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Multiframe Super-Resolution Employing a Spatially
Weighted Total Variation Model

Qianggiang Yuan, Liangpei Zhang, Senior Member, IEEE, and Huanfeng Shen, Member, IEEE

Abstract—Total variation (TV) has been used as a popular
and effective image prior model in regularization-based image
processing fields, such as denoising, deblurring, super-resolution
(SR), and others, because of its ability to preserve edges. However,
as the TV model favors a piecewise constant solution, the
processing results in the flat regions of the image being poor, and
it cannot automatically balance the processing strength between
different spatial property regions in the image. In this paper, we
propose a spatially weighted TV image SR algorithm, in which
the spatial information distributed in different image regions
is added to constrain the SR process. A newly proposed and
effective spatial information indicator called difference curvature
is used to identify the spatial property of each pixel, and a
weighted parameter determined by the difference curvature
information is added to constrain the regularization strength of
the TV regularization at each pixel. Meanwhile, a majorization—
minimization algorithm is used to optimize the proposed spatially
weighted TV SR model. Finally, a significant amount of simulated
and real data experimental results show that the proposed
spatially weighted TV SR algorithm not only efficiently reduces
the “artifacts” produced with a TV model in fat regions of
the image, but also preserves the edge information, and the
reconstruction results are less sensitive to the regularization
parameters than the TV model, because of the consideration
of the spatial information constraint.

Index Terms—Majorization—-minimization (MM),
weighted, super-resolution (SR), total variation (TV).

spatially

I. INTRODUCTION

IGH-RESOLUTION (HR) imagery plays a key role in
many diverse areas of application, such as medical imag-
ing [1], remote sensing [2], and video surveillance [3], [4]. The
traditional methods of obtaining HR images mainly depend on
the hardware aspect, for example, increasing the chip size or
reducing the pixel size. However, reducing pixel size will lead
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to an increase in the shot noise, and increasing the chip size
will be followed by an increase in capacitance. In addition,
the high cost for high-precision optics and image sensors is
also an important concern in many commercial applications
regarding HR imaging [5]. Consequently, researchers have
explored new techniques to produce HR images from one or
multiple frames of low-resolution (LR) imagery, a technique
that is called super-resolution (SR) technology.

A. Problem Formulation

Assume that a HR image x is sub-pixel shifted, blurred,
down-sampled and has some additive noise and produces a
sequence of LR images y; (Fig. 1). By far the most common
forward model for the problem of SR is linear in the form

Yk = DiBMix+n, k=1, 2, .., )4 @))

where y; is the kth LR image rearranged in lexicographic
order, and which has the size of L;L, x 1, and x is the original
HR image which is also rearranged in lexicographic order,
and which has the size of H;H, x 1. M} stands for the warp
matrix with size Hy H, x Hy H,, By is the blurring matrix with
size HiHy x H| H,, Dy is the down-sampling matrix with size
L,L, x H|H>, and n; is the noise vector with size L{L, x 1.
In this paper, we assume that the down-sample matrix D; and
blurring matrix By remain the same between the LR images.

The purpose of multiple-frame SR reconstruction is how to
accurately reconstruct the HR image x from sequences of LR
images yy.

B. Previous Algorithm

The multiple-frame SR problem was first tackled by Tsai
and Huang to enhance the resolution of multitemporal Landsat
TM images in the frequency domain [6]. After their work,
many frequency domain methods were developed [7], [8].
However, although frequency domain methods are computa-
tionally attractive, they have some limitations. For example,
it is difficult to incorporate the prior information about HR
images using frequency domain methods. For this reason,
many spatial domain reconstruction methods have been devel-
oped in recent decades, including the nonuniform interpolation
approach [9], [10], iterative back-projection approach [11],
[12], projection onto convex sets approach [13], [14], maxi-
mum likelihood approach [15], maximum a posteriori (MAP)
approach [16], [17], joint MAP approach [18]-[21], and the
hybrid approach [22]. Recently, some SR algorithms without
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Fig. 1. Degradation process of the HR image.

explicit motion estimation using the non-local means [23] and
kernel regression theory [24], [25] have been proposed, and
excellent SR results were produced, especially when complex
motions are contained in the LR image sequences. In addition,
wavelet domain SR methods have also been proposed [26],
[27]. Some reviews of the state of the art of SR methods can
be found in [5] and [28]—-[31].

