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Adaptive Multiple-Frame Image Super-Resolution
Based on U-Curve

Qiangqiang Yuan, Liangpei Zhang, Huanfeng Shen, and Pingxiang Li

Abstract—Image super-resolution (SR) reconstruction has been
a hot research topic in recent years. This technique allows the re-
covery of a high-resolution (HR) image from several low-resolution
(LR) images that are noisy, blurred and down-sampled. Among the
available reconstruction frameworks, the maximum a posteriori
(MAP) model is widely used. In this model, the regularization pa-
rameter plays an important role. If the parameter is too small, the
noise will not be effectively restrained; conversely, the reconstruc-
tion result will become blurry. Therefore, how to adaptively select
the optimal regularization parameter has been widely discussed.
In this paper, we propose an adaptive MAP reconstruction method
based upon a U-curve. To determine the regularization parameter,
a U-curve function is first constructed using the data fidelity term
and prior term, and then the left maximum curvature point of the
curve is regarded as the optimal parameter. The proposed algo-
rithm is tested on both simulated and actual data. Experimental
results show the effectiveness and robustness of this method, both
in its visual effects and in quantitative terms.

Index Terms—L-curve, regularization, super-resolution (SR) re-
construction, U-curve.

I. INTRODUCTION

H IGH-RESOLUTION (HR) images are widely used
in many fields, such as medical imaging [1], satellite

imaging [2], and video surveillance [3]. However, because of
the limitations of hardware, we obtain more low-resolution
(LR) images than HR images. Consequently, researchers have
explored new techniques to produce HR images from one
or multiple frames of LR imagery, a technique that is called
super-res olution (SR) technology.

The multiple-frame SR problem was first tackled by Tsai and
Huang [4] in the frequency domain. Following their work, many
frequency domain methods were developed. For example, Kim
et al. [5], [6] improved Tsai and Huang’s method by considering
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observation noise and spatial blurring. Bose et al. [7] proposed
a recursive total least squares method for SR reconstruction to
reduce effects of registration errors. A discrete cosine trans-
form (DCT) based method was proposed by Rhee and Kang
[8]. Wavelet transform-based [9]–[12] SR methods have also
been proposed. However, although frequency domain methods
are computationally attractive, they have some limitations. For
example, it is difficult to incorporate the prior information about
HR images using frequency domain methods. Therefore, many
spatial domain methods have been successfully developed, in-
cluding nonuniform interpolation approaches [13], [14], the iter-
ative back projection (IBP) approach [15], [16], projection onto
convex sets (POCS) approach [17], [18], deterministic regular-
ized approach [19], maximum likelihood (ML) approach [20],
[25], maximum a posteriori (MAP) approach [21], joint MAP
approach [22]–[24], and hybrid approach [25]. Recently, based
upon the reconstruction model mentioned previously, the SR
technique has been extended to color or multiple-spectral image
reconstruction [26]–[29].

This paper is mainly based upon the MAP reconstruction
model. The regularization parameter plays a very important role
in this model, controlling the tradeoff between the fidelity and
prior item. In many implementations, the regularization param-
eter is selected manually, using a sequence of regularization pa-
rameters and selecting the parameter corresponding to the best
results as the optimal one. However, this method is usually time-
consuming and subjective. To avoid these disadvantages, some
adaptive selection methods have been widely discussed in re-
cent years. These methods can be divided into two groups. One
group uses classical methods developed in the inverse problem
field. For example, Bose et al. [30] use the L-curve method,
which was introduced by Lawson and Hanson [31] and popu-
larized by Hansen and O’Leary [32]. Nguyen et al. [33] use the
generalized cross validation method (GCV) [34]. The second
group use the general Bayesian framework to estimate param-
eters and reconstruct HR images simultaneously, obtaining pa-
rameters as well as the HR frame in each iteration step. This di-
rection refers to the work of Kang and Katsaggelos [35], He and
Kondi [36], Molina et al. [37] and Zibetti et al. [38]. The L-curve
and GCV approaches can provide good solutions, but their com-
putational costs are high. The Bayesian framework method has
a lower computational load, but the optimal reconstruction re-
sult is more reliable on some attached parameters and parameter
distribution functions, so it cannot be fully adaptive.

