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Super-resolution image reconstruction, which has been a hot research topic in recent years, is a process to
reconstruct high-resolution images from shifted, low-resolution, degraded observations. Among the available
reconstruction frameworks, the maximum a posteriori (MAP) model is widely used. However, existing methods
usually employ a fixed prior item and regularization parameter for the entire HR image, ignoring local spatially
adaptive properties, and the large computation load caused by the solution of the large-scale ill-posed problem is
another issue to be noted. In this paper, a block-based local spatially adaptive reconstruction algorithm is
proposed. To reduce the large computation load and realize the local spatially adaptive process of the prior
model and regularization parameter, first the target image is divided into several same-sized blocks and the struc-
ture tensor is used to analyze the local spatial properties of each block. Different property prior items and reg-
ularization parameters are then applied adaptively to different properties’ blocks. Experimental results show
that the proposed method achieves better performance than methods with a fixed prior item and regularization
parameter. © 2011 Optical Society of America

OCIS codes: 100.0100, 100.6640, 100.3020, 100.3190.

1. INTRODUCTION
Super-resolution (SR) refers to the process of obtaining a
high-resolution (HR) image or a sequence of HR images from
one or a set of low-resolution (LR) observations. SR was first
proposed by Tsai and Huang [1] to enhance the resolution of
multitemporal Landsat TM images in the frequency domain.
After their work, many frequency domain methods were de-
veloped in [2–4]. However, the frequency domain methods
have some limitations, in that they seldom incorporate prior
knowledge, and can only be applied to translation motion
models. For this reason, many spatial domain reconstruction
methods have been developed in recent decades, including
the nonuniform interpolation approach [5,6], iterative back
projection (IBP) approach [7–9], projection onto convex sets
(POCS) approach [10,11], deterministic regularized approach
[12], maximum likelihood (ML) approach [13,14], maximum a
posteriori (MAP) approach [15], joint MAP approach [16–19],
hybrid approach [14], nonlocal-means-based approach [20],
and the kernel regression based algorithm [21]. Recently,
wavelet domain SRmethods have also been proposed [22–25].
Some reviews of the state of the art of SR methods can be
found in [26–31].

In this paper, our research is mainly based on the MAP ap-
proach, because it is very flexible for the noise model and HR
image prior model. Using the MAP framework, the ill-posed
SR problem can be successfully represented with a regulari-
zation-based least-squares problem, which consists of three
parts: a data fidelity item that stands for the noise model, a
regularization item that represents the prior model of the
HR image, and a regularization parameter that controls the
relative contribution of the two items. In the MAP SR model,

the prior item plays a very important role in the SR reconstruc-
tion process, which guarantees a stable HR estimation. Among
the different reconstruction algorithms, many prior models
have been proposed, which can be classified into two groups.
The first group type is proposed to guarantee the smoothness
of the HR image and to suppress noise, such as the GMRF
model [32] and the Laplacian model [16]. Although this type
of model can reduce noise effectively, it cannot really pre-
serve edge information, and some details are lost. The second
group is proposed to preserve edge and detail information,
and includes the Huber-MRF model [14], total variation
(TV) model [33], and Bilateral total variation (BTV) model
[27]. These models have the advantage of preserving edges,
but they cannot guarantee the partial smoothness of the
HR image in the homogeneous region. As a result, the Huber-
MRF model and BTV model may keep some noise, while the
TV model may produce staircase effects in the smooth areas.
In addition, the regularization parameter is another factor in-
fluencing SR reconstruction quality, which controls the per-
turbation of the solution. If the parameter is too small,
edge and detail information will be preserved but noise will
be retained; if too large, noise will be eliminated but with
the loss of useful edge information. However, most of the
SR algorithms use a fixed prior model and regularization para-
meter for the whole HR image, ignoring the region-dependent
property, which cannot produce good results in the smooth
regions and edge regions simultaneously.

