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Regional Spatially Adaptive Total Variation
Super-Resolution With Spatial Information Filtering

and Clustering
Qiangqiang Yuan, Liangpei Zhang, Senior Member, IEEE, and Huanfeng Shen, Member, IEEE

Abstract— Total variation is used as a popular and effective
image prior model in the regularization-based image processing
fields. However, as the total variation model favors a piece-
wise constant solution, the processing result under high noise
intensity in the flat regions of the image is often poor, and
some pseudoedges are produced. In this paper, we develop
a regional spatially adaptive total variation model. Initially,
the spatial information is extracted based on each pixel, and
then two filtering processes are added to suppress the effect
of pseudoedges. In addition, the spatial information weight is
constructed and classified with k-means clustering, and the reg-
ularization strength in each region is controlled by the clustering
center value. The experimental results, on both simulated and
real datasets, show that the proposed approach can effectively
reduce the pseudoedges of the total variation regularization in
the flat regions, and maintain the partial smoothness of the
high-resolution image. More importantly, compared with the
traditional pixel-based spatial information adaptive approach,
the proposed region-based spatial information adaptive total
variation model can better avoid the effect of noise on the spatial
information extraction, and maintains robustness with changes
in the noise intensity in the super-resolution process.

Index Terms— Majorization–minimization, regional spatially
adaptive, super-resolution, total variation.

I. INTRODUCTION

H IGH-RESOLUTION (HR) imagery plays a key role in
many diverse areas of application, such as medical imag-

ing [1], remote sensing [2], [3], and video surveillance [4].
However, because there are a number of limitations with
both the theoretical and practical aspects, such as the sensor
resolution and high cost, amongst other things, it is obviously
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Fig. 1. Degradation process of HR image and super-resolution process.

more difficult to obtain a HR image than a low-resolution
(LR) image. Consequently, researchers have explored ways to
produce a HR image from the image processing aspect, and,
in recent decades, super-resolution (SR) technology, which
produces a HR image from single-frame or multiframe LR
images, has been proposed. In this paper, our research is
mainly focused on the multiframe image SR problem: the
process of reconstructing a HR image from a sequence of LR
images.

A. Problem Formulation

Assume that a HR image x is shifted, blurred, downsampled,
has some additive noise, and produces a sequence of LR
images yk (Fig. 1). The standard image degradation model
for the problem of SR is in the form

yk = DBk Mk x + nk k = 1, . . . , p (1)

where yk is the kth LR image rearranged in lexicographic
order, which has the size of L1 L2 × 1, and x is the original
HR image, which is also rearranged in lexicographic order,
and which has the size of H1H2 × 1. Mk stands for the warp
matrix with size H1H2 × H1H2, Bk is the blurring matrix with
size H1 H2 × H1 H2, D is the downsampling matrix with size
L1 L2 × H1 H2, vector nk is the system noise with size L1 L2 ×
1, which, in this paper, is assumed to be Gaussian additive
noise with zero mean, and p represents the number of LR
images. In this paper, we assume that the blurring matrix Bk

remains the same between the LR images yk . The purpose of
multiframe SR reconstruction is to reconstruct the HR image
x from sequences of LR images yk , as shown in Fig. 1.

1) Previous Algorithms: In recent decades, the multiframe
SR problem has been widely explored by many researchers,
and considerable progress has been achieved. Tsai and
Huang [5] first proposed to use multiframe SR theory to
enhance the resolution of multitemporal Landsat TM images
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in the frequency domain. After that, many other improved
frequency domain SR algorithms have also been proposed [6],
[7]; however, for the frequency domain approaches, although
they have the advantage of a short computation time, it
is difficult to add the prior information of the HR image.
Therefore, researchers have attempted to solve the SR problem
in the spatial domain, and various algorithms have been
developed, such as the projection onto convex sets (POCS)
approach [8], [9], maximum likelihood (ML) approach [10],
maximum a posteriori (MAP) approach [11], [12], joint MAP
approach [13], [14], and the hybrid approach [15]. Recently,
some excellent SR algorithms that do not rely on exact motion
estimation have been proposed [16], [17], and very promising
SR results were produced, especially when complex motions
are contained in the LR image sequences. In addition, wavelet
domain SR methods have also been proposed [18], [19].
Reviews of the state of the art of SR methods can be found
in [20]–[24].

Because SR is an ill-posed problem, it is wise to incorporate
some prior distribution of the HR image to constrain the
SR process and obtain a stable and relative optimal solution.
Therefore, in recent decades, many prior models of the HR
image have been proposed. The most widely used prior model
is the Tikhonov regularization model [13], which is used
to guarantee the smoothness property of the original HR
image. However, although the Tikhonov model is simple to
realize and easy to solve, it has the drawback of blurring the
edges Therefore, many edge-preserving prior image models
have been proposed, including the Huber–Markov random
field (Huber-MRF) model [11], total variation (TV) model
[25]–[27], bilateral total variation (BTV) model [21], and the
weighted Markov random field (WMRF) model [4]. Recently,
sparse representation-based prior models have been proposed
and have shown very promising single image restoration and
SR results [28]–[31]. Among these models, the TV model
is a very popular one because of its strong ability of edge
preserving. However, the traditional TV model also has its
shortcoming in that because it assumes that the image is
piecewise smooth, some “pseudo-edges,” which are also called
the “staircase effect,” may be produced in the smooth regions,
especially in high noise or blur conditions [32].

Therefore, to overcome the shortcoming mentioned above,
some spatially adaptive TV (SATV) models, which use the
spatial information to constrain the regularization strength
in each pixel, have been developed. The basic idea of the
spatially adaptive regularization model is to use the spatial
information distributed in the image to constrain the regular-
ization strength. A weak regularization strength is enforced in
the edge pixels to preserve detail information, and a strong
regularization strength is enforced in the homogeneous area
pixels to effectively suppress noise. The first spatially adaptive
idea for a TV model can be attributed to Strong et al. [33],
where the authors proposed to use a gradient image to con-
strain the TV regularization strength in different pixels. A
weak regularization strength is enforced in the edge pixels with
a large gradient to preserve detail information, and a strong
regularization strength is enforced in the flat area pixels with
a small gradient to effectively suppress noise and the “pseudo-
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Fig. 2. Outline of proposed RSATV model. Red dashed line: our contribution.

edges.” Clearly, the performance of this model is largely
dependent on the gradient information extraction process.
Because the gradient information is based on a pixel unit,
if high-intensity noise is included in the observation image, a
noise pixel will be falsely recognized as an edge pixel and a
weak regularization strength will be enforced, which will cause
the noise and “pseudo-edges” in the flat regions to be poorly
suppressed. Recently, Chen et al. [34] proposed a new edge
indicator called “difference curvature,” instead of the gradient
information, to further improve Strong’s method. However,
although the difference curvature indicator works better than
the gradient information, it is also based on a pixel unit, and
cannot work well in high noise intensity conditions. Guo et al.
[35] proposed a local mutual information weighted TV model
to denoise a magnetic resonance image (MRI), but this
approach needs a regulating image to compute the local mutual
information, which limits it to use with MRI images. Under the
variational Bayesian framework, Chantas et al. [36] developed
a product of a spatially weighted TV model, in which the
image restoration and spatially weighted parameter estimation
are executed simultaneously. Chopra et al. [37] proposed to
adapt the smoothly clipped absolute deviation (SCAD) penalty
theory from the statistical community to improve the SATV
model. In addition, the SATV model has also been used on
color image sharpening-demosaicking problems [38].