The U-curve method was first proposed by Krawczy-Stando
and Rudnicki [39] to select the regularization parameter in in-
verse problems. It has been proved that the U-curve method not
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Fig. 1. Degradation model of the HR image.

only performed better than the L-curve, but also provides an in-
terval where the optimal regularization parameter exists, which
can reduce the computation load in searching for the optimal
regularization parameter. However, in their work, the U-curve
was just tested on some simple ill-posed problems. As a con-
sequence, it is valuable and promising to develop the U-curve
method in ill-posed problems included in the field of image pro-
cessing, such as image restoration, SR, and so on. As the SR
problem is a more complex inverse and ill-posed problem, the
regularization model is more variable. Therefore, for the first
time, we have applied the U-curve method on the MAP based
SR model with Laplacian prior regularization, with the purpose
of selecting the optimal regularization parameter adaptively, ac-
curately, and efficiently.

The outline of this paper is as follows. The observation
model is described in Section II. The MAP reconstruction
model is given in Section III. The principle and the steps to
select the optimal regularization parameter in the MAP model
are detailed in Section IV. Experimental results and analyses
are presented in Section V. Finally, conclusions are drawn in
Section VI.

II. OBSERVATION MODEL

In this section, we describe the degradation process from an
HR image to a LR image, which is also called the observation
model.

Let the original HR image be denoted in vector form by
, where

is the size of the HR image. Assume that the HR
image is subpixel shifted, blurred, down-sampled, and has some
additive noise (Fig. 1), producing a sequence of LR images.
Each frame of a sequence could be denoted in the vector form
by , where is the size of the LR
image. . The observation model can be rep-
resented as

(1)

Let and be the down-sampled factors for rows and
columns, respectively, stands for the warp matrix with size

is the blurring matrix (PSF) with
size is the down-sampling matrix
with size . is the noise vector with size

. In this paper, we assume that the down-sample factors
and blurring function remain the same between the LR images,

so the matrices and will be substituted by matrices
and , respectively, in the remaining parts of the paper.

Each LR image has an observation model in the form of func-
tion (1). If we incorporate them, the whole observation model
could be represented as

...
(2)

where and
.

III. MAP RECONSTRUCTION MODEL

As SR is an ill-posed problem, we cannot solve the HR image
from the observation model directly. Therefore, a MAP model
is used to add some prior information about the HR image to
regularize the SR problem.

In this section, we discuss the formulation of the reconstruc-
tion function using the MAP model and how to solve it.

A. MAP Reconstruction Model

For the MAP model, given the LR images, the HR image can
be estimated as

(3)

Using Bayes rule, function (3) can alternatively be expressed
as

(4)

Because the estimated HR image is independent of ,
function (4) can be written as

(5)

where is the likelihood distribution of the LR
images, and is the prior distribution of the HR images.
Since we later define the form of these densities of noise to be
zero-mean Gaussian in nature, it is more convenient, and equiv-
alent, to minimize the minus log of the functional in (8). This
yields

(6)
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Assuming that the noise is zero-mean Gaussian noise and
each LR frame is independent, can be written
as

(7)

For the HR image, the following prior model is used in this
paper:

(8)

where is a parameter that controls the variance of the prior
distribution and represents a linear high-pass operation that
penalizes the estimation that is not smooth. is chosen as a 2-D
Laplacian matrix in this paper.

Substituting (7) and (8) in (6), the cost function can be written
as

(9)
In function (9), is the data fidelity item, which
stands for the fidelity between the observed LR image and the
original HR image, is the prior item, which stands for
the prior distribution of the HR image. is the regularization
parameter, which controls the tradeoff between the data fidelity
and prior item.

