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Abstract—In the commonly employed regularization models
of image restoration and super-resolution (SR), the norm deter-
mination is often challenging. This paper proposes a method to
adaptively determine the optimal norms for both fidelity term
and regularization term in the (SR) restoration model. Inspired
by a generalized likelihood ratio test, a piecewise function is
proposed to solve the norm of the fidelity term. This function
can find the stable norm value in a certain number of itera-
tions, regardless of whether the noise type is Gaussian, impulse,
or mixed. For the regularization norm, the main advantage of
the proposed method is that it is locally adaptive. Specifically,
it assigns different norms for different pixel locations, accord-
ing to the local activity measured by a structure tensor metric.
The proposed method was tested using different types of images.
The experimental results and error analyses verify the efficacy
of the method.

Index Terms—Adaptive norm selection, image restoration,
super-resolution (SR).

I. INTRODUCTION

IMAGES captured by sensors are commonly corrupted
by blurring and noise. Image restoration techniques aim

to recover a high-quality image from its blurred and noisy
measurement [1]–[4]. The conventional restoration techniques
generally stay within a limited passband, and do not extend it.
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In contrast, super-resolution (SR) restoration is a technique
that can break the inherent resolution limit, and produces
a high-resolution image from low-resolution (LR) observa-
tions. It can therefore be considered as a second-generation
problem of image restoration [5]. To address the typical
inverse problem of image restoration and SR, a general
imaging model can be represented as [6]

yk = DkBkMkz + nk (1)

where yk is the kth observed image, and z is the desired image.
Dk, Bk, and Mk are, respectively, the down-sampling, blur-
ring, and motion operators, and nk is the additive noise. When
Dk and Mk are identity matrices, it is the model of a classical
image restoration problem. For convenience of expression, (1)
can be rewritten as (2) by substituting the product of Dk, Bk,
and Mk by A, and putting all the observed images together
y = [ yT

1
, yT

2
, . . . ]T

y = Az + n. (2)

Image restoration and SR have been extensively studied
in recent decades. For a detailed review of these meth-
ods (see [5], [7]–[10]). Among the existing frameworks, the
regularization method, which has been described from both
algebraic and statistical perspectives [7], [11], is the most
commonly used approach. The standard regularized solution
of the inverse problem is the minimum of the functional [12]

L(z) = ‖y − Az‖p
p + λ‖�(z)‖q

q (3)

where the first term is the data fidelity term, the second term
is the regularization term, with �(·) being a regularization
function, and λ is the regularization parameter balancing these
two terms.

For the data fidelity, the l2 norm (p = 2)-based linear least
squares term is widely used [6], [11], [13]–[15]. The main
advantage of the l2 norm problem is that it is easy to solve, and
many efficient algorithms exist. However, the result solved by
the l2 model is only optimal when the noise is white Gaussian
type [12]. Therefore, there has been a growing interest in using
the l1 norm with p = 1 [16]–[21]. It has been proven that
the l1 fidelity is more effective than the l2 fidelity when the
images contain impulse noise and outliers. Compared with
the l2 norm, however, the convergence rate of the l1 norm is
often much slower. Apart from the simplest gradient descent
method [16], [17], [22], some other efficient approximation
methods have also been developed [18]–[20], [23] for the
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l1 optimization. For complicated types of noise and/or model
error, however, both l1 and l2 norms have their advantages and
disadvantages. Some researchers have therefore employed an
l1 − l2 hybrid model for the fidelity term [24]–[26].

To constrain the solution space of the ill-posed problems of
image restoration and SR, a number of different regulariza-
tion methods have been proposed. Traditional models, such as
the Tikhonov [27] and Gauss–Markov [28] types, use the l2
norm with q = 2. A common criticism of these regularization
methods is that the sharp edges and detailed information in
the estimates tend to be overly smoothed [29]. To effectively
preserve the edge and detailed information in the image, some
edge-preserving regularization models have been employed in
image (SR) restoration. The l1 norm (q = 1)-based total vari-
ation (TV) regularization [11], [29] and its derived versions
such as bilateral TV [16], [17] are the most widely used edge-
preserving models. Using the TV methods, however, there is
often a tradeoff between the preservation of detailed infor-
mation in the edge regions and the avoidance of staircase
effects in the smooth regions [30], [31]. The Huber–Markov
regularization [13], [22], [32], [33] can theoretically relieve
this tradeoff to some degree because its energy function is
a mixed mode of the l1 and l2 norms. To more effectively
consider this problem, some researchers have considered an
adaptive norm (q = 1 or q = 2), according to the determined
image structures (smooth regions or edges) [12], [31].