B. Proposed Algorithm

In this paper, we aim to construct the spatial constraint from
a regional perspective, and a regional spatially adaptive total
variation (RSATV) model is proposed. The main idea and
contribution of the RSATV model can be concluded as follows,
and the outline of the proposed RSATV model is specifically
presented in Fig. 2.

To suppress the effect of the noise, a median filter process
is enforced on the pixel-based spatial information, before it is
used to construct the spatial weight, After the spatial weight is
computed, it is mean filtered and classified with the k-means
clustering method, and the spatial weight in different image
regions is defined with the cluster center value of each spatial
information class, instead of each pixel, as in the traditional
SATV models. This means that for different regions, different
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regularization strengths are enforced, which maintains the
homogeneous nature of the spatial information and further
suppresses the effect of noise. For the optimization process, the
majorization-minimization (MM) algorithm is adopted. In each
iteration, both filtering and clustering processes are executed,
and the spatial weight is updated iteratively, which maintains
a more accurate and robust regional spatial information con-
straint.

C. Organization of This Paper

The remainder of this paper is organized as follows. The
regularization-based SR model is described in Section II. In
Section III, our RSATV model is presented in detail. The
optimization process is described in Section IV. In Section V,
the experimental results and a discussion are presented and,
finally, conclusions are drawn in Section VI.

II. TOTAL VARIATION REGULARIZED SUPER-RESOLUTION

In this section, we introduce the regularized SR model and
the TV regularization model.

A. Regularized Super-Resolution Model

For the degradation model presented in (1), because the
SR process is an ill-posed problem, some prior information
about the HR image should be added to guarantee a stable and
relative optimal solution. A popular and effective approach to
this problem is to use the regularization-based least squares
method, which has the following formulation [39]

x̂ = arg min
x

{ p∑
k=1

‖yk − DBMk x‖2
2 + λP(x)

}
. (2)

In (2), p represents the number of LR images,
∑p

k=1‖yk − DBMk x‖2
2 is the data fidelity item, which stands for the

fidelity between the observed LR image and the original HR
image, and P(x) is the regularization item, which gives a prior
model of the HR image x . λ is the regularization parameter,
which controls the trade-off between the data fidelity and prior
item.

B. Total Variation Regularization

In (2), the regularization item P(x), which stands for the
prior distribution of the HR image, plays a very important
role in the SR process. It controls the perturbation of the
solution, solves the ill-posed problem for SR reconstruction,
and guarantees a stable HR estimation. Among the many
proposed prior models, the TV model is very popular and
effective because of the property of edge preserving [40]. For
the HR image x , the TV model can be defined as follows

TV(x) =
∑

i

√(∇h
i x

)2 + (∇v
i x

)2 (3)

where ∇h
i and ∇v

i are linear operators corresponding to the
horizontal and vertical first-order differences, respectively.
At pixel i , ∇h

i x = xi − xr(i), ∇v
i x = xi − xb(i), and r(i)

and b(i) represent the nearest neighbor to the right and below

the pixel, respectively. The TV model presented in (3) is often
defined as an isotropic total variation model, which means it is
unaffected by rotation, reflection and changes in the position
of an image [41]. Correspondingly, the anisotropic TV model
is also defined as

TV(x) =
∑

i

∣∣∣∇h
i x

∣∣∣ + ∣∣∇v
i x

∣∣ . (4)

Usually, an isotropic TV model is preferred over the
anisotropic ones [41], [42]. Therefore, in this paper, an
isotropic TV model is used.

Substituting P(x) in (2) by TV(x), as presented in (3), the
TV SR problem can be written as

x̂ = arg min
x

{ p∑
k=1

‖yk − DBMk x‖2
2 + λTV(x)

}
. (5)

III. REGIONAL SPATIALLY ADAPTIVE TOTAL VARIATION

MODEL

In this section, our regional spatially adaptive total variation
(RSATV) model is introduced in detail.

A. Spatial Information Extraction and Filtering

For a given image x , we first extract the edge information
distributed in the image. In this paper, the difference curvature
indicator proposed in [34] is used. It has been proved that this
indicator can effectively distinguish edges from flat and ramp
areas in the image, and it performs better than the traditional
gradient operator [34]. The definition of the difference curva-
ture indicator is introduced as follows.

For the i th pixel in the image x , the difference curvature
Ci is defined as

Ci = ∣∣∣∣uηη

∣∣ − |uεε|
∣∣ (6)

where:

uηη = u2
xux x + 2ux uyuxy + u2

yuyy

u2
x + u2

y
(7)

uεε = u2
yux x − 2ux uyuxy + u2

xuyy

u2
x + u2

y
(8)

where η and ε are the direction of the gradient and the
direction perpendicular to the gradient. In (7) and (8), ux ,
uy , ux x , uyy , and uxy stand for the first and second derivative
gradient information of the pixel, respectively. | | denotes the
absolute value operator. uηη and uεε represent the second
derivatives in the direction of the gradient ∇u and in the
direction perpendicular to ∇u. The behavioral analysis of the
difference curvature can be concluded as follows [34].

1) For edges,
∣∣uηη

∣∣ is large and |uεε| is small, so Ci is
large.

2) For flat and ramp regions,
∣∣uηη

∣∣ and |uεε| are both small,
so Ci is small.

3) For noise pixels,
∣∣uηη

∣∣ and |uεε| are both large, so Ci is
small.

Before using the difference curvature information to con-
struct the spatial weight, the difference curvature information
is filtered with a median filter. The reason why the median
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Fig. 3. Neighborhood of Ci, j .

filter is used will be explained specifically in the last part of
this section. For example, for a 3 × 3 neighborhood window
around Ci, j (Fig. 3), the median value of its neighborhood
pixel is selected as the filtering result

Vi = median(Ci−1, j−1, Ci−1, j · · · Ci+1, j , Ci+1, j+1). (9)

B. Spatially Weighted Parameter Construction

After the spatial information is extracted and filtered, the
following process is used to relate the spatial information of
each pixel to the regularization strength of the TV model. In
this paper, we construct a spatially weighted parameter Wi for
each pixel, as follows

Wi = 1

1 + βVi
(10)

where Vi is the median filtered difference curvature value of
pixel i , and β is a contrast factor. For the TV model in (3),
we add the spatially weighted parameter in the following way

PSATV(x) =
∑

i

(
Wi ×

√(∇h
i x

)2 + (∇v
i x

)2
)

(11)

x̂ = arg min
x

{ p∑
k=1

‖yk − DBMk x‖2
2 + λ × PSATV(x)

}
. (12)

From (10)–(12), it is shown that the spatially weighted
parameter Wi can adaptively adjust the regularization strength
of the TV model in different pixels in the image. For the
flat region pixels, because the difference curvature Vi is
small, the weighted parameter Wi will be large, and a strong
regularization strength will be enforced on them to suppress
noise. Conversely, for edge region pixels, as the difference
curvature Vi is large, the weighted parameter Wi will be small,
and a weak regularization strength will be enforced on them
to preserve edge information.

C. Spatially Weighted Parameter Filtering and Clustering

Next, to automatically extract the flat regions and realize
the spatially adaptive idea from a regional perspective, we
propose to classify Wi with a k-means clustering approach,
which has also been used in clustering based denoising

Fig. 4. k-means clustering process of spatial weight Ui .

problems [42], [43]. We expect the pixel-based spatial weight
Wi to be divided into not necessarily contiguous regions,
and each region will contain pixels with a similar spatial
weight. Finally, the regularization strength of each pixel in
the same clusters is controlled by the cluster center value. In
the following paragraphs, the detail procedure is given.