Thus, we cannot produce a perfect reconstruction result if
we use either of the two types of prior model with a fixed reg-
ularization parameter for the entire HR image. The region spa-
tial information should be considered to constrain the prior
model and regularization parameter, similar with the idea of
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the very famous homomorphic filtering algorithm [34] and the
Peli-Lim algorithm [35]. In smooth areas, the smoothness-
maintaining prior model could be used with a large regulariza-
tion parameter to suppress noise. In edge areas, the
edge-preserving prior model could be used with a small regu-
larization parameter to preserve edge information. To the best
of our knowledge, a proper SR reconstruction algorithm con-
sidering the region adaptive from both the prior model and
regularization parameter aspects has not been proposed.

To overcome the disadvantages of traditional reconstruc-
tion models mentioned above, in this paper we propose a
block-based region information adaptive reconstruction algo-
rithm, in which the prior model and the regularization para-
meter are both constrained with spatial information in
different regions. The contribution of this algorithm is sum-
marized as follows: Firstl, in order to realize the region adap-
tive process conveniently and implement the SR rapidly, the
target HR image is divided into same-sized blocks. The struc-
ture tensor information is then used to identify the spatial
properties of each block. Following this, the prior model of
each block is adaptively selected with the spatial information.
Meanwhile, to realize the region adaptive process of the reg-
ularization parameter, a relationship between the regulariza-
tion parameter and the spatial information is constructed. In
smooth areas, a large parameter is selected to maintain partial
smoothness. Conversely, a small parameter is selected in the
edge areas to preserve edge information. Finally, the SR re-
construction is performed on each block adaptively with its
spatial property. There are reasons for dividing the target
HR image into blocks and performing the reconstruction on
each block. First, reconstruction on each block is faster than
on the full image, especially for performance on the large-
scale image. Second, for our region spatially adaptive pur-
pose, it is more convenient and computationally cheaper to
identify the local spatial information in each block than by
a pixelwise region segmentation algorithm for the same pur-
pose [36]. For more information about block-based image pro-
cessing, please refer to [37–39].

This paper is organized as follows. The observation model
and MAP reconstruction model are described in Section 2. In
Section 3, our local spatially adaptive algorithm is presented
in detail. The optimization method is described in Section 4. In
Section 5, some experimental results and discussions are
presented and, finally, conclusions are drawn in Section 6.

2. PROBLEM FORMULATION
In this section, we describe the observation model and the
MAP solution framework of the SR problem. First, the degra-
dation process from a HR image to a LR image is presented.
Then the MAP-based solution model is shown.

A. Observation Model
It is assumed that the HR image is subpixel shifted, blurred,
downsampled, and has some additive noise (Fig. 1), and that it

produces a sequence of LR images. By far, the most common
forward model for the problem of super-resolution is linear, in
the form

yk ¼ DBkMkxþ nk k ¼ 1; 2……p; ð1Þ

where x is the original HR image with the size of l1M � l2N . yk
is the kth LR image, which has the size of M � N . l1 and l2 are
the downsampled factors from row and column, respectively.
Mk stands for the warp matrix with size l1Ml2N � l1Ml2N , Bk is
the blurring matrix (PSF) with size l1Ml2N � l1Ml2N , and Dk is
the downsampling matrix with size MN � l1Ml2N . nk is the
noise vector with size M � N . In this paper, we assume that
the blurring matrix Bk and downsampling matrix Dk remain
the same between the LR images.

Each LR image has an observation model in the form of
function (1). If we incorporate them, the whole observation
model could be represented as

y1 ¼ D1B1M1xþ n1

y2 ¼ D2B2M2xþ n2

..

.

yp ¼ DpBpMpxþ np

9>>>=
>>>;

→ y ¼ DBMxþ n; ð2Þ

where y ¼ ½y1; y2…yp�T , M ¼ ½M1; M2…Mp�T , B ¼ ½B1;
B2…Bp�T , D ¼ ½D1; D2…Dp�T , and n ¼ ½n1; n2…np�T .

B. Maximum a posteriori (MAP)-Based Solution Model
Using the MAP model, and assuming that the noise is zero-
mean Gaussian noise and each LR frame is independent,
the solution model of the SR problem can be represented
by the following regularization-based least-squares problem:

x̂ ¼ argminf‖y − DBMx‖2
2 þ λUðxÞg: ð3Þ

In Eq. (3), ‖y − DBMx‖2
2 is the data fidelity item, which stands

for the fidelity between the observed LR image and the origi-
nal HR image, andUðxÞ is the prior item. λ is the regularization
parameter, which controls the trade-off between the data fi-
delity and prior item. The formation of UðxÞ in our paper will
be presented in detail in Section 3.