In summary, whether for the fidelity term or the regulariza-
tion term, neither the l1 norm nor the l2 norm is optimal in
many cases. The optimal fidelity norm is mainly affected by
the type of noise and/or model error, and the best value for the
regularization norm is greatly related to the image structures.
The combination of l1 and l2 norms [12], [24]–[26], [31], [34]
may produce some new difficulties, such as the weight
determination and efficient optimization. This paper proposes
a method to adaptively determine the optimal norms as arbi-
trary values in the interval [1, 2] for both fidelity term and
regularization term in the (SR) restoration model. The main
contributions are twofold. First, the optimal norm of the
data fidelity can be adaptively estimated in a Gaussian/impulse
case using the statistical information. This solves a significant
problem in image restoration/SR. Second, we assign locally
adaptive norm values for the regularization according to the
spatial structure. By employing the spatially adaptive norm, the
proposed regularization can achieve a good balance between
noise suppression and edge preservation. Combining the two
parts into a joint framework, we believe that the proposed
method provides a new insight into the common difficulty of
norm selection in image inverse problems.

II. RESTORATION FRAMEWORK AND

OPTIMIZATION METHOD

A. Restoration Framework

By selecting �(·) in (3) as a gradient operator, a general
TV minimization functional is [35]

E(z) = ‖y − Az‖p
p + λ

∥
∥
∥
∥

√

(∇xz)2 + (∇yz)2 + β

∥
∥
∥
∥

q

q
(4)

where ∇x and ∇y are linear operators corresponding to the
horizontal and vertical first-order differences, and β is a small
positive parameter which ensures differentiability.

Although the p and q norms in (4) can be arbitrary values
in the interval (0, 2], the effects of the image structures are
not considered. It has been proven that edge regions prefer
a lower value of q to preserve the detailed information, and
smooth regions require a larger value of q to avoid artifacts
such as staircase effects [12], [31]. Taking this into account,
this paper proposes to use a more general restoration model

E(z) = ‖y − Az‖p
p + λ

∑

i,j

∥
∥
∥
∥
∥

√
(

∇x
i,jz
)2 +

(

∇y
i,jz
)2 + β

∥
∥
∥
∥
∥

qi,j

qi,j

(5)

where qi,j is the norm at pixel location (i, j).

B. Optimization Method

Since p and qi,j in (5) are arbitrary values in an interval, the
conventional linear optimization methods cannot be directly
employed. This paper employs the iteratively reweighted least
squares (IRLS) method [35], [36] and the lagged diffusivity
fixed point iteration (LDFPI) [11], [37] for the linearization
of the fidelity term and the regularization term, respectively.
Both of the methods implement the approximation based
on iterative procedures. In general, the IRLS method con-
verts the lp function into an l2 minimization problem at each
iteration. Concretely, at iteration n+1, the solution zn+1 is the
minimizer of

En+1(z) =
∥
∥
∥W1/2

zn
( y − Az)

∥
∥
∥

2

2

+ λ
∑

i,j

∥
∥
∥
∥
∥

√
(

∇x
i,jz
)2 +

(

∇y
i,jz
)2 + β

∥
∥
∥
∥
∥

qi,j

qi,j

. (6)

In this equation, Wzn is defined as [35]

Wzn = diag(τε( y − Azn)) (7)

with

τε(x) =
{ |x|p−2 if |x| > ε

εp−2 if |x| ≤ ε
(8)

where ε is a small positive number to guarantee global
convergence, which we fix as 10−5 in this paper.

A concise IRLS minimization method for the regulariza-
tion term in model (4) is also proposed in [35]. In order to
deal with the more complicated model (5) and obtain an accu-
rate difference approximation, the LDFPI strategy [11], [37] is
employed. After converting the data fidelity term into the l2
norm, the Euler–Lagrange equation for the energy function
in (6) is given by the following system:

∇En+1(z) = ATWzn(Az − y) − λLzz = 0 (9)

where Lz is the matrix form of a central difference approxi-
mation of the differential operator

qi.j∇ ·
⎛

⎜
⎝∇

/(√
(

∇x
i,jz
)2 +

(

∇y
i,jz
)2 + β

)2−qi.j
⎞

⎟
⎠ (10)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHEN et al.: ADAPTIVE NORM SELECTION FOR REGULARIZED IMAGE RESTORATION AND SR 3

Where ∇· is the divergence operator. Clearly, (10) is a non-
linear operator, which leads to difficulties in the solution. The
LDFPI method [11], [37] consists of linearizing the nonlinear
differential term by lagging the diffusion coefficient one itera-
tion behind. Thus, zn+1 is obtained as the solution to the linear
equation

(

ATWznA − λLzn

)

zn+1 = ATWzn y. (11)

Since a central difference approximation is used, −Lzn is
symmetric and positive semi-definite. A detailed mathematical
derivation can be found in [37]. To solve the above equation,
this paper uses the factorized banded inverse preconditioner
method [38].