Firstly, the spatially weighted parameter Wi is smoothed
with a mean filter to help the clustering

Ui = 1

w2

w2∑
i=1

Wi (13)

where w is the small window size used in the mean filter.
After filtering, it is classified with k-means clustering.

It is assumed that, with k-means clustering, the spatially
weighted parameter Ui is classified into n clusters, and the
cluster center value of the cluster j is denoted as μ j , j =
(1, 2, . . . , n). For example, as is shown in Fig. 4, with the
k-means clustering, the spatial weight Ui is classified into
five clusters. The cluster with the largest cluster center value
is determined to be a flat part, because using the k-means
clustering approach, the pixels with a large spatial weight Ui

will be grouped together, and the cluster center value will also
be the largest. Therefore, for each cluster, the cluster center
value μ j is known and can be used to control the regularization
strength. It can be clearly seen from Fig. 4 that, with the
clustering process, a flat part can be automatically extracted
and a large regularization strength can be easily enforced on it.

For each region, because the cluster center value μ j is
known, the final spatial weight is defined as follows

U region
i =

{
τ × μ j , if i ∈ flat region
μ j , if i ∈ detail region

(14)

where τ is a constant parameter which helps to control the
regularization strength and guarantee that a large regularization
strength is enforced in the flat regions of the image.

From the above description, it can be seen that in the flat
regions of the image, a large spatial weight value can enforce
a strong regularization strength to suppress noise and the
“pseudo-edges” phenomenon. Conversely, in the detail regions
of the image, a small spatial weight parameter can guarantee a
weak regularization strength to preserve the detail information.

After the spatially weighted parameter is constructed for
each spatial region of the image, the RSATV model used in
this paper can be defined as

RSATV(x) =
∑

i

(
U region

i ×
√(

�h
i x

)2 + (
�v

i x
)2

)
. (15)
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison between mean filter and median filter in iteration. (a) One of the HR images in iteration. (b) Spatial information in (a). (c) Mean filter
result on (b). (d) Median filter result on (b). (e) Regional spatial weight constructed from (c). (f) Regional spatial weight constructed from (d).

D. Reason Why a Median Filter is Used

In Section III-A, a median filter is used to reduce the noise
or artifacts in the spatial information Ci . The reason why a
median filter is used here is strongly related to the structure
of Ci . In our method, the HR image is solved iteratively,
the spatial information is extracted in all the iterations, and
the “pseudo-edges” are also reduced iteratively. Over the first
few iterations, because of the effect of the noise, the spatial
constraint is not accurate, causing the “pseudo-edges” to still
exist in the reconstruction image. Consequently, the “pseudo-
edges” will also be present in the spatial information Ci

extracted from the SR image. For the “pseudo-edges,” they
can be more suitably reduced with a median filter than a mean
filter smoothing.

Fig. 5 is a comparison between a mean filter and a median
filter in the iteration. From the figure, it can be seen that
some “pseudo-edges” appear in the reconstruction image in
each iteration, which can be seen more clearly from the
spatial information extraction result Ci in (b). If a mean
filter is used on Ci , we can see that although the “pseudo-
edges” in the flat region are partially suppressed, the edge
and texture information is smoothed. However, with a median
filter, not only are the “pseudo-edges” in the flat region well
suppressed, but this is also done without smoothing of the
detail information. The advantage of a median filter is also
reflected in the clustering results of (e) and (f), where it can
be seen that the regional spatial weight produced by a median
filter is more reasonable.

Fig. 6 is a comparison between the final reconstruction
results with mean and median filters. This shows that a more
accurate spatial constraint is produced with a median filter,
and a better reconstruction image is also produced.

Fig. 6. Comparison between mean filter and median filter on final SR results.
Noise variance = 18.

IV. MAJORIZATION–MINIMIZATION OPTIMIZATION

In this paper, the RSATV SR model is optimized with
the MM approach proposed in [44]–[47]. The main idea of
the MM optimization approach is to replace the traditional
nonquadratic function with a quadratic and differentiable upper
bound (majorization) equation, and then the optimization of
the nonquadratic function can be replaced with the iterative
optimization of the majorization equation [47].

To accomplish the MM idea with the RSATV model, we
first consider the following relationship

√
ab ≤ a + b

2
→ √

a ≤ a + b

2
√

b
. (16)

Let xm be the current iterated image, and x is the HR
image to be solved in the next iteration. Let b = (∇h

i xm
)2 +(∇v

i xm
)2

, and a = (∇h
i x

)2 + (∇v
i x

)2. Applying (16) to the
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RSATV model in (15), the functional majorization of the
RSATV model in (15) can be defined as

GRSATV(x |xm) =
{

1

2

∑
i

{
U region

i

×
(∇h

i x
)2 + (∇v

i x
)2 + (∇h

i xm
)2 + (∇v

i xm
)2√(∇h

i xm
)2 + (∇v

i xm
)2

⎫⎬
⎭

⎫⎬
⎭. (17)

In (17), because xm is known, (17) can be further written as

GRSATV(x |xm) =
{

1

2

∑
i

{
U region

i

×
(∇h

i x
)2 + (∇v

i x
)2√(∇h

i xm
)2 + (∇v

i xm
)2

⎫⎬
⎭ + C

⎫⎬
⎭ (18)

where C is a constant. Define θm
i , which has the formation

θm
i = 1√(∇h

i xm
)2 + (∇v

i xm
)2

. (19)

Let R =
[

Rh

Rv

]
, Qm =

[
	m

	m

]
and 	m = diag(θm

i ). Rh

and Rv represent two matrices that have a size of H1H2 ×
H1H2, such that Rh x and Rv x are the first-order differences
of x . Equation (18) can be further written as

GRSATV(x |xm) =
{

1

2

∑
i

{
U region

i

×θm
i ×

((
Rh x

)2

i
+ (

Rv x
)2

i

)}
+ C

}
. (20)

Finally, (20) can be written as

GRSATV(x |xm) =
{
(Rx)T QmU(Rx)

}
(21)

U = diag(U region
i ). (22)

Incorporating (21) into (2) and replacing P(x) with
GRSATV(x |xm), the final functional majorization of the whole
cost function can be written as

G(x |xm)

=
{

2
p∑

k=1

‖yk − DBMk x‖2
2 + λ × ((Rx)T QmU(Rx)

}
. (23)

For (23), because it is quadratic and differentiable, mini-
mization with respect to x leads to the following linear system

p∑
k=1

(DBMk)
T (DBMk) + λ × ((R)T QmU(R))x (m+1)

=
p∑

k=1

(DBMk)
T yk . (24)

For (24), the conjugate gradient (CG) algorithm can be
used for the optimization. In each MM iteration, the regional
spatially weighted parameter U region

i is updated. It is also
important to mention that the MM framework for the RSATV

(a) (b) (c) (d)

Fig. 7. Original images used in simulated experiments. (a) Cameraman
image. (b) Aerial image. (c) Barbara image. (d) House image.

model will lead to the same result as the iterative reweighted
norm (IRN) algorithm proposed in [48], which can also be
used to optimize the RSATV model.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experiment Setting

1) Experiment Data: In our experiments, four simulated
datasets and two real experiment datasets are used to verify the
effectiveness of the proposed algorithm. The dynamic range
of the six datasets is between 0 and 255.