B. Optimization

A gradient descent procedure is designed to minimize the cost
function. Differentiating (9) with respect to , and setting the
result equal to zero, we have

(10)

The HR image is solved by employing the successive approxi-
mations iteration

(11)

where

(12)

stands for the th iteration step size, which is critical for
convergence. It has the form

(13)

The iteration is terminated when

(14)

IV. U-CURVE METHOD

This section describes the novel approach to estimate the
regularization parameter based upon the U-curve. First, we

Fig. 2. Typical U-curve.

TABLE I
DISPLACEMENT PARAMETERS OF THE FOUR LR IMAGES

TABLE II
PSF AND NOISE PARAMETERS OF CASE 1 AND CASE 2

introduce the principle of the U-curve and its properties.
Second, the use of the U-curve method in the SR problem is
presented.

A. U-Curve and Its Properties

Because the Gaussian zero-mean noise model and Laplacian
prior model are used, the MAP model proposed in this paper
has an expression similar to the traditional Tikhonov regular-
ization model. Therefore, the explanation of the principle of the
U-curve is based upon the Tikhonov model.

Let matrix stand for the degradation matrix . The
cost function presented in (9) can be written like the traditional
model of Tikhonov regularization as

(15)

Using the singular value decomposition (SVD) least squares
method, the regularized solution of function (15) is

(16)
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Fig. 3. L-curve, U-curve, and the selected regularization parameter of the “cameraman” image and “boat” image in Cases 1 and 2. (a) L-curve in Case 1 �� �
������ (cameraman). (b) U-curve in Case 1 �� � ����� � 	� (cameraman). (c) L-curve in Case 2 �� � ����
� (cameraman). (d) U-curve in Case 2 �� �
������ 
� (cameraman). (e) L-curve in Case 1 �� � ����	� (boat). (f) U-curve in Case 1 �� � ������ 	� (boat). (g) L-curve in Case 2 �� � ������ (boat).
(h) U-curve in Case 2 �� � ����� � 
� (boat).

where is the left SVD matrix of is the th column of
the right SVD matrix . is the singular values of , and

. is the th singular value of
, and . is the th value of .
From functions (15) and (16), it is found that

(17)

(18)

From the previous discussion, we define

(19)

The U-curve is the plot of . Fig. 2 shows a typical example
of the U-curve.
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Fig. 4. Reconstruction results of the “cameraman” image in Case 1. (a) Original HR image. (b) LR image. (c) BI. (d) Adaptive iteration. (e) L-curve. (f) U-curve.

It is clearly seen from Fig. 2 that a U-curve has three charac-
teristic parts: (a) it is monotonically decreasing on the left side;
(b) it is monotonically increasing on the right side; (c) in the
middle it is almost “horizontal” with monotonous change. The
left and right sides correspond to the regularization parameter
for which the data fidelity item and the prior item are domi-
nated by each other. The more horizontal part corresponds to
the regularization parameter for which the data fidelity item and
the prior item are close to each other, and this part is where the
optimal regularization parameter exists.

From the discussion in [39], the U-curve has the following
properties:

a) for , the function is strictly
decreasing;

b) for , the function is strictly
increasing;

c) ; and
d) .

From the previously mentioned properties, the following remark
can be made:

Remark: The optimal regularization parameter can be se-
lected in the interval , and the ob-
jective of the U-curve criterion for selecting the regularization
parameter is to choose a parameter for which the curvature of
the U-curve attains a local maximum close to the left part of the
U-curve.

B. Selection Steps

For the MAP reconstruction model presented in (9), we can
use the U-curve method to determine the optimal regularization
parameter , and the selection steps can be expressed as follows.

Step 1) Singular value decomposition to the degradation ma-
trix and matrix ; record the singular values of
as ; record the first

singular values as
.

Step 2) Incorporate the result of Step 1 into function (17) and
(18); construct from (19).

Step 3) Plot the U-curve in the interval
.