Assuming that the noise of each LR image is zero-mean
Gaussian noise, and each LR frame is independent, the so-
lution model of the SR problem can be represented by the
following regularization-based least-squares problem [32]:

4
% = arg min {Z llye — DBM;x||? + ,\U(x)} )

k=1

P
In (2), > llyx — DBkallg is the data fidelity item, which

stands fork_tile fidelity between the observed LR images and
the original HR image, U(x) is the regularization, which gives
a prior model of the HR image x, and A is the regularization
parameter, which controls the tradeoff between the data fidelity
and prior items.

The regularization item U(x) in (2) plays a very impor-
tant role in the SR reconstruction process. It controls the
perturbation of the solution, solves the ill-posed problem for
SR reconstruction, and guarantees a stable HR estimation.
In past decades, many regularization models have been pro-
posed, such as Tikhonov regularization [33], Gaussian Markov
random fields regularization [34], Huber-MRF regularization
[16], [35], weighted-MRF regularization [4], total variation
(TV) regularization [36]-[38], bilateral TV (BTV) regular-
ization [28], locally adaptive BTV model [39] and sparse
directional regularization [40], amongst others. Recently, the
sparse representation-based prior models have been proposed
and shown very promising image restoration and SR results
[41], [42].

Among the prior models, the TV model is a popular and
effective regularization model because of its ability to preserve
edge information. However, the TV regularization model also
has some shortcomings. One of them is that the TV model
favors a piecewise constant solution, which causes the process-
ing result in the flat regions of the image to be poor, and some
spatial features, such as textures and small details, are often
diminished with noise. Although the noise in the flat regions
can be reduced by adjusting the regularization parameter to a
large value, the edge and texture information will be blurred.
Another drawback is although the TV regularization model is
convex, it is not differentiable and is nonlinear. Therefore, it is
difficult to optimize it with some popular linear optimization
algorithms.

C. Proposed Algorithm

To overcome the aforementioned shortcomings of TV
regularization-based SR, in this paper, we propose a spa-
tial information weighted TV (SWTV) SR algorithm. The
basic theory of the proposed algorithm can be summarized
as follows. An effective spatial information extractor called
difference curvature, recently proposed by Chen et al. [43]
is used to extract the spatial information in the HR image.
For each pixel, a weighted parameter determined by the
spatial information is added to constrain the TV regularization
strength. For flat area pixels, a large weighted parameter is
set to suppress noise. On the contrary, for nonsmooth area
pixels, a small weighted parameter is set to preserve edge and
detailed information. To make the SWTV regularization easy
to optimize, the majorization—minimization (MM) approach,
which was first proposed in [44], and developed into the image
restoration and SR domain in [45]-[48], is used to optimize the
SWTV SR model. With the MM approach, the nonquadratic
SWTV model minimization problem is converted to successive
quadratic minimization problems and is then easy to optimize
with some popular linear optimization algorithms, such as
conjugate gradient (CG). Another contribution that should be
noted in this paper is that we first try to use two blind image
quality assessment indices to give an objective assessment of
the SR results when the original HR image is unknown. To the
best of our knowledge, no one has yet given a blind assessment
on the SR reconstruction results when the original HR image is
unknown. We think this is very important because the quality
assessment, just from the visual aspect, is not sufficient to
illustrate the worth of the reconstruction results.

It is noted that although some spatially adaptive TV models
have been proposed before [43], [49], they are all used
in image denoising problem. As compared with the image
denoising problem, the multiframe SR is more complex, which
is a process including image denoising, deblurring, and upsam-
pling, we think it is valuable and important to consider the
spatial information constraint in the mutiframe SR problem,
and it is the first time a spatially weighted TV multiframe
SR algorithm has been proposed. The spatial information
adaptive process has been integrated into the minimization—
majorization process, and the spatial information is updated
in each minimization—majorization iteration, which will give
a better spatial information extraction result and makes the
algorithm more robust.