The four original HR images used are, respectively, the
“cameraman” image, with a size of 200 × 200, the “aerial”
image, with a size of 200 × 200, the “Barbara” image, with
a size of 256 × 256, and the “house” image, with a size of
256×256. The four original HR images are respectively shown
in Fig. 7(a)–(d). In the real data experiments, two datasets
are used to verify the proposed algorithm. One dataset is the
“EIA” image sequence obtained from the Multidimensional
Signal Processing (MDSP) Research Group of UCSC [49],
which consists of 16 frames with a size of 90 × 90. The other
dataset is the “surveillance” video sequence, which was also
provided by the MDSP Research Group of UCSC, and consists
of 15 frames with a size of 66 × 76. In order to reduce the
computational load, we just select the first 10 frames in the
two real datasets. The well-performing registration approach
presented in [50] is used as the motion estimation method.

2) SR Quality Evaluation Index: In the simulated experi-
ments, we use the peak signal-to-noise ratio (PSNR) and the
structural similarity (SSIM) index to evaluate the simulated
reconstruction results. The PSNR is employed to evaluate
the gray value similarity, and the SSIM index, as proposed
by Wang et al. [51], [52], is used to evaluate the structural
similarity.

3) Parameter Setting: For the proposed RSATV model, in
all the experiments, the filtering window size in the median
filter process in (9) is set at 7×7, and the mean filter window
size in (13) is set at 3 × 3. The regularization parameter λ
and the parameter τ in (14) are adjusted until the best SR
results are obtained. In all the experiments, the parameter β
in (10) is set at 0.05, and the spatial weight parameter cluster
number n (see Section III-C) is set at 5. In Section V-C, we
also present a discussion on the effects of the parameter τ and
cluster number n on the final SR performance, and give some
advice about the setting of these parameters.

The termination condition of the CG procedure is set at
1e-5, and the termination condition of the MM procedure is
also set at 1e-5. The resolution enhancement factor is set at
2 in all the experiments.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Comparison of denoising results using different methods. (a) Original image. (b) Noisy image: Noise variance = 18. (c) TV [26]. (d) SATV [33].
(e) SCAD [37]. (f) ATV [34]. (g) PSATV. (h) RSATV.

B. Experimental Results

1) Simulated Image Denoising Experiments: For the degra-
dation model in (1), if we do not consider the motion, blurring,
and downsampling processes, and just consider the additive
noise, the model will become

y = x + n. (25)

Then the SR problem is degraded to an image denoising
problem, and the regularization-based denoising model can be
expressed as follows

x̂ = arg min
x

{
‖y − x‖2

2 + λP(x)
}
. (26)

Therefore, the proposed RSATV model is first tested on
an image denoising problem. To verify its effectiveness, it is
compared with the TV model in [26], and some other spatially
adaptive models, including the SATV model in [33], the SCAD
model in [37], the ATV model in [34], and the PSATV model
in (11). The “aerial” image is selected as the experiment data.
In all these methods, the regularization parameter is adjusted
until the best denoising result is obtained.

To test the noise robustness of the different algorithms, the
denoising results with different noise variances (8, 14, and
18, respectively) are given. In Fig. 8, the denoising results
with a noise variance of 18 are shown, and in Table II, the
quantitative evaluation results under all the different noise
conditions are given. From Fig. 8, it can be seen the proposed
RSATV model gives the best denoising results among the
five spatially adaptive TV models. In the other four models,
because the spatial information is all extracted with a pixel
unit, and the extraction process is deeply affected by noise
pixels, which results in the spatial constraint being uncor-
rected, the noise in the flat regions is not well suppressed.
In the high noise intensity condition, in particular, the pixel-
based spatially adaptive TV model performs even worse than

the traditional TV model. However, in the RSATV model,
because the spatial information is filtered, and, meanwhile,
the spatial constraint is enforced with a region unit with the
help of the k-means clustering process, the noise in the flat
regions is well reduced, and the edge and texture information
is also well preserved. The better performance of the RSATV
model can also be seen in the quantitative evaluation results in
Table I and the difference image between the denoising results
and the ground truth image in Fig. 9. It can be seen that the
RSATV model gives the highest PSNR and SSIM values at
all the different noise intensities, which illustrates the noise
robustness of the proposed model. Meanwhile, the difference
image in Fig. 9 also illustrates that the proposed RSATV gives
a better denoising result than the other five spatially adaptive
TV models, especially in the flat regions.

2) Simulated Super-Resolution Experiment: Next, to assess
the relative merits of the proposed methodology, we test it on
an multiframe image super-resolution problem. Firstly, it is
tested on a simulated process.

In the simulated process, with the degradation model
described in (1), the HR image is first shifted with sub-pixel
displacements of (0, 0), (0.5, 0.5), (0.5, 0), and (0, 0.5) to
produce four images. The image sequence is then convolved
with a Gaussian-type PSF of 5 × 5 window size and unit
variance, and downsampled with a factor of 2 in both the
vertical and horizontal directions. Finally, zero-mean Gaussian
noise added. We compare the proposed RSATV algorithm with
the TV regularization in [26], the ATV model in [34], the
PSATV model in (11), and some other nonTV models used
in the SR problem, including the Laplacian model in [13],
and the BTV model in [21]. For the BTV model [21], the
experiment parameters are: P = 2, β = 20, and α = 0.8. In
all the prior models, the regularization parameter is adjusted
until the best SR result is archived.
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Difference images between denoising results and ground truth image (intensities 2% linearly stretched). (a) TV. (b) SATV. (c) SCAD. (d) ATV.
(e) PSATV. (f) RSATV.

TABLE I

QUANTITATIVE EVALUATION OF DENOISING RESULTS IN DIFFERENT NOISE CONDITIONS

Noise Variance TV [26] SATV [33] SCAD [37] ATV [34] PSATV RSATV

8
PSNR 31.73 31.78 31.33 31.02 31.67 32.14

SSIM 0.936 0.936 0.947 0.901 0.940 0.964

14
PSNR 27.94 27.77 26.97 27.20 27.64 28.14

SSIM 0.887 0.893 0.879 0.834 0.870 0.918

18
PSNR 26.29 25.90 25.24 25.64 25.79 26.46

SSIM 0.844 0.835 0.829 0.801 0.828 0.897

TABLE II

QUANTITATIVE EVALUATION RESULTS USING PSNR AND SSIM INDEXES OF Cameraman IMAGE EXPERIMENT

Noise Variance Evaluation Index Laplacian [13] BTV [21] TV [26] ATV [34] PSATV RSATV

8 PSNR 26.61 27.89 28.378 28.35 28.59 28.87
SSIM 0.717 0.807 0.903 0.842 0.907 0.911

11
PSNR 25.36 26.38 27.08 26.83 27.45 27.78
SSIM 0.677 0.821 0.876 0.789 0.872 0.887

14
PSNR 24.56 25.55 26.38 26.04 26.67 26.93
SSIM 0.674 0.786 0.855 0.748 0.852 0.868

16 PSNR 24.11 24.97 25.67 25.46 26.01 26.28
SSIM 0.635 0.765 0.837 0.740 0.838 0.853

18 PSNR 23.70 24.55 25.56 24.98 25.62 25.85
SSIM 0.635 0.743 0.804 0.735 0.808 0.845

The SR results of the four simulated experimental datasets
are shown in Fig. 10, which presents the SR results of the four
HR images under noise variance 18. The difference images
between the SR image and the true HR image are shown in
Fig. 11. The quantitative evaluation results using the PSNR
and SSIM indexes are shown in Table II–V.