Step 4) Select the maximum curvature point close to the left
vertical part of the U-curve as the optimal regular-
ization parameter.

V. EXPERIMENTAL RESULTS

We use the mean square error (MSE) and the structural sim-
ilarity (SSIM) to evaluate the reconstruction results. The MSE
is usually employed to evaluate the gray value similarity, and
the SSIM proposed by Wang et al. [40] is used to evaluate the
SSIM. Their expressions are as follows:

MSE (20)

SSIM (21)

where represents the original HR image, and represents the
reconstructed HR image. is the size of the HR
image. and represent the average gray value of the orig-
inal HR and the reconstructed result, respectively. and
represent the variance of the original HR image and the recon-
structed image, respectively, represents the covariance be-
tween the original HR image and the reconstructed image.
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Fig. 5. Detailed regions cropped from Fig. 4. (a) Original HR image. (b) LR image. (c) BI. (d) Adaptive iteration. (e) L-curve. (f) U-curve.

and are two constants, which prevent unstable results when
either or is very close to zero.

A. Simulated Data

Three simulated data sets were used to test the efficacy and
robustness of the proposed method: the “cameraman” image of
size , the “boat” image of size and the “castle”
image sequence which was obtained from LCAV(EPFL) [41],
consisting of four subpixel displacement LR images with the
size of . The gray values of both data sets are be-
tween 0 and 255. The three simulated experiments were clas-
sified into two cases according to the degradation parameters
were known or not. In the case of known degradation param-
eters, the original HR “cameraman” image and “boat” image
were shifted with subpixel displacements to produce four LR
images; the sequence was convoluted with Gaussian smooth
filter PSF; then down-sampled in both the vertical and hori-
zontal directions; lastly, zero-mean Gaussian-noise was added
to the sequence. In these two experiments, the motion matrix
and blur matrix were both constructed with the known degra-
dation parameters; In the case of unknown degradation param-
eters, because the degradation parameters “castle” image se-
quence were not known, the displacement parameters were esti-
mated using the well-performed registration approach presented
in [43], and the degradation matrix was constructed with the es-
timated parameters.

Our results are compared with those of bilinear interpolation
(BI), the bicubic interpolated (BCI). the adaptive iteration ap-
proach in [35] and the L-curve method in [30]. The reconstruc-
tion factor was selected as 2. The termination condition of the
iteration was defined as

1) Degradation Parameters Known Case: For each image,
we experimented with the proposed method in two different
cases. The parameter values of Case 1 and Case 2 are shown
in Tables I and II.
Case 1: the original HR image was shifted with subpixel dis-
placements to produce four LR images; the sequence was con-
voluted with PSF of window size and 0.5 variance; then
down-sampled with a factor 2 in both the vertical and horizontal
directions; lastly, zero-mean Gaussian-noise with 0.01 variance
was added to the sequence.
Case 2: the original HR image was shifted with the same sub-
pixel displacements as in Case 1 to produce four LR images; the
sequence was convoluted with a PSF of window size and
1.0 variance; then down-sampled with a factor 2 in both the ver-
tical and horizontal directions; lastly, zero-mean Gaussian-noise
with 0.02 variance was added to the sequence.

Fig. 3 shows the L-curve and the U-curve and the selected
regularization parameters of the “cameraman” image and “boat”
image. Because we just draw the U-curve between the interval

where the optimal regularization
parameter exits, the U-shape is not visible in Fig. 3. The recon-
struction results of the “cameraman” and “boat” image in Case
1 are, respectively, shown in Figs. 4 and 7. To facilitate a better
comparison, a region of each is shown in detail in Figs. 5 and 8.
The quantitative comparison of the results using MSE and SSIM
is shown in Tables III and IV. The difference between the result
and the HR image is shown in Figs. 6 and 9.