III. ADAPTIVE METHOD OF NORM SELECTION

In this section, two functions are proposed for the adaptive
selection of the arbitrary norm values in a confidence interval.
The p and qi,j values are found in an alternate manner with
the desired image solved based on (11). In general, there is
a broad consensus that it is unnecessary to set p or qi,j greater
than 2. On the other hand, few references consider a norm of
less than 1 in the standard restoration and SR models (except
for the sparse and/or compressed sensing frameworks). Our
experimental results also indicate that p > 2 or qi,j < 1 are not
necessary to improve the robustness of the restoration model.
In this paper, therefore, we restrict the interval to [1], [2] for
both p and qi,j.

A. Adaptive Selection of the Fidelity Norm p

It is known that the optimal norm p is closely related to
the distribution of the N-dimensional noise vector n in (2).
In the image processing field, the Gaussian type noise is the
most commonly assumed because it is usually generated in
image acquisition [39]. In many applications, practical sys-
tems can suffer from outliers, which are typically caused by
malfunctioning arrays in camera sensors, faulty memory loca-
tions in hardware, or transmission in a noisy channel [40].
In the image SR problem, there is often a special type of
outliers existing because some pixels in one image may be
unobservable in the other images. The outliers are com-
monly assumed to be impulse noise [41], [42] and can be
modeled using a Laplacian distribution [43]. Therefore, we
employ the Gaussian and Laplacian distributions, which are
the two major candidates in the inverse problem of image
processing [16], [26]. They are, respectively, defined as

PG(n) = 1
(√

2πσG

)N exp

{

−
N
∑

i=1

(ni − μG)2

/

2σ 2
G

}

(12)

PL(n) = 1

(2σL)N exp

{

−
N
∑

i=1

|ni − μL|
/

σL

}

(13)

where ni is the ith element of the noise vector n. The maximum
likelihood of the model parameters μG, σG, μL, and σL can
be computed from the data as follows:

⎧

⎪⎨

⎪⎩

μ̂G = mean(n), σ̂G =
√
∑N

i=1(ni − μG)2
/

N

μ̂L = median(n), σ̂L = ∑N
i=1|ni − μL|

/

N.

(14)

Fig. 1. Images used to set up the function between p and γ . (a) Foreman
image. (b) Lena image. (c) Barbara image. (d) Peppers image.

In general, the Gaussian and Laplacian distributions, respec-
tively, correspond to the l2 and l1 norms [16], [26]. This means
that when n is Gaussian distributed, p = 2 is preferable;
and when n is a Laplacian type, which is more accurate
for modeling the impulse noise and/or outliers, p = 1 is
optimal. In image restoration and SR, however, the distribu-
tion of n is often neither rigid Gaussian nor rigid Laplacian,
but a combination of them [26]. In this case, the optimal norm
p should be greater than 1 and less than 2. In order to obtain
robust models in the processing of noisy data, some studies
employ the framework of a generalized Gaussian distribu-
tion (GGD), and look for estimators for a shape parameter
in the GGD model, which has an identical attribute to the
parameter p [44].

Inspired by [16] and [26], this paper determines the optimal
p based on a generalized likelihood ratio test (GLRT). In order
to determine the type of noise model, GLRT can be used to
judge whether the following inequality is satisfied:

PG
(

n; μ̂G, σ̂G
)

PL
(

n; μ̂L, σ̂L
) > ξ (15)

where ξ is a threshold. The parameter ξ is often selected
as 1 [16], [26]. Substituting (12), (13), and (14) into (15),
using ξ = 1, and defining γ = σ̂L/σ̂G, it can be simplified as

γ >
( π

2e

)0.5 ≈ 0.7602. (16)

That is, if the ratio γ = σ̂L/σ̂G is larger than 0.7602, then
PG (Gaussian, l2 norm) is a more accurate model than PL

(Laplacian, l1 norm), and vice versa.
Using the above inequality, we can only determine whether

the l1 norm or l2 norm is better. Our objective is to find an
optimal norm value p in the interval [1], [2]. It is obvious that
this value should be closely related to the parameter γ , which
is an indicator of the approximation degree of the l1 or l2
norms, according to the GLRT. To validate this, four standard
test images (Foreman, Lena, Barbara, and Peppers) (as shown
in Fig. 1) are used to produce a certain amount of p−γ points.
The detailed steps are as follows.

1) Degrade the images using the motion, blurring, and
down-sampling operators, as shown in (1).

2) Add noise to the images produced in step 1), and for
each image, nine different combinations of Gaussian and
impulse noise (as shown in Table I) are, respectively,
tested.

3) For each noise combination, compute the noise vector
n̂ = y − Az based on (2), compute σ̂L and σ̂G based
on (14), and then obtain the corresponding γ value using
γ = σ̂L/σ̂G.
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TABLE I
NINE NOISE COMBINATIONS IN THE p − γ FITTING

Fig. 2. p − γ points and their fitted curve.