From the SR results presented in the four figures, it can be
seen that the proposed RSATV produces a better SR image
than the TV model and the PSATV model. In the TV SR
image, the noise in the flat regions of the image is not well

suppressed, and some “pseudo-edges” are produced. When the
noise intensity becomes higher, the “pseudo-edges” are more
obvious. For the PSATV model, it was found that when the
noise intensity is low, it can produce a better SR result than
the TV model. However, when the noise intensity becomes
higher, the SR result becomes worse, and, in the same way
as with the TV model, some “pseudo-edges” are produced in
the flat regions. The reason for this is that the PSATV model
constructs the spatial information constraint from a pixel level,
which causes the noise pixels in the flat regions to be falsely
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(a) (b) (c) (d)

Fig. 10. Super-resolution results of Cameraman image under noise variance of 18. (a) Bilinear interpolation result. (b) TV super-resolution image. (c) PSATV
super-resolution image. (d) Proposed RSATV super-resolution image.

TABLE III

QUANTITATIVE EVALUATION RESULTS USING PSNR AND SSIM INDEXES OF Aerial IMAGE EXPERIMENT

Noise Variance Evaluation Index Laplacian [13] BTV [21] TV [26] ATV [34] PSATV RSATV

8 PSNR 28.49 26.76 28.65 28.68 28.79 29.02
SSIM 0.874 0.866 0.932 0.910 0.933 0.936

11 PSNR 26.70 25.61 27.16 27.01 27.26 27.49
SSIM 0.817 0.860 0.901 0.863 0.903 0.914

14
PSNR 25.86 24.71 26.24 26.17 26.42 26.55
SSIM 0.808 0.834 0.881 0.847 0.884 0.903

16
PSNR 25.21 24.07 25.37 25.47 25.63 25.81
SSIM 0.781 0.808 0.863 0.827 0.858 0.891

18 PSNR 24.61 23.61 24.85 25.04 25.19 25.22
SSIM 0.772 0.784 0.847 0.814 0.844 0.857

identified as edge pixels and given a small spatial weight.
This causes the noise to be poorly suppressed and some
“pseudo-edges” are produced. However, with the RSATV
model, because the spatial information filtering and spatial
weight clustering processes are added, a more accurate spatial
constraint is enforced, and a better SR image is produced. The

better performance can also be seen in the difference image,
from which it can be seen that the RSATV model SR image
is more close to the true HR image, especially in the flat
regions.

The better performance of the proposed RSATV model can
also be seen in the quantitative evaluation results presented
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(a) (b) (c)

Fig. 11. Difference in images between SR results in Fig. 10 and true HR image in Fig. 7 (intensities 2% linearly stretched). (a) TV super-resolution image.
(b) PSATV super-resolution image. (c) Proposed RSATV super-resolution image.

TABLE IV

QUANTITATIVE EVALUATION RESULTS USING PSNR AND SSIM INDEXES OF Barbara IMAGE EXPERIMENT

Noise Variance Evaluation Index Laplacian [13] BTV [21] TV [26] ATV [34] PSATV RSATV

8
PSNR 29.97 28.17 30.32 30.17 30.35 30.59
SSIM 0.826 0.804 0.880 0.868 0.890 0.896

11 PSNR 28.22 26.82 28.65 28.27 28.66 28.83
SSIM 0.777 0.773 0.834 0.799 0.842 0.855

14 PSNR 27.13 25.93 27.65 27.23 27.68 27.93
SSIM 0.754 0.728 0.805 0.783 0.811 0.824

16 PSNR 26.47 25.40 26.96 26.53 26.99 27.19
SSIM 0.716 0.703 0.783 0.747 0.791 0.799

18
PSNR 25.89 24.87 26.54 26.04 26.50 26.73
SSIM 0.701 0.672 0.753 0.726 0.757 0.779

in Tables II–V. It can be seen that the proposed approach
produces the highest PSNR and SSIM values among the five

models, which is consistent with the visual effect of the
reconstructed images in Figs. 10 and 11.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 12. Reconstruction results of surveillance video sequence. (a) LR image. (b) Bilinear interpolation. (c) Bicubic interpolation. (d) Laplacian regularization.
(e) BTV regularization. (f) TV regularization. (g) PSATV regularization. (h) RSATV regularization.

TABLE V

QUANTITATIVE EVALUATION RESULTS USING PSNR AND SSIM INDEXES OF House IMAGE EXPERIMENT

Noise Variance Evaluation Index Laplacian [13] BTV [21] TV [26] ATV [34] PSATV RSATV

8
PSNR 30.78 30.73 32.01 31.65 32.08 32.18
SSIM 0.800 0.809 0.837 0.821 0.839 0.839

11
PSNR 29.41 29.68 30.88 30.32 30.90 31.06
SSIM 0.725 0.786 0.811 0.781 0.814 0.817

14
PSNR 28.63 28.99 30.10 29.42 30.18 30.21
SSIM 0.714 0.766 0.794 0.748 0.797 0.799

16
PSNR 28.00 28.43 29.63 28.81 29.55 29.68
SSIM 0.712 0.750 0.779 0.720 0.783 0.783

18
PSNR 27.60 28.05 29.19 28.37 29.08 29.23
SSIM 0.689 0.738 0.775 0.706 0.770 0.779

3) Real Data Super-Resolution Experiments: To verify the
performance of the proposed RSATV model on real data, in
Figs. 12 and 13, we present the SR results from the two real
experiment datasets.

The experimental results for the “EIA” image sequence are
presented in Figs. 12 and 13. The PSF of the sequence is
assumed to be Gaussian-type, with a window size of 4 × 4
and a variance of 1. Of the five prior models, in the Laplacian
model, the noise in the flat regions is not well suppressed, and
in the BTV, TV and PSATV models, although the noise in the
flat regions is suppressed, to some extent, some “artifacts” are
produced. However, because the spatial information constraint

is considered from a regional level, our RSATV model gives
the most promising SR image. In the flat areas, the noise
is well suppressed, but without losing the edge information,
which can be clearly seen from the cropped regions presented
in Fig. 13.

The results of the second real data experiment are shown
in Figs. 14 and 15. The PSF of the sequence is assumed
to be Gaussian-type, with a window size of 5 × 5 and a
variance of 1. From the SR images, it can be clearly seen
that the proposed RSATV model gives better SR results
than the other five models. Because the spatial information
constraint is considered from a regional level, and the spatial
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 13. Reconstruction results of EIA image sequence. (a) LR image. (b) Bilinear interpolation. (c) Bicubic interpolation. (d) Laplacian regularization.
(e) BTV regularization. (f) TV regularization. (g) PSATV regularization. (h) RSATV regularization.

(a) (b) (c)

(d) (e) (f)

(g) (h)
Fig. 14. Detail regions cropped from Fig. 12. (a) LR image. (b) Bilinear interpolation. (c) Bicubic interpolation. (d) Laplacian regularization. (e) BTV
regularization. (f) TV regularization. (g) PSATV regularization. (h) RSATV regularization.

information filtering and spatial weight clustering processes
can overcome the effect of the noise, the noise in the flat
regions is well suppressed and the edge information is better
preserved. However, in the TV model SR image, because the

spatial information constraint is not considered, the noise in
the flat regions is not well suppressed. In the PSATV SR result,
because the spatial information constraint is considered just
based on each pixel, it is more sensitive to noise in the flat
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(d) (e) (f)

(g) (h)

Fig. 15. Detail regions cropped from Fig. 14. (a) LR image. (b) Bilinear interpolation. (c) Bicubic interpolation. (d) Laplacian regularization. (e) BTV
regularization. (f) TV regularization. (g) PSATV regularization. (h) RSATV regularization.