D. Organization of This Paper

The remainder of this paper is organized as follows. In
Section II, our spatially weighted TV regularization SR al-
gorithm is presented in detail. The MM optimization method
is described in Section III. In Section IV, some experimental
results and discussion are presented and, finally, conclusions
are drawn in Section V.

II. SPATIALLY WEIGHTED TV SR

In this section, our spatially weighted TV SR algorithm is
presented. First, the TV model is revised, and then the spatially
weighted TV model is introduced.



YUAN et al.: MULTIFRAME SUPER-RESOLUTION EMPLOYING A SPATIALLY WEIGHTED TOTAL VARIATION MODEL 381

Fig. 2. SR results with different TV regularization strengths. (a) Original
HR image. (b) Best (with the highest PSNR value) TV SR result. (c) TV SR
result with large regularization strength.

A. TV Model

The TV model was first proposed by Rudin ef al. [36] in
image denoising, because of its advantages in preserving edge
and detailed information. For the HR image x, the TV model
can be defined as follows:

TV =Y/ (Alx)” + (Alx)? 3)

where Af’ and A} are linear operators corresponding to
horizontal and vertical first-order differences, respectively. At
pixel i, Alx = x; — x,4y, A¥x = Xx; — X}, where r(i) and
b(i) represent the nearest neighbor to the right, and below the
pixel, respectively.

Although the TV regularization has the advantages of pre-
serving edge and detailed information in the SR process, the
processing results in the flat region of the HR image are poor
and some “staircase effects” are produced in the flat area
[Fig. 2(b)]. Despite that, the noise in the flat regions can be
significantly reduced by adjusting the regularization parameter
A to a large value, but the edge and texture information will
be blurred [Fig. 2(c)].

From the above phenomenon, it is shown that the
regularization A in the TV model is spatially de-
pendent. Therefore, our spatially weighted TV regular-
ization model considers the spatial dependent property
of the TV regularization, will be introduced in detail
next.

B. Spatially Weighted TV Regularization

A very critical process in the realization of the spatially
weighted TV regularization is how to select a good spatial
information indicator, which can better detect the edge infor-
mation. Traditional spatial information indicators are mostly
based on the image gradient (first derivative), which cannot
effectively distinguish between edges and ramps. Therefore,
in this paper a spatial information indicator based on the sec-
ond derivative, which is called difference curvature, recently
proposed by Chen et al. [42] is used, and it has been proved
that this indictor can effectively distinguish edges from flat
and ramp areas.

For the ith pixel in the image, the difference curvature C;
is defined as follows:

C; = Hurm’ - |uas|‘ “4)

_ ,U«Jzuuxx + 2“xﬂyﬂxy + M?y:“«yy
n3+ i

(&)

Uy

W = 20y ey + [y
W3+ p1l

(6)

Uge

and where n and ¢ are the direction of the gradient and the
direction perpendicular to the gradient. In (5) and (6), ptx, iy,
Mxx> Myy, and py, stand for the first and second derivative
gradient information of the pixel, respectively. | | denotes the
absolute value operator.

With the spatial information extraction result using differ-
ence curvature, the definition process of the spatially weighted
TV regularization can be described as follows.

First, a spatially weighted matrix Wg is defined using the
difference curvature, which has the following formation:

ng 0 . 0
0 Wg2 e 0
Wg = : S ) (N
O 0 Wngtz

where Wg; is the spatial weight of the ith pixel in the high-
resolution image, and can be defined with the difference
curvature indicator as follows:

1
T 1+ BC;

Wg; (8)

where C; is the difference curvature value of pixel i, 8 is the
contrast factor. With the spatially weighted matrix Wg, the
spatially weighted TV model proposed in this paper can be
defined as follows:

SWTV(x) = Wg x TV(x)
—wex o/ (ak) + (a). @)

From (8) and (9), it is clearly seen that for the pixels in
smooth areas, because the C; value is close to zero, Wg; is
close to 1, which means that a large TV regularization strength
is enforced to these pixels, and then the noise in the flat and
ramp regions will be well suppressed. Conversely, for edge
and texture pixels, because the C; value is very large, Wg; is
small and almost close to zero, and this means that a weak
TV regularization strength is enforced to these pixels, so the
edge and texture will be well preserved.