4) For each noise combination, adjust p from 1 to 2
(at an increment of 0.1) to implement the (SR) restora-
tion algorithm described in Section II with the standard
TV regularization (q = 1).

5) The original images are used as the reference to evalu-
ate the resulting images, and to seek the optimal p for
each γ .

After the above procedure, four series of p − γ points are
produced, as shown in Fig. 2. It can be seen that the four series
of points have very similar trends. Through a large number
of trials on different images, we found that this feature is
consistent. This forms the basis for us to look for a function by
implementing curve fitting, and to apply this function for the
determination of p during the image (SR) restoration process.

The p − γ function should have the following two basic
properties: 1) the maximum of p is 2, and the minimum is 1
and 2) p is monotonically increasing with γ . According to the
spatial distribution of these points, we assume the following
tangent function:

p = a tan(bγ + c) + d (17)

where a, b, c, and d are the model parameters. It is over-
determined to solve these four parameters using the available
p − γ points. The solved values are

{

a = 0.115 b = 3.777
c = −1.601 d = 1.276.

(18)

The fitted curve is also illustrated in Fig. 2. Considering
p ∈ [1, 2], the piecewise function of p is given as

p =
⎧

⎨

⎩

1 0 < γ ≤ 0.112
a tan(bγ + c) + d 0.112 < γ ≤ 0.798
2 0.798 < γ < 1

(19)

where the parameters of 0.112 and 0.798 are the corresponding
γ values when p was, respectively, solved as 1 and 2, based
on (17).

It should be noted that although the four model parame-
ters may be different, based on the different test images, the
obtained curves are very close. The results are also not sensi-
tive to the solved norms with the slightly differing parameters.
This is tested in the experiment part by performing the pro-
posed method on images which are different to the four test
ones. Another issue is the computation of γ , which needs
the ideal image z according to step 3). In real applications,
however, z is what we want to solve, and is unknown. We
solve this problem using the following strategy: 1) in the first
iteration, z is substituted by the initial guess and 2) in the
following iterations, it is substituted by the partially recon-
structed image. Although there may be considerable bias in
the first few iteration steps, this can be greatly relieved when
the partially reconstructed image approaches the ideal image
in the next iterations.

B. Adaptive Selection of the Regularization Norm qi,j

As mentioned before, a larger regularization norm should
be set to suppress noise and artifacts for flat-area pixels. In
contrast, for edge-area pixels, a smaller norm should be set to
preserve the detailed information. Therefore, a local activity
indicator is needed to determine whether the pixels belong
to smooth regions or edges. This paper employs a structure
tensor indicator, which was first proposed in [45], and has
been widely used and expanded upon in [31] and [46]–[49].
It has been proven that this indicator is a powerful tool for the
discrimination of edges from flat regions. For each pixel, the
structure tensor matrix is defined as

Si,j = K ∗
[(∇i,jz

)(∇i,jz
)T
]

(20)

where ∇i,jz = [∇x
i,jz,∇y

i,jz]T , with ∇x
i,jz and ∇y

i,jz being the
gradient information in the horizontal and vertical directions
at pixel (i, j). K is a smooth operator, which is usually defined
as a Gaussian kernel. Here we use a 5 × 5 equal-weight blur
kernel, i.e., the variance is infinite. The symbol “*” means
convolution. In order to determine the spatial property (local
activity) of each pixel more accurately, a block containing the
neighbored pixels is often needed. The structure tensor for the
block whose central pixel locates at (i, j) can be defined as

Sb
i,j = 1

(2R + 1)2

i+R
∑

k=i−R

j+R
∑

l=j−R

Sk,l (21)

where 2R+1 is the block size in both horizontal and vertical
dimensions. We select a size of 5 × 5 (R=2) for the block
in this paper. Based on the structure tensor matrix, the local
activity of the central pixel can be defined as

δi,j = |κ1| + |κ2| (22)

where κ1 and κ2 are the two eigenvalues of the structure tensor
matrix Sb

i,j. The larger the parameter δi,j is, the more possible
it is that the pixel belongs to an edge region.

Since δi,j is selected as the local activity metric, the regu-
larization norm qi,j can be solved by designing a functional as
q = f (δ). In order to ensure qi,j ∈ [1, 2], we define

qi,j = 2 − ti,j (23)
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where ti,j is a projection of the structure tensor δi,j to the scope
of the interval [0, 1]. Because δi,j tends to be larger in the edge
regions, ti,j should be directly proportional to δi,j to ensure that
the edge regions are assigned small norms. In this paper, the
following function is designed:

ti,j = log δi,j − log δmin

log δmax − log δmin + ϑ
(24)

where δmin and δmax are, respectively, the minimum and max-
imum of δ in all the locations of the image. Since the δi,j

values often have considerable differences, the logarithm func-
tion log(·) is used to narrow the values to a reasonable range.
If the value of δi,j is less than 1 at any pixel, we replace it
with 1 to ensure ti,j is larger than or equal to 0. The parameter
ϑ is a small parameter to prevent the dominator being 0, and
we fix it as 10−5 in this paper.