3. LOCAL SPATIALLY ADAPTIVE SUPER-
RESOLUTION (SR)
The prior item UðxÞ and regularization parameter λ in (3) play
a very important role in the SR reconstruction process. They
control the perturbation of the solution, solve the ill-posed
problem for SR reconstruction, and guarantee a stable HR es-
timation. However, as shown in the introduction section, the
state-of-the-art methods usually employ a fixed prior item and
regularization parameter to the whole HR image, not consid-
ering the local spatial information differences of the HR
image. This approach cannot deliver good results in the

Fig. 1. Degradation process of the HR image.
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smooth regions and edge regions simultaneously. Therefore,
in our reconstruction framework, we first divide the target im-
age into same-sized blocks, and perform the reconstruction of
each block with different prior models and regularization
parameters related to the local spatial property of each block.

In this section, our local spatially adaptive SR method is
presented. First, the local spatial information analysis using
the structure tensor method is described. Next, the selection
process of the prior item, dependent on the local spatial infor-
mation, is shown. Then, the local spatially adaptive mechan-
ism of the regularization parameter is set out. Last, the
deblock mechanism to reduce the spatial discontinuity as a
result of the block based processing is introduced.

A. Structure Tensor-Based Spatial Property Analysis
The matrix field of the structure tensor, introduced by For-
stner and Gulch [40] as well as by Bigun and Granlund [41]
in an equivalent formulation, plays a fundamental role in im-
age processing and computer vision. The structure tensor is a
powerful tool to discriminate edge information [42]. Conse-
quently, we use it to identify the spatial property of each
block. For each pixel of the block, the structure tensor matrix
is defined as

Sðx; yÞ ¼ ∇Iðx; yÞ∇Iðx; yÞT ; ð4Þ

∇Iðx; yÞ ¼
�
Gx

Gy

�
; ð5Þ

where Gx and Gy stand for the gradient information of each
pixel in the x and y directions. Thus, we can define the struc-
ture tensor matrix of a block bm as

Sm ¼ 1
n

Xn
i¼1

Siðx; yÞ ¼
1
n

Xn
i¼1

∇Iiðx; yÞ∇Iiðx; yÞT

m ¼ 1…tm; ð6Þ

where n is the number of pixels in each block. tm is the total
number of the block. Siðx; yÞ and∇Iiðx; yÞ stand for the struc-
ture tensor matrix and gradient information of each pixel.
With the structure tensor information, the spatial property
parameter δm of each block can be defined with the two ei-
genvalues λm1 and λm2 of the structure tensor matrix Sm:

δm ¼ jλm1 j þ jλm2 j: ð7Þ

Using the parameter δm, with a suitable threshold value T , the
blocks can be classified into smooth blocks, which stand for
the smooth regions, and nonsmooth blocks, which stand for
the edge regions. The spatial property of each block can then
be used to constrain the setting of the prior item and regular-
ization parameter.

B. Local Spatially Adaptive Prior Model Selection
With the spatial property analysis of each block, the prior
model can be selected with the local information as follows:

For the smooth area blocks, to retain the partial smooth-
ness of an HR image, the Laplacian prior model is used in
(3) to reconstruct the smooth areas, which has the form

UðxÞsmooth ¼ ‖Qx‖2
2: ð8Þ

Q represents a linear high-pass operation that penalizes the
estimation that is not smooth, which is chosen as a two-
dimensional Laplacian model in this paper.

For the edge area blocks, to preserve the edge information
of an HR image, the Huber-MRF prior model is used in (3) to
reconstruct the edge areas, which has the form

UðxÞedge ¼
X
i;j

X
c∈C

ρðdcðxi;jÞÞ: ð9Þ

c is a local group of pixels contained within the set of all image
cliques C. dcðxi;jÞ is a spatial activity measure for the pixel,
which is often formed by first-order or second-order differ-
ences. ρð:Þ is the potential function, which is selected to be
the Huber function in this paper

ρðxÞ ¼
�
x2 jxj ≤ μ
2μjxj − μ2 jxj > μ ; ð10Þ

where μ is a threshold parameter, which separates the quad-
ratic and linear regions. Figure 2 shows a typical curve of the
Huber function.