Substituting U(x) in (2) by SWTV(x), presented in (9),
the cost function used in this paper can be written as
follows:

P
% = argmin {Z llye — DBMx||3 + k(SWTV(x))} . (10)
i=1

According to the analysis above, it is shown that the spa-
tially weighted TV SR model can automatically adjust the con-
tribution of the data fidelity item and the TV prior item with
the spatial information distributed differently at each pixel,
which causes it to effectively reduce the noise in flat regions,
and at the same time, preserve the edge and texture infor-
mation.
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III. MM OPTIMIZATION

The main idea of the MM optimization approach is to
replace the traditional nonquadratic function with a quadratic
and differentiable upper bound (majorizer) equation, and then
the optimization of the nonquadratic function can be replaced
with the iterative optimization of the majorizer equation.

To accomplish the MM idea on the SWTV SR model, we
first consider the following relationship:

b a+b
\/ab<a+ — Ja<
f

Letb = (Anx")*+(A%x™)? a = (Alx)+(Alx)’, applying
(11) to the SWTV model presented in (9), the majorizer
equation can be defined as follows:

an

I~ (AR (A1)
R \/(Ahxm)z AL
x|x™) = X .
Swrv 8 Ah m (A;Jxm)z
i \/ Ahx’”) + (A}’x’")z
Define w{', which has the formation
1
w! = . (13)
V(A & (Agam)®

The final majorizer equation can be defined as [46]

Gswrv(x[x™) = Wg x {(Rx)" W™ (Rx) } (14)

h m
gv }, wm = { A A ], A™ =diag(w]").

R" and RV represent two matrices that have the size of
HH, x H H,, such that R"x and R'x are the first-order
difference of x.

Incorporating (14) into (10) and replacing SWTV(x) with
Gswry(x|x™), the final majorizer function of (10) can be
written as follows:

where R = [

)4
G(x[x™) = {3 llyk — DBMixl|5 +
k=1

= (15)
A x Wg x (Rx)T W"(Rx))}.

For the majorizer function (15), because it is quadratic and
differentiable, minimization to x leads to the following linear
system:

(fj(DBMk)T(DBMk) +A x (Wg x ((Rx)TW”‘(Rx))> xm+D)
k=1

)4
=Y (DBM;)" ;.
k=1

(16)
For (16), the CG algorithm can be used to optimize it. In each
iteration, the spatially weighted parameter Wg; is adaptively
updated, with the purpose of extracting a more accurate spatial
information distribution. Finally, the optimization procedure is
concluded as follows.

Algorithm 1 MM based SWTV super-resolution algorithm
Initial the reconstruction image with the
bilinear interpolated image x©;
p P
Compute > (DBM;)"y; and > (DBM)T(DBM,),

k=1 k=1
iteration number m =0
While “MM stopping criterion”
not satisfied do
Compute W™ according (20)
Setting x"*! = x™;
While x*! does not satisfy “ CG stopping criterion”
do

Compute spatially weighted parameter

Wg; according (11) with x"*!
X! = CG iteration for system
Update Wg; according (11) with x"*!
end While
m=m+1;
end While

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the experimental results with the proposed
SWTV SR model, and some analysis and discussion are
presented.

A. Experimental Setting

Seven data sets were used to test the performance of the
proposed SWTV SR method. The first three experiments were
three simulated experiments with known HR images and the
following four experiments were the real data experiments. In
all experiments, the motion model is assumed to be the global
translational model.

In this paper, in the simulated experiments, we use the peak
signal-to-noise ratio (PSNR), the structural similarity (SSIM)
[50], [51], and a promising recently proposed full-reference
image quality assessment index called FSIM [52], to evaluate
the reconstruction results.

In the real data experiments, because the original HR image
was not obtained, the reconstruction results cannot be accessed
with the PSNR and SSIM indices. Therefore, the blind image
quality index (BIQI) proposed recently in [53], and the non-
referenced image quality assessment index Q-metric proposed
recently in [54], are used to give an objective assessment of
the reconstruction results. To the best of our knowledge, this
is the first time a blind assessment of the SR reconstruction
results has been undertaken when the true HR image cannot
be obtained. For these two indices, the higher the value, the
better the image quality.