Using (23) and (24), each pixel in the image can be given
a value for the regularization norm, and the minimum and
maximum values are, respectively, 1 and 2. In a practical situ-
ation, however, the overall distribution of the image structure
still has a considerable effect on the norm selection. To satisfy
this law, we rewrite (23) as (25)

qi,j = 2 − (

ti,j
)α

. (25)

In (25), α is a shape controller parameter. If α = 0, all
the qi,j values are equal to 1, and the standard l1-based TV
model can be obtained; if α is positive infinity, the l2 regu-
larization can be approached. In fact, most natural images are
more suited to be fit with smaller norms for the regularization
term. Therefore, the scope of α commonly falls into the inter-
val (0, 1]. The adaptive determination of α is another more
difficult issue. However, we use a compromised parameter
setting by fixing α as 0.5 in this paper. Under this circum-
stance, the proposed method still has advantages over the other
regularizations, which is validated in the experiment part.

In conclusion, the adaptive norm restoration/SR framework
can be generalized into a joint framework. The flowchart of
the proposed algorithm is shown in Fig. 3.

IV. EXPERIMENTS

A. Validation of the Adaptive p Norm

The first experiment for the validation of the p function
was performed for classical image restoration. The Lena and
Satellite images shown in Fig. 4 were used. The original
images were first blurred by different convolution kernels,
which were, respectively, 3×3 (standard deviation = 1), 5×5
(standard deviation = 1.5), and 7×7 (standard deviation = 2).
The blurred images were then, respectively, contaminated by
Gaussian noise with a normalized variance of 0.001, impulse
noise with a density of 0.01, and a mixed mode of the two
noise types. The regularization norm was set as 1, i.e., a stan-
dard TV model was employed. In the traditional manual
method, 11 equally spaced candidate values were fixed in the
interval of [1, 2] for the fidelity norm. The norm value that
produced the highest peak signal-to-noise ratio (PSNR) was
regarded as the optimal one. The proposed adaptive method
was implemented to test how close its results were to the
optimal results in the manual method.

Fig. 3. Flowchart of the proposed method.

Fig. 4. Images used in the validation of the p function. (a) Lena
and (b) Satellite images.

The quantitative evaluation results are shown in Table II.
PSNR (dB) and p values in the validation of the adaptive norm
of the fidelity term (restoration experiment). Here, it can be
seen that the optimal norms of the Gaussian and impulse noise
cases are, respectively, 2.0 and 1.0 in all the scenarios. Most of
the optimal norms of the mixed noise cases are 1.3, with only
one exception of 1.4. On the whole, the norm values adaptively
computed with the proposed method are very close to the opti-
mal values. Only in two cases are the deviations greater than
0.05, which are highlighted in bold in Table II. PSNR (dB) and
p values in the validation of the adaptive norm of the fidelity
term (restoration experiment). The PSNR values of the adap-
tive method are also very close to the optimal ones, even in
the two highlighted cases. Therefore, the adaptive method for
the fidelity norm is validated as being effective in this experi-
ment. The restored Lena images of the l1, l2, and the proposed
la_ p (adaptive norm for the p function) methods in one mixed
noise case are illustrated in Fig. 5. Here, it can be seen that the
l2 norm gives the worst results because it cannot completely
remove the impulse noise. The visual quality of the l1 norm is
superior to the l2 norm due to its robustness to impulse noise.
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TABLE II
PSNR (dB) AND p VALUES IN THE VALIDATION OF THE ADAPTIVE NORM

OF THE FIDELITY TERM (RESTORATION EXPERIMENT)

Fig. 5. Restoration results of the Lena image in the mixed noise case (5 × 5
blur, standard deviation = 1.5). (a) Degraded image. Result of the (b) l2 norm,
(c) l1 norm and (d) Proposed adaptive norm.

The proposed la_p norm produces more desirable results than
both l1 norm and l2 norm because it can effectively deal with
Gaussian and impulse noise simultaneously.