TABLE VI

CHANGE OF PSNR VALUES WITH DIFFERENT VALUES OF β UNDER

DIFFERENT NOISE VARIANCES WITH Cameraman IMAGE

������Noise
β

0.001 0.005 0.01 0.05 0.1 0.5 1

8 28.13 28.51 28.51 28.87 28.77 28.27 28.20

14 26.10 26.67 26.74 26.93 26.11 25.65 25.51

18 25.19 25.37 25.23 25.85 25.37 24.22 24.12

TABLE VII

CHANGE OF PSNR VALUES WITH DIFFERENT VALUES OF β UNDER

DIFFERENT NOISE VARIANCES WITH Aerial IMAGE

������Noise
β

0.001 0.005 0.01 0.05 0.1 0.5 1

8 28.67 28.61 28.88 29.02 28.55 28.40 28.49
14 26.14 26.46 26.26 26.55 25.67 25.04 24.99
18 23.52 24.99 25.04 25.22 24.85 24.55 24.30

regions, and a noise pixel is likely to be falsely identified as
an edge pixel. This leads to the noise in the flat regions being
poorly suppressed, which can be clearly seen in the cropped
regions presented in Fig. 15.

C. Selection of the Parameters in the RSATV Model

1) Parameter β in (10): In (10), the parameter β is used
to control the spatial information weighted parameter Wi in
the SR process. If β is too small, the edge region pixels will
be given almost the same spatial weight as the flat region

TABLE VIII

CHANGE OF PSNR VALUES WITH DIFFERENT VALUES OF β UNDER

DIFFERENT NOISE VARIANCES WITH Barbara IMAGE

������Noise
β

0.001 0.005 0.01 0.05 0.1 0.5 1

8 29.95 30.14 30.41 30.59 30.41 30.08 29.85
14 26.97 27.14 27.46 27.93 27.65 26.44 26.25
18 25.56 25.29 26.19 26.73 26.63 25.35 25.15

Fig. 16. Change in SR performance with different τ values under different
noise variances.

pixels, and then the spatially weighted idea cannot be well
realized. Conversely, if it is too large, a noise pixel in the flat
regions will be given a small weight, and the noise cannot be
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Fig. 17. Effect of cluster number n on SR performance. (a) Noise variance = 8. (b) Noise variance = 14. (c) Noise variance = 18.

(a) (b) (c) (d)

Fig. 18. Change of clustering results with different clustering numbers for spatial weight. (a) Cluster number = 3. (b) Cluster number = 5. (c) Cluster
number = 7. (d) Cluster number = 10.

effectively reduced. Therefore, in Tables VI–VIII, the effect of
the parameter β on the final SR performance is analyzed. In all
three Tables, it is found that a better SR image can be obtained
when the parameter β is set at 0.05. Therefore, in this paper,
parameter β is empirically set to be 0.05 in all the experiments.
In our future research, we will explore some adaptive methods
of selecting the optimal value of parameter β.

2) Parameter τ in (14): In (14), the spatial weight of the
flat region μ j is multiplied with a parameter τ to ensure that
a large regularization strength is enforced and the noise is
well suppressed. The setting of this parameter will affect the
final SR performance. If it is too large, the SR result will be
blurred, and, conversely, if it is too small, the noise cannot
be suppressed well. Therefore, in this part, to analyze the
effect of the parameter τ on the SR performance, using the
“cameraman” image as an example, we plot the changes in
the PSNR values using different τ values (from 1–10) under
different noise intensities, which is shown in Fig. 16. From
the plot, it can be seen that when the noise intensity is low,
a small τ value should be used, and with the increase in the
noise intensity, a large τ value is more suitable. From our
test on the four simulated datasets, it is more appropriate
to set the parameter τ to 1000σ 2, where σ 2 is the additive
noise variance, which is normalized to 0–1. For example,
for the noise variances of 8, 11, 14, 16, and 18, which are

respectively about 0.001, 0.002, 0.003, 0.004, and 0.005 when
normalized to 0–1, the appropriate τ values are 1, 2, 3, 4,
and 5, respectively. This is just an empirical example of the
selection of the parameter τ , and from our experiments, it
was found that a manual adjustment of the parameter is also
possible and does not consume much time. We advise that, in
most cases, the optimal value of this parameter will be between
1 to 10. We will pay more attention to the adaptive setting of
this parameter in our future research.

3) Cluster Number n in Section III-C: In Section III-C,
the k-means clustering method is adopted to construct the
spatial weight from a regional perspective. In the k-means
process, the cluster number n is an important parameter.
Therefore, in this part, we present an analysis about the effect
of the cluster number n on the final SR result. In Fig. 17,
the change of the PSNR values with different cluster numbers
of n (from 3–10) under different noise conditions is plotted.
In Fig. 18, the change of the clustering results with different
cluster number with the noise variance of 18 is also presented.

From the analysis, it can be seen that in low noise condi-
tions, the change of the cluster number from 3 to 10 produces
little effect on the SR result, while with an increasing noise
intensity, the PSNR value changes a little, but it is not so
obvious. In our experiments, the cluster number is empirically
set to be 5 in all cases. In addition, it can be seen from Fig. 18
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that the structure information of the image should also be
considered in the selection. For a simple structure image (such
as the “house” image), the cluster number should be low, and
for a complex structure image (for example, the “Barbara”
image), the cluster number should be a little higher. In our
future research, we will explore some adaptive methods of
selecting the cluster number.

VI. CONCLUSION

The traditional spatially adaptive total variation model has
the shortcoming of being sensitive to noise, and it performs
poorly in high noise intensity conditions. To overcome this,
in this paper, we propose a regional spatially adaptive total
variation (RSATV) super-resolution algorithm with spatial
information filtering and clustering. The spatial information is
first extracted for each pixel, and then the spatial information
filtering process and spatial weight clustering process are
added. With these two processes, the regularization strength
of the total variation model is adjusted for each region with
different spatial properties, rather than for each pixel, as in
the traditional spatially adaptive TV model. The simulated
and real data experiments presented in Section V show that
the proposed RSATV model can better suppress the noise
in the flat regions of an image, without losing the edge and
detail information.

In our future research, we will focus on adaptive parameter
selection for the method, and we will also investigate the
use of more efficient optimization algorithms to accelerate
the solution speed of the RSATV model, such as the FISTA
and MFISTA algorithms detailed in [53]–[55], Furthermore,
some noise-robust spatial feature indicators, such as steering
weights [56], will also be considered, to further improve the
spatial weight construction process of the proposed algorithm.

ACKNOWLEDGMENT

The authors would like to thank the work of the editor
and the anonymous reviewers. They would also like to thank
P. Milanfar and M. Elad for providing the BTV SR code and
the real experiment data, and J. Bioucas-Dias for providing
the majorization–minimization optimizing code.

REFERENCES

[1] H. Greenspan, “Super-resolution in medical imaging,” Comput. J.,
vol. 52, no. 1, pp. 43–63, Jan. 2009.

[2] X. Huang, L. Zhang, and P. Li, “Classification and extraction of spatial
features in urban areas using high-resolution multispectral imagery,”
IEEE Trans. Geosci. Remote Sens. Lett., vol. 4, no. 2, pp. 260–264,
Apr. 2007.

[3] X. Huang and L. Zhang, “An adaptive mean-shift analysis approach for
object extraction and classification from urban hyperspectral imagery,”
IEEE Trans. Geosci. Remote Sens., vol. 46, no. 12, pp. 4173–4185,
Dec. 2008.

[4] L. Zhang, H. Zhang, H. Shen, and P. Li, “A super-resolution reconstruc-
tion algorithm for surveillance images,” Signal Process., vol. 90, no. 3,
pp. 848–859, 2010.