As for dcðxi;jÞ, we compute the following finite second-
order differences in four adjacent cliques for every location
ði; jÞ in the SR image:

xi−1;j−1 xi−1;j xi−1;jþ1

xi;j−1 xi;j xi;jþ1

xiþ1;j−1 xiþ1;j xiþ1;jþ1

→

8>>><
>>>:

d1cðxi;jÞ¼xi−1;j−2xi;jþxiþ1;j

d2cðxi;jÞ¼xi;j−1−2xi;jþxi;jþ1

d3cðxi;jÞ¼ 1ffiffi
2

p ðxi−1;j−1−2xi;jþxiþ1;jþ1Þ
d4cðxi;jÞ¼ 1ffiffi

2
p ðxi−1;jþ1−2xi;jþxiþ1;j−1Þ

:

ð11Þ

C. Local Spatial Information Adjusted Regularization
Parameter
The regularization parameter α plays an important role in the
reconstruction process. It controls the trade-off between the
data fidelity item and the prior model item in function (3),
which is also locally dependent. A small α sharpens edges
while amplifying noise in the estimated HR image; a large α
helps to suppress noise while smoothing edges and the

Fig. 2. Curve of the Huber function.
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detailed information of the estimated HR image. Figure 3
shows the reconstruction results of too large and too small
a regularization parameter.

From the information described above and Fig. 3, it can be
seen that if we use a fixed regularization parameter for the
entire image, a good result cannot be obtained. Therefore,
for smooth areas, a large regularization parameter should
be selected to suppress noise. Conversely, a small regulariza-
tion parameter should be selected in the nonsmooth areas to
preserve the edge information.

To realize the local spatially adaptive process of the regu-
larization parameter, we propose to construct a relationship
between the regularization parameter and the spatial para-
meter δm of each block. The relationship is presented as

αðδmÞ ¼
c

δm þ ε ; ð12Þ

where c is a positive constant parameter. ε is a constant,
which prevents δm from being zero, and is set to be 1 in this
paper.

From the function (12), in the smooth area, the smooth
parameter will be small, which leads to a large regularization
parameter with the purpose of suppressing noise. Conversely,
in the edge area, the smooth parameter will be large, which
leads to a small regularization parameter with the purpose
of preserving edges.

D. Deblock Mechanism
Because the visual discordance may appear at the edge area
between different blocks enhanced by different prior informa-
tion and regularization parameters, we use overlap between
different blocks to overcome this problem. More concretely,
we apply different a regularization item and parameter to a
larger part of the image, then crop the central part and use
it as the result. In Fig. 4, the area inside of the solid line is
saved as the reconstruction result.

4. OPTIMIZATION PROCEDURE
Using the local spatially adaptive prior model and regulariza-
tion parameter, for each block of the HR image, the recon-
struction model can be written as

x̂ ¼ argmin

�
‖y − DBMx‖2

2

þ
� αðδmÞ‖Qx‖2

2 ifδm ≤ T
αðδmÞ

P
i;j

P
c∈C

ρðdcðxi;jÞÞ ifδm > T

�
: ð13Þ

A gradient descent procedure is designed to minimize the cost
function (13). Differentiating the function (13) with respect to
x, we have

−MTBTDT ðy − DBMxÞ þ αðδmÞγ0 ¼ 0; ð14Þ
where γ0 is the derivative of the local spatially adaptive regu-
larization term that can be solved on a pixel-by-pixel basis.
Thus, the HR image is solved using successive approximations
iterations

xnþ1 ¼ xn − βnrn rn ¼ −MTBTDT ðy − DBMxnÞ þ αðδmÞγ0;
ð15Þ

where xn and xnþ1 are the HR images of nth and nþ 1th itera-
tion, respectively, and n is the iteration number. In this paper,
the analytical solution of the step size βn is solved as [15,43,44]