The second experiment was performed for SR reconstruc-
tion. The original images were first down-sampled by a factor
of 2. Thus, in each case four LR images were obtained, with
the translational shifts being (0, 0), (0, 0.5), (0.5, 0), and
(0.5, 0.5). The down-sampled images were then contaminated
by different types of noise. Since we are mainly concerned
with the SR performance, no blur was considered in this exper-
iment. In order to validate the robustness more effectively,
one impulse noise mode, one Gaussian noise mode, and six
mixture modes were tested. The corresponding relationships
between the variances of the Gaussian noise and the densities

TABLE III
PSNR (dB) AND P VALUES IN THE VALIDATION OF THE ADAPTIVE

NORM OF THE FIDELITY TERM (SR EXPERIMENT)

of the impulse noise were: impulse (0, 0.01), Mixed-1 (0.001,
0.01), Mixed-2 (0.003, 0.03), Mixed-3 (0.005, 0.01), Mixed-4
(0.007, 0.007), Mixed-5 (0.009, 0.005), Mixed-6 (0.01, 0.003),
and Gaussian (0.002, 0).

Table III shows the optimal and solved norm and PSNR val-
ues. The changes of PSNR versus the fidelity norm p in the
different noise modes are charted in Fig. 6, with the Satellite
image as an example. From Table III and Fig. 6, it can be seen
that as long as the relative proportion of Gaussian noise is
larger (or the relative proportion of impulse noise is smaller),
the optimal norm value p increases, which agrees with the
analysis in Section III-A. In all the noise modes, in terms
of both norm and PSNR measurements, the proposed method
obtains very similar results to the optimal values obtained in
the manual method. This again validates that the proposed
method has a good performance when seeking the optimal
fidelity norm. Some results are shown in Fig. 7, from which
the superiority of the proposed la_p norm method over the
l1 norm and l2 norm-based methods can be embodied from
a visual perspective. Fig. 8 illustrates the change of the solved
p with the increase in the iteration number. Here, it can be seen
that, in the first few iterations, the p value tends to be inac-
curate because it is solved using a partly reconstructed image.
After a certain number of iterations, however, it converges to
a reasonable value.

B. Validation of the Adaptive q Norm

A basic characteristic of the proposed method for the
regularization term is the use of the locally adaptive func-
tion, as shown in (5). To validate its advantage, both image
restoration and SR reconstruction were implemented. In the
restoration experiment, again, three blurs of 3 × 3 (standard
deviation = 1), 5 × 5 (standard deviation = 1.5), and 7 × 7
(standard deviation = 2) were considered. In the SR experi-
ment, the down-sampling factor was chosen as 2, no blur was
added, and three Gaussian noise modes with variance = 0
(noiseless), variance = 0.001, and variance = 0.002 were
considered. It should be noted that, since the suppression of
impulse noise mainly depends on the selection of p norm,
only experiments on images contaminated by Gaussian noise
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Fig. 6. PSNR values versus the fidelity norm p in the SR reconstruc-
tion (Satellite image). (a) Impulse. (b) Mixed-1. (c) Mixed-2. (d) Mixed-3.
(e) Mixed-4. (f) Mixed-5. (g) Mixed-6. (h) Gaussian.

are given here for saving the space. To make a compar-
ative analysis, the iteratively reweighted TV (IRTV) [35]
method, the adaptive norm algorithm (ANA) [12], and the
spatially weighted TV (SWTV) [30] method were also imple-
mented. Among these methods, the IRTV method is based
on a standard l1 norm TV model; the ANA method employs
hybrid l1 and l2 norms, respectively, for the flat regions and
the edge regions in the image; and the SWTV method locally
estimates the regularization parameter.

The PSNR evaluation results of the restoration
and SR experiments are, respectively, shown in
Tables IV and V. Because of the consideration of adaptive
regularization, the ANA method, the SWTV method, and the
proposed la,q norm method all show improvements over the
standard TV method (IRTV). For both restoration and SR
reconstruction, the proposed method produces the highest
PSNR values. For the Satellite image in particular, the PSNR
value has about a 1 dB increase over the IRTV method in the
noiseless cases.

To give a visual evaluation of the proposed locally adap-
tive regularization model, Fig. 9 shows the Lena images and

Fig. 7. SR results of the Satellite image for the validation of the adaptive
norm of the fidelity term in Mixed-2 case (Gaussian variance = 0.003, impulse
density = 0.03). (a) Degraded image. (b) l2 norm. (c) l1 norm. (d) Proposed
la,p norm.

Fig. 8. Convergence performance of the p function in the different noise
cases (Satellite image).

TABLE IV
PSNR (dB) RESULTS IN THE VALIDATION OF THE ADAPTIVE NORM

OF THE la,q REGULARIZATION (RESTORATION EXPERIMENT)

detailed regions in the SR experiments (variance = 0.002).
Here, it can be seen that the IRTV method results in staircase
effects in the smooth regions. This is the main disadvantage
of the standard TV model. The ANA method deals with the
staircase problem very well by performing the l2 norm on
smooth regions; however, it often leads to an over-smoothing
problem. Although the SWTV method produces higher PSNR
values than ANA, it has no obvious advantage from the visual
perspective. The proposed la,q regularization outperforms the
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TABLE V
PSNR (DB) RESULTS IN THE VALIDATION OF THE ADAPTIVE

NORM OF THE la,q REGULARIZATION (SR EXPERIMENT)

Fig. 9. SR results of the Lena image for the validation of the locally adap-
tive la,q regularization. (a) Degraded image. (b) IRTV. (c) ANA. (d) SWTV.
(e) Proposed la,q regularization. (f) Original image.

other methods in terms of both quantitative evaluation and
visual inspection.