From the comparison of the results, it can be clearly seen
that the U-curve method provides a better result than other
methods; it is closer to the original HR image and provides
the lowest MSE value and the highest SSIM, which indicates
that the U-curve method provides good representation of the
original HR image, both in terms of gray values and structure.
The bilinear interpolated (BI) result is the poorest, which
confirms the promise of the SR technology. For the adaptive
iteration method, the reconstruction result is more dependent
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Fig. 6. Difference between the reconstruction results and the original image in Case 1. (a) BI. (b) Adaptive iteration. (c) L-curve. (d) U-curve.

Fig. 7. Reconstruction results of the “boat” image in Case 1. (a) Original HR image. (b) LR image. (c) BI. (d) Adaptive iteration. (e) L-curve. (f) U-curve.

Fig. 8. Detailed regions cropped from Fig. 7. (a) Original HR image. (b) LR image. (c) BI. (d) Adaptive iteration. (e) L-curve. (f) U-curve.
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Fig. 9. Difference between the reconstruction results and the original image in Case 1. (a) BI. (b) Adaptive iteration. (c) L-curve. (d) U-curve.

Fig. 10. Reconstruction results of the “cameraman” image in Case 2. (a) Original HR image. (b) LR image. (c) BI. (d) Adaptive iteration. (e) L-curve. (f) U-curve.

TABLE III
MSE AND SSIM VALUE OF DIFFERENT RECONSTRUCTION

METHODS IN CASE 1 (CAMERAMAN)

upon the selection of the parameter . If we properly define the
parameter , a result as good as our proposed method could
be obtained. However, the selection of may require a large
computational load, so this method cannot be fully adaptive.
For the L-curve method, because the selected regularization
parameter is larger, the reconstruction result became blurred,
and some detailed information is lost.

To show the robustness of the proposed method, we plot the
change of the MSE value under different SNR noise condition

TABLE IV
MSE AND SSIM VALUE OF DIFFERENT RECONSTRUCTION

METHODS IN CASE 1 (BOAT)

(SNR from 50 to 10 db). The results are shown in Fig. 14. It is
clearly illustrated that the proposed method also remains robust
when the degree of noise becomes higher. The reconstruction
of the “cameraman” and “boat” images in Case 2 are shown in
Figs. 10 and 12, respectively. Detailed regions of the reconstruc-
tion are shown in Figs. 11 and 13; the quantitative comparison
is shown in Tables V and VI.

2) Degradation Parameters Unknown Case: The reconstruc-
tion results of the “castle” image sequence are shown in Fig. 15.
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Fig. 11. Detailed regions cropped from Fig. 10. (a) Original HR image. (b) LR image. (c) BI. (d) Adaptive iteration. (e) L-curve. (f) U-curve.

Fig. 12. Reconstruction results of the “boat” image in Case 2. (a) Original HR image. (b) LR image. (c) BI. (d) Adaptive iteration. (e) L-curve. (f) U-curve.

Fig. 15(a) shows one of the LR images; the BI and the BCI re-
sults are, respectively, shown in Fig. 15(b) and (c); Fig. 15(d)
shows the result of the adaptive iterative method. Fig. 15(e)
presents the result of the L-curve method, and Fig. 15(f)
presents the result of the proposed method. The detailed re-
gions cropped from Fig. 15(a)–(f) are, respectively, shown in
Fig. 16(a)–(f).

From the comparison of the results, the SR images look better
than the interpolated result. It can be seen that the U-curve re-

construction method provides a better result than other methods.
The result presents more details than the L-curve; this effect
is very obvious in the detailed regions. For the adaptive itera-
tion method, although the result looks as good as the proposed
method, as discussed previously we must adjust the parameter
to obtain the best result, so it cannot be fully adaptive. Because
the original HR image of the “castle” image sequence cannot
be obtained, the reconstruction results cannot be evaluated with
the MSE and SSIM indices.
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Fig. 13. Detained regions cropped from Fig. 12. (a) Original HR image. (b) LR image. (c) BI. (d) Adaptive iteration. (e) L-curve. (f) U-curve.

