the Huber–

Markov prior was used in [17, 45], and a robust regularization

function called bilateral-TV was used in [22, 43]. Both the two

regularization functions perform better than the non-edge-

preserving ones. In this paper, we select the Huber–Markov

prior model as regularization. The difference between

Huber–Markov prior and Gauss–Markov prior is only on

the potential function r (.). The Huber function is defined as:

rðiÞ ¼
i2; jij � m

2mjij � m2; jij . m;

�
ð21Þ

where m is a threshold parameter separating the quadratic and

linear regions [17]. It is easy to see that the Gauss–Markov

prior can be regarded as a special case of the Huber–

Markov prior with m!1. As for the dc (zx,y), we compute

the following finite second-order differences in four adjacent

cliques for every location (x, y) in the SR image

d1
c ðzx;yÞ ¼ zx�1;y � 2zx;y þ zxþ1;y; ð22Þ

d2
c ðzx;yÞ ¼ zx;y�1 � 2zx;y þ zx;yþ1; ð23Þ

d3
c ðzx;yÞ ¼

1ffiffiffi
2
p zx�1;y�1 � 2zx;y þ zxþ1;yþ1

� �
; ð24Þ

d4
c ðzx;yÞ ¼

1ffiffiffi
2
p zx�1;yþ1 � 2zx;y þ zxþ1;y�1

� �
: ð25Þ

FIGURE 1: Two of the MODIS band-4 full-view images. (a) Captured on 6 January 2004. (b) Captured on 8 January 2004.

FIGURE 2: The four 50 � 50 interest regions cropped from the full-view band-4 MODIS image captured on 6 January 2004. (a) Region

1. (b) Region 2. (c) Region 3. (d) Region 4.
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FIGURE 3: Block images of Region 1 captured on: (a) 28 December 2003. (b) 30 December 2003. (c) 1 January 2004. (d) 4 January 2004.

(e) 6 January 2004. (f) 8 January 2004.

TABLE 1: The estimated photometric and geometric registration parameters in the experiment of region 1.

a0,k a1,k a2,k b0,k b1,k b2,k h0,k h1,k

28 December 2003 20.710 1.002 0.023 25.739 20.020 1.104 226.078 0.943

30 December 2003 1.594 1.003 20.019 20.153 0.001 0.971 213.011 0.981

1 January 2004 1.730 0.984 20.069 4.437 0.028 1.126 214.824 1.022

4 January 2004 21.141 1.013 0.037 22.950 20.027 1.269 18.142 0.991

8 January 2004 0.201 0.998 20.038 21.167 0.031 1.011 26.293 1.034

FIGURE 4: The outlier maps of the unreferenced images in the Region 1 experiment. (a) 28 December 2003. (b) 30 December 2003.

(c) 1 January 2004. (d) 04 January 2004. (e) 8 January 2004.
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FIGURE 5: Experimental results of Region 1. (a) Bilinear interpolation. (b) Cubic interpolation. (c) MAP interpolation. (d) The proposed

SR algorithm.

FIGURE 6: Experimental results of Region 2. (a) Bilinear interpolation. (b) Cubic interpolation. (c) MAP interpolation. (d) The proposed SR

algorithm.

FIGURE 7: Experimental results of Region 3. (a) Bilinear interpolation. (b) Cubic interpolation. (c) MAP interpolation. (d) The proposed SR

algorithm.

FIGURE 8: Experimental results of Region 4. (a) Bilinear interpolation. (b) Cubic interpolation. (c) MAP interpolation. (d) The proposed

SR algorithm.
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Using the L1 data fidelity term and the Huber–Markov prior

model, we can rewrite the minimization cost function (15) as:

ẑMAP ¼ arg min
X

k

kOkðgk � h1;kDBkMkz � h0;kIÞk1

"

þl
X
x;y

X
c[C

rðdcðzx;yÞÞ

#
: ð26Þ

The steepest descent optimization is used to minimize this cost

function. Differentiating equation (26) with respect to z, we

have:

r ¼ �h1;kMT
k BT

k DTOT
k

signðgk � h1;kDBkMkz � h0;kIÞ þ lr0; ð27Þ

where r00 is the derivative of the regularization term that can be

solved on a pixel-by-pixel basis. Thus, the HR image is solved

using the successive approximations iteration

ẑ nþ1 ¼ ẑn � brn; ð28Þ

where b is the step size and n is the iteration number.

It is worth noting that the matrices D, Bk, Mk and Ok, and

their corresponding transposes can be interpreted as direct

image operators in the computation process [25, 46]. By this

means, it is not necessary to generate big matrices. The pro-

posed algorithm can be implemented very efficiently.

5. EXPERIMENTAL RESULTS

In the experiments, we used six MODIS band-4 images with

ground resolution of 500 m. These images were captured on

28, 30 December 2003 and 1, 4, 6, 8 January 2004, respecti-

vely. We obtained these images from the Satellite Remote

Sensing Receiving Station of Wuhan University. As the

original data type is SHORT INTEGER (2 byte), we firstly

converted them into the BYTE type (1 byte) for convenience.