βn ¼ ðrnÞTrn
ðrnÞTWðrnÞ ; ð16Þ

where W is the Hessian matrix of the cost function (13). The
iteration is terminated when

‖xnþ1 − xn‖2

‖xn‖2 ≤ d: ð17Þ

5. EXPERIMENTAL RESULTS AND
DISCUSSION
In this section, we present two simulated data experiments
under different noise conditions and an experiment with real
data sets to illustrate the performance of the proposed algo-
rithm. To assess the relative merits of the proposed methodol-
ogy, we compare the proposed algorithm with the bilinear
interpolation (BI) results, reconstruction results using the
Laplacian prior model and Huber-MRF prior model in the
simulated experiments, while adding the comparison of the
bicubic interpolation results in the real data experiment.

Dewarping (registration) is a very important and difficult
process in SR reconstruction. Because our research focuses
on the local spatially adaptive SR, we do not pay much atten-
tion to this topic. To better validate the advantage of our pro-
posed local spatially adaptive SR algorithm, the blur and
motion parameters are assumed to be known in the first
two simulated experiments, and the well-performed registra-
tion approach proposed in [45] is used in the real data

Fig. 3. Reconstruction with different fixed regularization para-
meters. (a) Regularization parameter that is too large. (b) Regulariza-
tion parameter that is too small.

Fig. 4. Deblock mechanism.
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experiment 3. The translation motion model is used in all three
experiments in this paper.

The block analysis unit of all experiments was 5 � 5, and the
reconstruction factor was set to be 2. The termination condi-
tion d in all three experiments was set to be 10−6. The regu-

larization parameter λ in the Laplacian prior model and the
Huber-MRF prior model was adjusted until the most visually
appealing result was produced, and the same operation was
carried on the parameter c in Eq. (12). The flow chart of our
reconstruction framework is shown in Fig. 5.

We use the mean square error (MSE) and the structural si-
milarity (SSIM) to evaluate the reconstruction results. The
MSE is usually employed to evaluate the gray value similarity,
and the SSIM proposed by Wang et al. [46] is used to evaluate
the structural similarity. Their expressions are as follows:

MSE ¼ 1
N
‖ x̂−x‖2; ð18Þ

SSIM ¼ ð2μxμx̂ þ C1Þð2σx x̂ þ C2Þ
ðμx2 þ μx̂2 þ C1Þðσx2 þ σx̂2 þ C2

; ð19Þ

where x represents the original HR image, and x̂ represents
the reconstructed HR image. N is the size of the HR image. μx
and μx̂ represent the average gray values of the original HR
image and the reconstructed result, respectively.σx and σx̂
represent the variance of the original HR image and the recon-
structed image, respectively, and σx x̂ represents the covar-
iance between the original HR and the reconstructed
image. C1 and C2 are two constants that prevent unstable re-
sults when either μx2 þ μx̂2 or σx2 þ σx̂2 is very close to zero.

LR images

Registration

HR image initialize

Block analysis

Smooth area blocks Edge area blocks

Laplacian prior Huber-MRF prior

Regularization parameter
spatially adaptive

Gradient descent iteration
reconstruction

Convergence?

Final SR reconstruction result

Yes

No

Fig. 5. Flow chart of our reconstruction framework.

Fig. 6. (Color online) Reconstruction results of the first experiment. (a) Original HR image. (b) LR image. (c) Bilinear interpolation. (d) Laplacian
prior result. (e) Huber-MRF prior result. (f) Proposed LSA result.

Table 1. MSE and SSIM Values of Different
Reconstruction Methods in the First Experiment

Assessment Index BI Laplacian Huber-MRF Proposed LSA

MSE 628.625 245.819 224.274 213.905
SSIM 0.74931 0.76722 0.84012 0.90499
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A. Experimental Results
In the first experiment, the original HR image is the “camera-
man” image, with size of 200 � 200 pixels. With the degrada-
tion mode described in Section 2, the HR image was first
shifted with subpixel displacements to produce four images.
Then the sequence was convoluted with a PSF of 5 � 5window
size and unit variance, and downsampled by a factor of 2 in
both the vertical and horizontal directions. Finally, zero-mean
Gaussian noise with 0:012 variance was added to the
sequence.