Fig. 14. Reconstruction MSE value under different SNR noise. (a) Cameraman image. (b) Boat image.

TABLE V
MSE AND SSIM VALUE OF DIFFERENT RECONSTRUCTION

METHODS IN CASE 2 (CAMERAMAN)

TABLE VI
MSE AND SSIM VALUE OF DIFFERENT RECONSTRUCTION

METHODS IN CASE 2 (BOAT)

B. Real Data

To further illustrate the performance of the proposed method,
we tested it on a real data sets. The real data “text” video se-
quence was obtained from the Multidimensional Signal Pro-

cessing (MDSP) Research Group of UCSC [42], consisting of
30 frames with the size of . In order to reduce the compu-
tational load, we just selected the first seven frames in our ex-
periment. The well-performed registration approach presented
in [43] was used as the motion estimation method.

Fig. 17(a) shows one of the LR frames of the video; the
BI and the BCI results are, respectively, shown in Fig. 17(b)
and (c); Fig. 17(d) shows the result of the adaptive iteration
method; Fig. 17(e) illustrates the result of the L-curve method;
and Fig. 17(f) presents the result of the proposed method. The
detailed regions cropped from Fig. 17(a)–(f) are, respectively,
shown in Fig. 18(a)–(f).

From Figs. 17 and 18, we can see that the resolution has cer-
tainly increased after using the SR technique compared with the
results of the BI interpolated and the BCI interpolated results. Of
the three SR methods, the U-curve method provides a clearer re-
sult than the other two, seen especially clearly from the detailed
regions.

C. Optimal Analysis

To further show the efficacy of the U-curve, we plotted the
change tendency of the MSE value versus the regularization pa-
rameter of the “cameraman” image in Case 1. The tendency
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Fig. 15. Reconstruction results of the “castle” image. (a) LR image. (b) BI. (c) BCI. (d) Adaptive iteration. (e) L-curve. (f) U-curve.

Fig. 16. Detailed regions cropped from Fig. 15. (a) LR image. (b) BI. (c) BCI. (d) Adaptive iteration. (e) L-curve. (f) U-curve.
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Fig. 17. Reconstruction results of the “text” image. (a) LR image. (b) BI. (c) BCI. (d) Adaptive iteration. (e) L-curve. (f) U-curve.

Fig. 18. Detailed regions cropped from Fig. 17. (a) LR image. (b) BI. (c) BCI. (d) Adaptive iteration. (e) L-curve. (f) U-curve.

Fig. 19. Change of the MSE value versus the regularization parameter.

line is shown in Fig. 19. It can be clearly seen that the U-curve
method provides a more accurate regularization parameter than
the L-curve, and the selection parameter is closer to the optimal
point.

VI. CONCLUSION

In this paper, a U-curve method is utilized to select the
regularization parameter in the MAP SR reconstruction model.
Firstly, the data fidelity and the prior model are used to con-
struct a function for the regularization parameter. Then this
function is plotted, which is the U-curve. Lastly, the maximum
curvature point close to the left vertical part of the U-curve
is selected as the optimal regularization parameter. Some
advantages of our work are the following. First, an interval
where the optimal regularization parameter probably exists is
defined by the U-curve, which can greatly raise computational
efficiency. Second, the U-curve method selects a more optimal
regularization parameter than the L-curve, obtaining a better
reconstruction result than the adaptive iteration method and
L-curve method, and the reconstruction result can retain its
robustness and efficacy in blurred or noisy situations.

However, the U-curve method based upon the Tikhonov reg-
ularization reconstruction model can still be revised in some as-
pects. For instance, the regularization parameter selected by the
U-curve method is a bit smaller than the optimal regularization
parameter. Therefore, Our future research will focus on how to
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remedy this and select a more accurate regularization parameter,
before using the U-curve method with some edge-preserving
prior models, such as the Huber-MRF [21], TV [44] and BTV
[45] models.
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