To retain the original relations between the observed images,

we used the same linear transformation to all images in the

conversion. Two of the transformed full-view images which

were captured on 6 and 8 January 2004 are, respectively,

shown in Fig. 1a and b as illustration examples. The original

size of the full-view images is 2078 � 3260, but our data

processing was restricted to typical block images to reduce

computational cost and avoid the effect of the existing clouds

in the images. Furthermore, we found the global motion

model may be unsuitable if the block size was chosen too

big. One main reason is that there are considerable scanning

and mosaicing errors in the MODIS images. With this in

mind, we chose four 50 � 50 interest regions to test the

proposed algorithm independently. The four corresponding

regions cropped from the full-view image captured on 6

January 2004 are shown in Fig. 2a–d, respectively. Besides,

we also demonstrate the six multi-temporal block images of

region 1 in Fig. 3.

It is clear from Fig. 3a–f that these block images have

different luminance and geometric sampling because they

are captured in different dates and with different angles of

view. This is also true for the other three sequences of block

images. Therefore, the photometric registration and the geo-

metric registration are both necessary. In all the experiments

of the four selected regions, the registration method presented

in Section 3 was implemented regarding the 6 January 2004 as

the referenced image, and the parameter d in equation (14) was

set to 1.2. Here, we demonstrate the estimated registration

parameters and the detected outliers in the experiment of

region 1 in Table 1 and Fig. 4, respectively. In the outlier

maps, the uniform outliers around the image verge are

detected by conditions (12) and (13), and the other discrete

ones are detected by condition (14). Besides the verge ones,

the outliers distribute somewhat along the horizontal direction.

The special example is Fig. 4e, in which some equal-interval

outlier lines exist. Actually, this outlier distribution is just con-

sistent with the remote sensor imaging because MODIS scans

the surface across the flight track (vertical direction in the

image). Moreover, the scan interval is 20 pixels (in 500 m

resolution bands), which is equal to the outlier line interval

in Fig. 4e. Therefore, these horizontally distributed outliers

can be ascribed to the abnormal sensor scanning and/or

image mosaicing. This also proves that the detected outliers

are necessary and useful.

The next issue is the evaluation and analysis of the recon-

structed HR images. In the reconstruction part, the corre-

sponding parameters were set as: m ¼ 1, l ¼ 0.01 and b ¼

4. A 3 � 3 Gaussian blur kernel with unit variance was

assumed and was commonly used. We assume the down-

sampling factors in both the horizontal and vertical directions

have a value of two. The initial HR image is obtained using the

bi-cubic interpolation, and the iteration was terminated when

the iteration numbers get to 60. The proposed SR algorithm

was compared with the traditional bilinear interpolation,

cubic interpolation and a Huber MAP interpolation [47],

which can be regarded as the special single-frame case of

the proposed algorithm. The experiment results of the four

selected regions are, respectively, shown in Figs. 5–8. By

visual comparison, it is seen that the results of the proposed

SR algorithm are much clearer than those of the single interp-

olation algorithms, the reason for which is that these results

fused the complementary information in different observed

images.

The quantitative evaluation is not easy because the real HR

band-4 MODIS images are not known. A commonly used

strategy to solve the problem that no real HR images exist is

to degrade the original images to an inferior resolution level

and reconstruct the degraded images, and then treat the
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original images as the real HR images to compare with the

reconstructed images [29–33]. We also adopt this strategy

in this paper. As for the evaluation criteria, the mean square

error (MSE) and correlation coefficient (CC) are two

popular ones. Besides, Zhou and Bovik [48] proposed a

universal image quality index (UIQI) for the evaluation

of single band image data. This index has been used in

[29, 49]. Here, we use these three criteria to evaluate the pro-

posed SR algorithm. They are, respectively, defined by

equations (29)–(31).

MSE ¼
kẑ � zk2

N
; ð29Þ

CC ¼
sẑz

sẑsz

; ð30Þ

UIQI ¼
4sẑzmẑmz

ðs2
ẑ þ s2

z Þðm
2
ẑ þ m2

z Þ
: ð31Þ

Here, ẑ and z represent the reconstructed HR image and the

original image, respectively, and N is the total number of

pixels in the image. sẑz is the covariance between and ẑ and

z, mẑ and mz their means, and sẑ and sz their standard devia-

tions, respectively. The ideal values of the MSE, CC and

UIQI are, respectively, 0, 1 and 1. The evaluation results of

the four selected regions are, respectively, shown in

Tables 2–5. It is seen that the proposed algorithm produced

much better quantitative evaluation results than the single

frame interpolation algorithms. This agrees with the visual

judgment.

6. CONCLUSIONS

In this paper, we have proposed an SR image reconstruction

algorithm to real MODIS remote sensing images. To increase

the robustness and the effectiveness, the outliers are truncated

in both the registration and reconstruction processes. The

proposed reconstruction algorithm simultaneously uses the

robust L1 norm data fidelity and edge-preserving Huber

prior. Experiment results validated the proposed algorithm

performs better than single frame interpolation methods in

terms of both the quantitative measurements and visual

evaluation.
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