The reconstruction results of the first experiment are pre-
sented in Fig. 6: (a) is the original HR image; (b) is one of the
downsampled LR images; (c) shows the bilinear interpolation
result. The reconstruction results of the Laplacian prior, the
Huber-MRF prior, and the proposed local spatially adaptive
(LSA) method, respectively, are shown in Figs. 6(d)–6(f).
The MSE and SSIM values of the different methods are pre-
sented in Table 1.

Clearly, the proposed local spatially adaptive reconstruc-
tion method shows better results than the Laplacian prior
and the Huber-MRF prior, which do not consider the con-

straint of the local spatial information. In the smooth region,
the noise is suppressed effectively; in the nonsmooth region,
the edge information is better preserved. The effectiveness of
the proposed method can also be illustrated with quantitative
evaluation results using MSE and SSIM. It is clearly seen from
Table 1 that the proposed method has the lowest MSE value
and the highest SSIM value, which shows that the proposed
method can better maintain both the gray levels and the struc-
tural information of the original HR image.

To further present the partial smoothness-maintaining
property of the proposed method, we use the 3 � 3 Gaus-
sian-Laplacian kernel to detect the edge information of the re-
construction results. The detection results are shown in Figs.
7(a)–7(c). It is clearly seen that noise is almost completely
suppressed in the smooth region in the local adaptive ap-
proach result. However, the noise still seems obvious in the
smooth region when using the Laplacian and Huber-MRF
priors and a fixed regularization parameter only, because
of no consideration being given to the local spatial informa-
tion constraint.

Fig. 7. (Color online) Edge extraction results of the first experiment. (a) Laplacian prior result. (b) Huber-MRF prior result. (c) Proposed LSA
result.

Fig. 8. (Color online) Reconstruction results of the second experiment. (a) Original HR image. (b) LR image. (c) Bilinear interpolation.
(d) Laplacian prior result. (e) Huber-MRF prior result. (f) Proposed LSA result.
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The original image and degradation parameters in the
second simulated experiment were the same as in the first
experiment, except that the variance of the degradation noise
was set to 0:052.

The reconstruction results of the second experiment are
shown in Figs. 8(a)–8(f). Table 2 presents the quantitative eva-
luation results. Clearly, the proposed method performs ro-
bustly with the increase of noise, and suppresses the noise
more thoroughly, producing the lowest MSE value and highest
SSIM value in the quantitative evaluation results.

In the third experiment, the “Surveillance” video sequence
obtained from the Multidimensional Signal Processing
(MDSP) Research Group at UCSC [47], used to access the per-
formance of the proposed algorithm, consisted of 15 frames of
size 66 � 76. In order to reduce the computational load, we just
selected the first seven frames in our experiment.

The reconstruction results using the real data sets are
shown in Fig. 9: (a) is one frame of the “Surveillance” video,
in which the block noise as a result of compression is clearly
seen; (b) and (c) are the bilinear and bicubic interpolation re-
sults; the reconstruction results using Laplacian and Huber-
MRF are shown in (d) and (e); (f) presents the proposed local
information adaptive reconstruction result. It is clearly illu-
strated from the result that the proposed method suppresses
the compression noise in smooth regions more efficiently

without losing the edge information. However, compression
noise is evident in the other two reconstruction results,and
the “edge” information is processed too aggressively.

B. Discussion
To show the effect of the block size on the reconstruction re-
sults, we plot the change of the MSE value versus the block
size in the first experiment, which is shown in Fig. 10(a), and
the computation time versus the block size, shown in
Fig. 10(b). From these two plots, it is seen that with the in-
crease in the block size from 5 * 5 to 20 * 20, the MSE value
shows only a slight decrease and is maintained with almost no
change. However, with the increase in the block size, the com-
putation time increased sharply, because the degradation ma-
trix of each block becomes larger and more time is required to
solve the ill-posed function of each block. In the experiment,
the SR algorithm was performed using C++ language on com-
mon PC platform. Using different programming language (e.g.,
MATLAB) and/or different hardware configuration, Fig. 10(b)
may be different, but it will present the same trend.