To assess the relative merits of the proposed methodology,
we compare the proposed algorithm with Tikhonov regulariza-
tion, BTV regularization [28] and TV regularization [37], in
the simulated data experiments, while adding the comparison
of the bilinear interpolation (BI) results in the experiment
without the original HR image.

The termination condition of the CG procedure is set to be
le-5, and the termination condition of the MM procedure is
also set to be le-5. The resolution enhancement factor is set
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Fig. 3.
regularization. (f) SWTV regularization.

to be 2 in all the experiments. The regularization parameter
and other parameters in all the prior models are adjusted until
the best SR result is obtained. For the simulated experiments,
the best result is selected to be the one with the highest PSNR
value, and for the real data experiments, the best result is
selected to be the one with the highest Q metric value [54].

B. Experimental Results

1) Simulated Experiments: In the simulated experiments,
the four original HR images used are, respectively, the “aerial”
image with the size of 200 x 200, the “spot 5” image with the
size of 256 x 256, and the “cameraman” image with the size of
200 x 200. In the simulated process, with the degradation mode
described in Section I-A, the HR image was first shifted with
sub-pixel displacements to produce four images. The sequence
was then convoluted with a PSF of 5*5 window size and unit
variance, and down-sampled with a factor 2 in both the vertical
and horizontal directions. Finally, zero-mean Gaussian noise
was added to the sequence.

The reconstruction results of the simulated experiments are
presented in Figs. 3, 5, and 7. In these figures, (a) is the origi-
nal HR image, (b) is one of the down-sampled LR images, and
(c) shows the Tikhonov regularization model SR result. The
reconstruction results of the BTV regularization model, TV
regularization model, and the proposed SWTV regularization
model are, respectively, shown in (d)—(f). The detailed regions
cropped from these three figures are, respectively, presented in
Figs. 4, 6, and 8. The PSNR, SSIM values, and FSIM values
of the different algorithms are presented in Table I.

Among the four SR algorithms, it is shown that the proposed
SWTYV regularization model produces a better SR result. In
the edge area, the detailed information is well preserved,
while in the smooth area, the high-intensity noise is better

Reconstruction results of the “aerial” image. (a) Original HR image. (b) LR image. (c) Tikhonov regularization. (d) BTV regularization. (e) TV

TABLE I
PSNR, SSIM, AND FSIM VALUES OF DIFFERENT RECONSTRUCTION
METHODS IN SIMULATED EXPERIMENTS

Assessment Index | Tikhonov | BTV TV SWTV

PSNR (DB) 28.514 | 32.003 | 33.199 | 33.413

Aerial SSIM 0.86237 |0.88253 [ 0.89465 | 0.9379
FSIM 0.93323 | 0.9434 |0.95384 | 0.95346

PSNR (DB) 27.209 | 31.415 | 32.460 | 32.636

Spot 5 SSIM 0.88661 |[0.87006 | 0.90565 | 0.92432
FSIM 0.95675 | 0.9471 | 0.95808 | 0.95811
PSNR (DB) 26.806 | 27.788 |28.3777 | 28.65210

Cameraman SSIM 0.72531 |0.80399 | 0.90299 | 0.90653
FSIM 0.89357 |0.92598 | 0.94358 | 0.94217

suppressed. However, for the other three regularization models,
because the spatial information constraint is not considered
in the SR process, and an equal regularization strength is
used in the whole HR image, they cannot automatically adjust
the regularization strength between different spatial property
regions in the image, and the tradeoff among edge preserv-
ing, deblurring, and denoising cannot be adaptively balanced
in different HR image regions. Consequently, it is shown
that some noise still remains in the flat regions of the SR
results.