[5] R. Tsai and T. Huang, “Multiple frame image restoration and registra-
tion,” Adv. Comput. Vis. Image Process., vol. 1, no. 2, pp. 317–339,
1984.

[6] S. Kim, N. Bose, and H. Valenzuela, “Recursive reconstruction of high
resolution image from noisy undersampled multiframes,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 38, no. 6, pp. 1013–1027, Jun.
1990.

[7] S. Kim and W. Su, “Recursive high-resolution reconstruction of blurred
multiframe images,” IEEE Trans. Image Process., vol. 2, no. 4,
pp. 534–539, Oct. 1993.

[8] H. Ur and D. Gross, “Improved resolution from sub-pixel shifted
pictures,” Comput. Vis. Graph., Graph. Models Image Process., vol. 54,
no. 2, pp. 181–186, 1992.

[9] M. Alam, J. Bognar, R. Hardie, and B. Yasuda, “Infrared image regis-
tration and high-resolution reconstruction using multiple translationally
shifted aliased video frames,” IEEE Trans. Instrum. Meas., vol. 49, no. 5,
pp. 915–923, Oct. 2000.

[10] B. Tom and A. Katsaggelos, “Reconstruction of a high-resolution image
by simultaneous registration, restoration, and interpolation of low-
resolution images,” in Proc. IEEE Int. Conf. Image Process., vol. 2.
Washington, DC, USA, 1995, pp. 539–542.

[11] R. Schultz and R. Stevenson, “Extraction of high-resolution frames
from video sequences,” IEEE Trans. Image Process., vol. 5, no. 6,
pp. 996–1011, Jun. 1996.

[12] S. Belekos, N. Galatsanos, and A. Katsaggelos, “Maximum a posteriori
video super-resolution using a new multichannel image prior,” IEEE
Trans. Image Process., vol. 19, no. 6, pp. 1451–1464, Jun. 2010.

[13] R. Hardie, K. Barnard, and E. Armstrong, “Joint MAP registration and
high-resolution image estimation using a sequence of undersampled
images,” IEEE Trans. Image Process., vol. 6, no. 12, pp. 1621–1633,
Dec. 1997.

[14] H. Shen, L. Zhang, B. Huang, and P. Li, “A MAP approach for joint
motion estimation, segmentation and super-resolution,” IEEE Trans.
Image Process., vol. 16, no. 2, pp. 479–490, Feb. 2007.

[15] M. Elad and A. Feuer, “Restoration of a single super resolution image
from several blurred, noisy, and undersampled measured images,” IEEE
Trans. Image Process., vol. 6, no. 12, pp. 1646–1658, Dec. 1997.

[16] M. Protter, M. Elad, H. Takeda, and P. Milanfar “Generalizing the
nonlocal-means to super-resolution reconstruction,” IEEE Trans. Image
Process., vol. 18, no. 1, pp. 36–51, Jan. 2009.

[17] H. Takeda, P. Milanfar, M. Protter, and M. Elad, “Super-resolution with-
out explicit subpixel motion estimation,” IEEE Trans. Image Process.,
vol. 18, no. 9, pp. 1958–1975, Sep. 2009.

[18] N. Nguyen and P. Milanfar, “A wavelet-based interpolation restoration
method for superresolution (wavelet superresolution),” Circuits, Syst.,
Signal Process., vol. 19, no. 4, pp. 321–338, Apr. 2000.

[19] H. Ji and C. Fermuller, “Robust wavelet-based super-resolution recon-
struction: Theory and algorithm,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 4, pp. 649–660, Apr. 2009.

[20] S. Park, M. Park, and M. Kang, “Super-resolution image reconstruction:
A technical overview,” IEEE Signal Process. Mag., vol. 20, no. 3,
pp. 21–36, Mar. 2003.

[21] S. Farsiu, M. Robinson, M. Elad, and P. Milanfar, “Fast and robust
multiframe super-resolution,” IEEE Trans. Image Process., vol. 13,
no. 10, pp. 1327–1344, Oct. 2004.

[22] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Advances and
challenges in super-resolution,” Int. J. Imag. Syst. Tech., vol. 14, no. 2,
pp. 47–57, Feb. 2004.

[23] A. K. Katsaggelos, R. Molina, and J. Mateos, Super Resolution of Images
and Video, 1st ed. San Mateo, CA, USA: Morgan Kaufmann, 2007.

[24] P. Milanfar, Super Resolution Imaging, 1st ed. Boca Raton, FL, USA:
CRC Press, 2010.

[25] L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise
removal algorithms,” Phys. D, Nonlinear Phenomena, vol. 60, no. 1,
pp. 259–268, Jan. 1992.

[26] M. Ng, H. Shen, E. Lam, and L. Zhang, “A total variation regulariza-
tion based super-resolution reconstruction algorithm for digital video,”
EURASIP J. Adv. Signal Process., vol. 2007, no. 074585, pp. 1–16,
Jun. 2007.

[27] A. Marquina and S. Osher, “Image super-resolution by TV-regularization
and Bregman iteration,” J. Sci. Comput., vol. 37, no. 3, pp. 367–382,
Dec. 2008.

[28] J. Yang, J. Wright, T. S. Huang, and Y. Ma, “Image super-resolution
via sparse representation,” IEEE Trans. Image Process., vol. 19, no. 11,
pp. 2861–2873, Nov. 2010.

[29] W. Dong, L. Zhang, G. Shi, and X. Wu, “Image deblurring and
supper-resolution by adaptive sparse domain selection and adap-
tive regularization,” IEEE Trans. Image Process., vol. 20, no. 7,
pp. 1838–1857, Jul. 2011.

[30] W. Dong, X. Li, L. Zhang, and G. Shi, “Sparsity-based image denoising
via dictionary learning and structural clustering,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2011, pp. 457–464.



2342 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 22, NO. 6, JUNE 2013

[31] W. Dong, X. Li, L. Zhang, and G. Shi, “Sparsity-based image deblurring
with locally adaptive and non locally robust regularization,” in Proc.
IEEE 18th Int. Conf. Image Process., Sep. 2011, pp. 1841–1844.

[32] T. Chan, S. Esedoglu, F. Park, A. Yip, “Recent developments in total
variation image restoration,” in Handbook of Mathematical Models in
Computer Vision, N. Paragios, Y. Chen, and O. Faugeras Eds. New York,
USA: Springer-Verlag, 2004.

[33] D. M. Strong, P. Blomgren, and T. F. Chan, “Spatially adaptive local
feature-driven total variation minimizing image restoration,” in Proc.
Conf. Stat. Stochastic Methods Image Process. II, San Diego, CA, USA,
1997, pp. 222–233.

[34] Q. Chen, P. Montesinos, Q. Sun, P. Heng, and D. Xia, “Adaptive total
variation denoising based on difference curvature,” Image Vis. Comput.,
vol. 28, no. 3, pp. 298–306, Mar. 2010.

[35] W. Guo and F. Huang, “Adaptive total variation based filtering for MRI
images with spatially inhomogeneous noise and artifacts,” in Proc. IEEE
Int. Symp. Biomed. Imaging, Nano Macro, Jul. 2009, pp. 101–104.

[36] G. Chantas, N. P. Galatsanos, R. Molina, and A. K. Katsaggelos,
“Variational bayesian image restoration with a product of spatially
weighted total variation image priors,” IEEE Trans. Image Process.,
vol. 19, no. 2, pp. 351–362, Feb. 2010.