C. Joint Validation of the Adaptive p and q Norms

After independent validation of the adaptive p and q norms,
here we give a further joint validation of them. The proposed
adaptive method was first compared with the manual method
which interactively adjusts p and q for model (4). We manually
adjusted p and q from 1 to 2 at increments of 0.1, respectively,
to obtain 11 × 11 p-q pairs. The SR experiment performed on
the Lena and Satellite images contaminated by mixed noise

Fig. 10. Comparison between the manual method (curved surface) and the
proposed adaptive method (plane surface). (a) Lena and (b) Satellite images.

Fig. 11. Norm values versus the iteration number (a linear stretching is
performed when mapping q values). (a) Lena and (b) Satellite images.

(Gaussian variance = 0.001, impulse density = 0.01) is illus-
trated in Fig. 10. The same parameter setting was adopted
as the previous SR experiment. The curved surface represents
the PSNR values of the resulting images using all the 11 × 11
pairs of p and q. The plane surface is the PSNR of the pro-
posed adaptive method. It can be seen that the plane surface
is completely above the curved surface, which confirms the
advantage of the proposed method. The p and q norm values
at different iteration steps are illustrated in Fig. 11. Here, it
can be seen that the norm values are stable after a certain
number of iterations. For the q maps, smaller norms assigned
to edge regions, and larger norms corresponding to the smooth
regions.

In order to validate the universality of the proposed adaptive
method, it was tested using eight additional images of different
types, as shown in Fig. 12. The mixed noise (Gaussian vari-
ance = 0.001, impulse density = 0.1) was considered in this
experiment. The quantitative results are shown in Table VI.
Here, it can be seen that the most commonly employed model
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Fig. 12. Eight images for the validation of the proposed adaptive method.

TABLE VI
PSNR RESULTS OF THE EXPERIMENTS PERFORMED

ON THE DIFFERENT IMAGES

(l2 + IRTV) produces very poor results because of the inap-
plicability of the l2 fidelity to impulse noise. When the l2
fidelity is replaced by the l1 fidelity, the results are greatly
improved. If we replace the standard TV model by the ANA
and SWTV regularization models, the PSNR values can be
further increased. Finally, when compared with the different
combinations of the existing fidelity and regularization mod-
els, the proposed method produces the highest quantitative
evaluation results.

D. Discussion of the Proposed Method

1) Parameter Analysis: There are two main parameters that
can affect the results. The first is the shape controller param-
eter α in (25). By tuning α from 0 to 1.0, different results
can be acquired. However, the parameter selection is always
a headache for image processing. In Fig. 13, we give the
results of synthetic experiments with the Lena and Cameraman
images (contaminated with Gaussian noise with variance of
0.001) for SR. Here, it can be seen that the results are not very
sensitive to the hyper-parameter α. Based on a large amount
of tests, we fixed α as 0.5 in all the experiments.

The other significant parameter is the regularization param-
eter λ. This differs in accordance with the content of the
image and the noise level. In general, the regularization
parameter λ has a very important effect on the resulting
image. Although there have been some methods developed
to determine this parameter adaptively [14], [50], [51], only
approximate optimal solutions can be obtained in most cases.
In our experiments, the main aim is to prove the advantages
of the proposed adaptive norms. If the above methods for
selecting regularization parameter are used, it will bring great
uncertainties for the comparison between the proposed and the
traditional methods. Therefore, for a fair comparison between

Fig. 13. PSNR (dB) with different values of α.

different models, the regularization parameter was manually
determined by attempting a series of values and selecting the
one with the highest PSNR (in simulated experiments) or the
best visual effect (in real experiments).

2) Convergence Discussion: As described before, this
paper employs the IRLS method and the LDFPI method for the
linearization of the fidelity term and the regularization term,
respectively. The convergence of the two optimization meth-
ods for lp norm problems has been proved in [35] and [37], in
which the norm values were fixed. We also confirmed that the
norms converge to stable values after a certain number of itera-
tions, as shown in Fig. 11. To further validate the convergence
behavior, Fig. 14 illustrates the PSNR values, relative residuals
||zn − zn−1||22/||zn||22, and objective function values En(z) ver-
sus the iteration number in the Lena SR experiment, in which
both fidelity and regularization norms were adaptively solved.
In order to test the sensitivity to the initial guess, two curves
corresponding to zero initialization and bilinear interpolation
initialization are illustrated in each figure. Here, it can be seen
that the residuals and objective function values decrease with
the iteration, and the PSNR values become very stable values
after a few iterative steps. More importantly, although the two
initial conditions have great differences, their corresponding
curves are almost overlapped in the latter part of the itera-
tion. All of these factors indicate that the proposed method
has a good convergence behavior.