The good performance of the proposed SWTV regular-
ization model can also be illustrated by the PSNR, SSIM,
and FSIM values presented in Table 1. It is shown that the
SWTYV regularization produces the highest PSNR value, and
also has the highest SSIM value, which illustrates that the
proposed SWTYV regularization SR algorithm produces a better
reconstruction result, close to the original HR image, both
from gray value and image structure aspects. Although for
the FSIM index, the evaluation values in the “aerial” image
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{a) (b

Fig. 4. Detailed flat regions cropped from Fig. 3. (a) Tikhonov regularization. (b) BTV regularization. (¢) TV regularization. (d) SWTV regularization.

Fig. 5.
regularization. (f) SWTV regularization.

|‘|-

Reconstruction results of “spot5” image. (a) Original HR image. (b) LR image. (c) Tikhonov regularization. (d) BTV regularization. (e) TV

{d

Fig. 6. Detailed regions cropped from Fig. 5. (a) Tikhonov regularization. (b) BTV regularization. (c) TV regularization. (d) SWTV regularization.

and the “cameraman” image are slightly lower than the TV
model, the beneficial effect of the proposed algorithm can be
particularly seen in the visual effect, especially in the detailed
regions presented in Figs. 4, 6, and 8.

In (8), a parameter 8 is used to define the spatial information
weighted parameter Wg;, and the parameter 8 controls the
ability of the parameter Wg; to distinguish the edge and texture
area from the flat and ramp area. To show the effect of the
different parameter B on the SR result, in Table II we give the
PSNR and SSIM value when 8 is selected to be 0.005, 0.01,
0.05, 0.1, 0.5, and 1, respectively.

TABLE I
PSNR AND SSIM VALUES WITH DIFFERENT 8 VALUES IN EXPERIMENT 1

B 0.005 0.01 0.05 0.1 0.5 1
PSNR (DB) | 33.383 | 33.316 | 33.413 | 33.32 |33.223|33.303
SSIM 0.93633 | 0.93545 | 0.93779 | 0.93817 | 0.9370 | 0.9349

It can be seen in Table II that the PSNR and SSIM
values show little change with the change of the parameter S.
Therefore, in this paper, for all the experiments, the parameter
B is set to be 0.05.
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Fig. 7. Reconstruction results of “cameraman” image. (a) Original HR image. (b) LR image. (c) Tikhonov regularization. (d) BTV regularization. (e) TV

regularization. (f) SWTV regularization.

(a} - {b)

Fig. 8.
(f) SWTV regularization.

2) Real Data Experiments: In the real data experiments,
four real data sets obtained from the Multidimensional Signal
Processing Research Group of UCSC [55] are used to verify
the proposed algorithm. In order to reduce the computational
load, we just select the first ten frames in the four real data
sets for our experiment. The well-performing registration
approach presented in [56] and [57] is used as the motion
estimation method.

The reconstruction results of these four real data sets are,
respectively, shown in Figs. 9-15. In these figures, (a) is
one frame of the LR image sequence, (b) is the bilinear
interpolation results; the reconstruction results using Tikhonov
regularization, BTV regularization, and TV regularization are
shown in (c)—(e), respectively; and (f) presents the proposed
SWTYV reconstruction result.

From these figures, it is shown that the resolution of the
image has certainly increased after using the SR technique,
compared with the results of the BI results. In the Tikhonov
regularization SR result, noise is not suppressed thoroughly,
and some noise is still present in the flat regions. For the BTV
regularization-based SR reconstruction result, although the

. {dp

Detailed regions cropped from Fig. 7. (a) Original HR image. (b) LR image. (c) Tikhonov regularization. (d) BTV regularization. (¢) TV regularization.

TABLE III
BIQI AND Q-METRIC VALUES OF DIFFERENT RECONSTRUCTION
METHODS IN REAL DATA EXPERIMENTS

LR Sequence | Assessment Index | Tikhonov | BTV TV SWTV
EIA BIQI 33.342 | 68.155 | 71.683 | 90.218
Q-metric 201.0 180.01 | 215.63 | 241.62
Surveillance BIQI 26.14 16.725 | 39.069 | 45.85
Q-metric 163.85 | 128.30 | 166.25 | 170.38
Alpaca BIQI 72.124 | 42939 | 57.98 | 56.14
Q-metric 160.83 | 119.36 | 147.735 | 163.45
Disk BIQI 93.364 | 67.571 | 92.312 | 109.24
Q-metric 122.90 | 86.793 | 123.47 | 131.92