[37] A. Chopra and H. Lian, “Total variation, adaptive total variation and non-
convex smoothly clipped absolute deviation penalty for denoising blocky
images,” Pattern Recogn., vol. 43, no. 8, pp. 2609–2619, Aug. 2010.

[38] T. Saito and T. Komatsu, “Super-resolution sharpening-demosaicking
with spatially adaptive total-variation image regularization,” in Proc. 6th
Pacific Rim Conf. Multimedia, Nov. 2005, pp. 246–256.

[39] Q. Yuan, L. Zhang, H. Shen, and P. Li, “Adaptive multiple-frame
image super-resolution based on U-curve,” IEEE Trans. Image Process.,
vol. 19, no. 12, pp. 3157–3170, Dec. 2010.

[40] D. Strong and T. Chan, “Edge-preserving and scale-dependent prop-
erties of total variation regularization,” Inverse Probl., vol. 19, no. 6,
pp. 165–187, Dec. 2003.

[41] J. Yang, W. Yin, Y. Zhang, and Y. Wang, “A fast algorithm for edge-
preserving variational multichannel image restoration,” SIAM J. Imag.
Sci., vol. 2, no. 2, pp. 569–592, May 2009.

[42] P. Chatterjee and P. Milanfar, “Clustering-based denoising with locally
learned dictionaries,” IEEE Trans. Image Process., vol. 18, no. 7,
pp. 1438–1451, Jul. 2009.

[43] P. Chatterjee and P. Milanfar, “Patch-based near-optimal image denois-
ing,” IEEE Trans. Image Process., vol. 21, no. 4, pp. 1635–1649,
Apr. 2012.

[44] J. Bioucas-Dias, M. Figueiredo, and J. Oliveira, “Total variation-based
image deconvolution: A majorization-minimization approach,” in Proc.
IEEE Int. Conf. Acoustics, Speech, Signal Process., vol. 2. May 2006,
pp. 1–2.

[45] D. Hunter and K. Lange, “A tutorial on MM algorithms,” Amer. Stat.,
vol. 58, no. 2, pp. 30–37, Feb. 2004.

[46] J. Bioucas-Dias, M. Figueiredo, and J. Oliveira, “Adaptive total-variation
image deconvolution: A majorization-minimization approach,” in Proc.
Eur. Signal Process. Conf., Sep. 2006, pp. 1–4.

[47] J. Oliveira, J. Bioucas-Dias, and M. Figueiredo, “Adaptive total varia-
tion image deblurring: A majorization-minimization approach,” Signal
Process., vol. 89, no. 9, pp. 1683–1693, Sep. 2009.

[48] P. Rodriguez and B. Wohlberg, “Efficient minimization
method for a generalized total variation functional,” IEEE Trans.
Image Process., vol. 18, no. 2, pp. 322–332, Feb. 2009.

[49] [Online]. Available: http://users.soe.ucsc.edu/∼milanfar/software/sr-
datasets.html

[50] P. Vandewalle, S. Susstrunk, and M. Vetterli, “A frequency domain
approach to registration of aliased images with application to super-
resolution,” EURASIP J. Adv. Signal Process., vol. 2006, no. 71459,
pp. 1–14, 2006.

[51] Z. Wang, A. Bovik, and H. Sheikh, “Image quality assessment: From
error visibility to structural similarity,” IEEE Trans. Image Process.,
vol. 13, no. 4, pp. 600–612, Apr. 2004.

[52] Z. Wang and A. Bovik, “Mean squared error: Love it or leave it?—
A new look at signal fidelity measures,” IEEE Signal Processing Mag.,
vol. 26, no. 1, pp. 98–117, Jan. 2009.

[53] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, 2009.

[54] A. Beck and M. Teboulle, “Fast Gradient-Based Algorithms for
Constrained Total Variation Image Denoising and Deblurring Prob-
lems,” IEEE Trans. Image Process., vol. 18, no. 11, pp. 2419–2434,
Nov. 2009.

[55] Y. E. Nesterov, “Gradient methods for minimizing composite objective
function,” Dept. Math. Eng., Univ. Catholique de Louvain, Tournai,
Belgium, Tech. Rep. 76, Sep. 2007.

[56] H. Takeda, S. Farsiu, and P. Milanfar, “Kernel regression for image
processing and reconstruction,” IEEE Trans. Image Process., vol. 16,
no. 2, pp. 349–366, Feb. 2007.

Qiangqiang Yuan received the B.S. degree in
surveying and mapping engineering and the Ph.D.
degree in photogrammetry and remote sensing from
Wuhan University, Wuhan, China, in 2006 and 2012,
respectively.

He joined the School of Geodesy and Geomatics,
Wuhan University, in 2012, where he is currently
an Assistant Professor. His current research interests
include image reconstruction, remote sensing image
processing and application, and data fusion and
assimilation.

Dr. Yuan is a Reviewer of the IEEE TRANSACTIONS ON GEOSCIENCE

AND REMOTE SENSING, the ISPRS Journal of Photogrammetry and Remote
Sensing, and the IEEE Signal Processing Letter.

Liangpei Zhang (M’06–SM’08) received the B.S.
degree in physics from Hunan Normal University,
Changsha, China, the M.S. degree in optics from the
Xi’an Institute of Optics and Precision Mechanics,
Chinese Academy of Sciences, Xi’an, China, and the
Ph.D. degree in photogrammetry and remote sensing
from Wuhan University, Wuhan, China, in 1982,
1988, and 1998, respectively.

He is currently the Head of the Remote Sensing
Division, State Key Laboratory of Information Engi-
neering in Surveying, Mapping, and Remote Sens-

ing, Wuhan University. He is also a Chang-Jiang Scholar Chair Professor with
the Ministry of Education of China. He is currently a Principal Scientist for
the China State Key Basic Research Project (2011–2016) with the Ministry of
National Science and Technology of China to lead the remote sensing program
in China. He has authored more than 260 research papers. He holds five
patents. His current research interests include hyperspectral remote sensing,
high-resolution remote sensing, image processing, and artificial intelligence.

Dr. Zhang is a Fellow of the IEE, an Executive Member (Board of
Governors) of the China National Committee of International Geosphere–
Biosphere Programme, and an Executive Member of the China Society
of Image and Graphics. He regularly serves as a General Chair of 4th
IEEE Workshop on Hyperspectral Image and Signal Processing: Evolution
in Remote Sensing (Whispers, 2012), the Co-Chair of the series SPIE
Conferences on Multispectral Image Processing and Pattern Recognition,
Conference on Asia Remote Sensing, and many other conferences. He
edits several conference proceedings, issues, and geoinformatics symposiums.
He also serves as an Associate Editor of the IEEE TRANSACTIONS ON

GEOSCIENCE AND REMOTE SENSING, the International Journal of Ambient
Computing and Intelligence, the International Journal of Image and Graphics,
the International Journal of Digital Multimedia Broadcasting, Journal of Geo-
spatial Information Science, and the Journal of Remote Sensing.

Huanfeng Shen (M’11–SM’13) received the B.S.
degree in surveying and mapping engineering and
the Ph.D. degree in photogrammetry and remote
sensing from Wuhan University, Wuhan, China, in
2002 and 2007, respectively.

He joined the School of Resources and Environ-
mental Science, Wuhan University, in 2007, where
he is currently a full Professor. He has been sup-
ported by several talent programs, including the New
Century Excellent Talents by the Ministry of Educa-
tion of China (2011) and the Hubei Science Fund for

Distinguished Young Scholars (2011). He has authored more than 60 research
papers. His current research interests include image processing (for quality
improvement), remote sensing application, data fusion, and assimilation.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