3) Computational Efficiency: In this section, we give an
example of the running time of the proposed method (Fig. 15).
The size of the reconstructed image is 256 × 256, and the
method was implemented on a common notebook computer
with an Intel Core i7 1.90 GHz CPU and 8 GB of internal
memory. We can see that the proposed method is very effi-
cient in the Gaussian noise case, but it needs more time in
the impulse noise case. The mixed case falls in between the
two pure cases. In fact, when the proportion of impulse noise
is large, the optimal norm value would be smaller and the
running time would be increased. In Fig. 15, the traditional
TV SR method (with l2-norm fidelity in the Gaussian case
and l1-norm fidelity in the impulse and mixed cases) is used
for contrast, and it can be seen the procedure for the adaptive
selection of norms does not considerably increase the running
time. Furthermore, the proposed lp+lq method is more efficient
than the traditional l1 + TV method in the mixed case.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 14. Convergence of the proposed method by comparing zero initialization and bilinear interpolation initialization for Lena image in mixed noise case
(variance = 0.001, density = 0.01). (a) Relative residuals. (b) Objective function values. (c) PSNR values.

Fig. 15. Running time of the proposed method.

Fig. 16. Results for the Indian Pines dataset in the first real experiment.
(a) Original noisy image. (b)–(d) Results for l2 + TV, l1 + TV, and the
proposed method, respectively.

4) Experiments With Real Images: To verify the perfor-
mance of the proposed method on real data, we conducted
two experiments for restoration and SR, respectively. The first
restoration experiment involved the 2nd band of the Airborne
Visible InfraRed Imaging Spectrometer Indian Pines dataset,
which is a hyperspectral image with 220 bands. The test
data with the size of 145×145 pixels are shown in Fig. 16(a).

Fig. 17. Results for the compressed face sequence in the second real
data experiment. (a) Original noisy image (b)–(d) Results for l2+TV, l1+TV,
and the proposed method, respectively.

From the figure, we can see that this image is severely contam-
inated by noise, and the noise type is complex. The restoration
is a difficult task as the noise model is complex and difficult
to identify. The results of the proposed method, as well as
the original noisy image and the results for the l1/l2 fidelity
norm with TV regularization are shown in Fig. 16. It is known
that any denoising algorithm inevitably removes some detailed
information more or less when removing the noise. However,
the denoised image often has better overall visual quality.
From the visual effect, it can be seen that the l2 + TV method
[Fig. 16(b)] results in a staircase effect when removing the
noise. Meanwhile, the l2 + TV method [Fig. 16(c)] cannot
effectively remove the noise because the noise distribution is
approximately Gaussian. The proposed method performs well
at preserving the texture and eliminating the staircase effect,
while also removing noise.

The second SR experiment was conducted on the Face
sequence, with ten compressed images following the global
translational motion model. The data size was 32 × 31,
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and the magnification factor was set as four. The corresponding
results are presented in Fig. 17. Here, the difference between
the results can be clearly seen. Due to the compressed effects,
the noise model in the images is actually not pure Gaussian.
Therefore, the proposed method outperforms the l2 + TV and
l1 + TV methods. In the results of the proposed method, the
edges are well reconstructed and the compressed staircase
effect is effectively suppressed.

V. CONCLUSION

In this paper, we have proposed an adaptive method to
determine the norms in a regularized (SR) restoration model.
Two norm functions are deduced from different viewpoints,
respectively, for the fidelity term and the regularization term.
The adaptation of the fidelity term (la,p) is to ensure that the
method is robust in different noise types (Gaussian, impulse, or
mixed). The target of the adaptive regularization norm (la,q) is
to ensure that not only that the edge information is enhanced,
but that the smooth regions do not give rise to artifacts such
as staircase effects. The experimental results confirm that the
two proposed norm functions are both very promising. In
fact, these two functions can be used independently or jointly
because they are aimed at different problems. The la,p norm
fidelity is effective in situations where the noise statistics are
unknown. The la,q norm regularization can improve the results
in any type of noise case. Especially when the noise is strong,
the proposed method still has good performance. Nevertheless,
there may still be room for considerable improvement of
the proposed method. For example, other functional forms
of the fidelity and regularization norms could be attempted
under the framework of this paper. Another possible but chal-
lenging issue would be to seek an adaptive method for the
optimal determination of α, as an alternative to the compro-
mised setting in the regularization norm function. It will also
be important to give mathematical convergence proof of the
proposed method.
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