From the discussion above, we conclude that an adequate
solution is to use a small block size in the reconstruction pro-
cess, with the purpose of reducing computation time, and
meanwhile, it is more reasonable to analyze the local spatial
property in a small block area.

The threshold parameter T , which distinguishes the smooth
area and edge area, has an important effect on the reconstruc-
tion result. If it is too small, a smooth region will be identified
as a nonsmooth region, which will lead to the noise not being
fully suppressed in the smooth region. Conversely, if it is too
large, the nonsmooth regions will be identified as smooth re-
gions, and the edge information cannot be fully preserved.

Table 2. MSE and SSIM Values of Different
Reconstruction Methods in the Second Experiment

Assessment Index BI Laplacian Huber-MRF Proposed LSA

MSE 637.174 338.589 332.299 297.531
SSIM 0.67349 0.67449 0.68448 0.83686

Fig. 9. (Color online) Reconstruction results of the third experiment. (a) LR image. (b) Bilinear interpolation. (c) Bi-cubic interpolation. (d)
Laplacian prior result. (e) Huber-MRF prior result. (f) Proposed LSA result.
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Figure 11 provides a plot showing the change in the MSE
value with the parameter T from 50 to 1000 in the first experi-
ment. It is found that the MSE of the reconstruction result has

little change with the change of the parameter T from 50 to
1000, which illustrates that a good reconstruction result is
possible, as long as the parameter T is set in some range.
One simple way to select T may be to plot the distribution
histogram of the parameter δm of each block and select the
inflection point as the threshold T .

The number of LR frames plays a very important role in the
super-resolution process. In [48], the authors offer some con-
clusions about how to set a sufficient number of LR images
with the magnification factor. They concluded that when
the magnification factor was an integerM , the sufficient num-
ber of LR images was M2. In our paper, because the magnifi-
cation factor in all the experiments is set to 2, the number of
LR images is sufficiently set to be around 4. In Fig. 12, the re-
lationship between the LR frames and the reconstruction MSE
values has been given to illustrate the sufficient number of the
LR images. It can be clearly seen that the LR image number is
sufficient to be set as 4, which agrees with the conclusion
in [48].

6. CONCLUSION AND FUTURE RESEARCH
In this paper, we present a local spatially adaptive super-
resolution method, in which the prior model and the regular-
ization parameter are adaptively selected according to the
spatial characteristics of different parts of the image. To rea-
lize the local spatially adaptive process of the prior model, the
structure tensor is used to identify the properties of different
parts of the HR image. The Laplacian prior is used in the
smoother parts to suppress noise and maintain the partial
smoothness, and the Huber-MRF prior is used in rougher
areas to preserve the edge information. Meanwhile, a relation-
ship between the regularization parameter and the spatial in-
formation is constructed to realize the local adaptive process
of the regularization parameter. A large regularization para-
meter is selected in smoother areas to suppress noise, while
a small parameter is selected in the nonsmooth areas to pre-
serve edge information. A set of experiments showed that the
proposed approach achieves better reconstruction results
than conventional methods, both in visual effects and in quan-
titative terms.

Although the proposed approach works well, it also has
some areas to be improved, such as in experiment 3, where

Fig. 10. (Color online) Change in the MSE and computation time versus block size in the first experiment (a) The change of the MSE value versus
block size (b) The change of the computation time versus block size.

Fig. 11. (Color online) Change in the MSE value versus the threshold
parameter T in the first experiment.

Fig. 12. (Color online) Change in the MSE value versus the number
of LR images.
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a small distortion effect is produced in the lower left corner of
the super-resolution results. We think that this distortion may
be attributable to the following reasons: (1) although the re-
gistration method used in this paper produces good result, re-
gistration error also exists, which will produce distortion; (2)
the “Surveillance” video sequence used in experiment 3 has
considerable compression noise, which again will produce
distortion.

Therefore, in future research, we will focus on researching
a more accurate registration algorithm and consider the com-
pression process in the degradation process of the HR image,
in order to pursue a further improved reconstruction result.
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