noise is suppressed to some extent, the detailed information,
such as the number “200” in the HR image of the “EIA”
image and the letter “color” in the “disk” sequences, is not
well preserved. In the TV regularization SR reconstruction
result, although the edge and detailed information is well
maintained, noise in the flat regions is not well suppressed
and some “artifacts” are produced. In the proposed SWTV
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Fig. 9. Reconstruction results of the “EIA” image sequence. (a) LR image. (b) Bilinear interpolation. (c) Tikhonov regularization. (d) BTV regularization.

(e) TV regularization. (f) SWTV regularization.

(dy

Fig. 10. Detailed regions cropped from Fig. 9. (a) LR image. (b) Bilinear interpolation. (c) Tikhonov regularization. (d) BTV regularization. (e) TV

regularization. (f) SWTV regularization.

TABLE IV
BIQI AND Q-METRIC VALUES OF DIFFERENT RECONSTRUCTION
METHODS I “‘EIA’’ EXPERIMENT WHEN THE REGULARIZATION
PARAMETER 1 =20

Assessment Index TV SWTV
BIQI 99.407 | 99.692
Q-metric 210.97 | 237.58

regularization reconstruction result, not only is noise in flat
regions well reduced, but also the edge information is better
preserved than with the other three reconstruction methods.
The assessment results are shown in Table III. It can be
seen that the proposed SWTV regularization produces almost
all of the highest BIQI values and Q-metric values, which is
consistent with the visual effect presented in Figs. 9-15.

C. Discussion

1) Robustness with Different Noise Intensity: To validate
the robustness of the proposed SWTV regularization model
with changes in the noise intensity, in Fig. 16(a) and (b), we
give two plots which present the change of the PSNR value
with different noise variance, from 0.001 to 0.005, in simulated
experiments 1 and 2, respectively. From the two figures, it is
shown that the proposed SWTV regularization model is robust
with regard to changes in the noise level and produces higher
PSNR values than the TV regularization under different noise
intensity.

2) Robustness with Regularization Parameter A: In the SR
model presented in (2), the regularization parameter A plays a
very important role. It controls the relative contribution of the
data fidelity item and the prior model item. If the value selected



YUAN et al.: MULTIFRAME SUPER-RESOLUTION EMPLOYING A SPATIALLY WEIGHTED TOTAL VARIATION MODEL 387

Fig. 11.
regularization. (e) TV regularization. (f) SWTV regularization.

Reconstruction results of the “surveillance” video sequence. (a) LR image. (b) Bilinear interpolation. (c) Tikhonov regularization. (d) BTV

Fig. 12. Reconstruction results of the “alpaca” video sequence. (a) LR image. (b) Bilinear interpolation. (c) Tikhonov regularization. (d) BTV regularization.

(e) TV regularization. (f) SWTV regularization.

is too small, the noise will not be well suppressed; inversely, if
the value selected is too large, the reconstruction result will be
blurred. However, in the proposed SWTV SR model in (10),
because the spatial information distribution in the HR image is
added to constrain the regularization strength of the TV model,
the reconstruction results are not so sensitive to the change
of regularization A. To show the robustness of the proposed
SWTYV regularization with the regularization parameter A and
the effectiveness of the spatial information constraint, we plot
the change of the PSNR value versus the change of the
parameter A in simulated experiment 1 and experiment 2, as

shown in Fig. 17(a) and (b), and the plot of the change of
PSNR value versus the change of regularization parameter A
in the TV regularization is also presented to give a comparison.
From the two plots, it is shown that the proposed SWTV
regularization is robust with the change of the parameter X
to a large value, and the PSNR value remains little changed
when the regularization parameter is set to be a large value.
However, for the traditional TV regularization, the change of
the regularization parameter A has a very large effect on the
reconstruction results. In particular, the PSNR value decreases
sharply when the regularization parameter becomes large.



388

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 3, MARCH 2012

T DL T T YT TR T

Frod

rrod
5!='I-ﬂ SI-M:I

-___--:
)}

Feod
Stovice
i

Ul'i‘-m’t-' umﬁw umwn'

Food
s‘im

- ———
Y

-~

Fig. 13.
regularization. (f) SWTV regularization.

wEvice
= >
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Fig. 14. Reconstruction results of the “disk” video sequence. (a) LR image. (b) Bilinear interpolation. (c) Tikhonov regularization. (d) BTV regularization.

(e) TV regularization. (f) SWTV regularization.

The robustness with the regularization parameter and the
effectiveness of the spatial information constraint can also be
illustrated in Fig. 18, which presents the SR results when
a very large regularization parameter (XA 20) is used
in the TV regularization and SWTV regularization in the
“EIA” sequences experiment, and the reconstruction results
are, respectively, presented in Fig. 18(a) and (b). It is shown
that the SWTV regularization gives a clearer result when a
very large regularization parameter (A = 20) is used, which
illustrates that a good SR result can be had with the SWTV
model, even if the regularization parameter A is selected to

be a large value. However, for the TV model, when the reg-
ularization parameter becomes too large, the SR result looks
too blurred. The objective assessment of the reconstruction
results in Fig. 18 is presented in Table IV. It shows that
the SWTV SR result has a higher BIQI value and Q-metric
value, which is consistent with the visual effects shown in
Fig. 18.

The comparison above illustrates the effectiveness of the
spatial information constraint; the consideration of the spatial
information constraint is very necessary in the SR reconstruc-
tion process.
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Fig. 16. Change of the PSNR value with different noise levels, for TV regularization and SWTV regularization. (a) Simulated experiment 1. (b) Simulated
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(b) Simulated experiment 2.

3) A Comparison Between Difference Curvature and
Gradient: In this paper, a newly proposed spatial information
extractor called difference curvature is used to detect the
spatial information distribution in the image and construct the
SWTV model. In this part, to show the better performance
of the difference curvature in constructing the SWTV model,
compared to the gradient information (first derivative), we
plot the reconstruction PSNR value using the difference
curvature-based SWTV model and image gradient-based
SWTV model, in simulated experiments 1 and 2, respectively,
under different regularization parameters. The comparison
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Change of the PSNR value versus the regularization parameter A in TV regularization and SWTV regularization. (a) Simulated experiment 1.

results are shown in Fig. 19(a) and (b); (a) is the comparison in
simulated experiment 1 and (b) is the comparison in simulated
experiment 2.

From the two plots, it is shown that the difference curvature
spatial information extractor presents a better SR performance
than the image gradient, under different regularization pa-
rameter settings. The reason is that the difference curvature
has better ability to discriminate edge and texture informa-
tion with flat and ramp information, and it is more robust
with noise to extract spatial information than the image
gradient.
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Reconstruction results of the “EIA” image sequences using a large parameter A = 20. (a) TV regularization. (b) SWTV regularization.

B | - Gradinon |
[ Dilferemce curviluse |

4 B B F &% MU N oE iR TN
R

ihy

Fig. 19. Comparison of the performance of difference curvature and image gradient with different regularization parameters. (a) Simulated experiment 1.

(b) Simulated experiment 2.

V. CONCLUSION

In this paper, we proposed a SWTYV regularization-based SR
algorithm. The spatial information extracted by a newly pro-
posed difference curvature edge indicator is used to constrain
the SR reconstruction process. For the flat region, large TV
regularization is enforced to reduce noise; for the edge area,
a small TV regularization is enforced to preserve the edge
and detailed information. Also, the MM algorithm is used to
optimize the SWTV SR model. Experimental results presented
in Section V illustrate that the presented SWTYV regularization
not only efficiently reduces the noise in the flat regions, but
also effectively preserves the edge and detailed information.
Finally, some discussion and analysis about the experiment
results are also presented, which demonstrate that the proposed
SWTV regularization model is robust with changes in the
noise level, and less sensitive to the regularization parameter
A, because of the consideration of the spatial information
constraint.

While the proposed spatially weighted SR method can be
improved from some aspects, such as the considering of a
more complex motion model, and combining with the sparse
representation prior model in [41] and [42], and others, which
will be on our future research agenda.
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