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The performance of remote sensing images in some applications is often affected by the existence of noise,
blurring, stripes and corrupted pixels, as well as the hardware limits of the sensor with respect to spatial
resolution. This paper presents a universal reconstruction method that can be used to improve the image
quality by performing image denoising, deconvolution, destriping, inpainting, interpolation and super-
emote sensing image
adiometric quality improvement
niversal reconstruction method

resolution reconstruction. The proposed method consists of two parts: a universal image observation
model and a universal image reconstruction model. In the observation model, most degradation processes
in remote sensing imaging are considered in order to relate the desired image to the observed images. For
the reconstruction model, we use the maximum a posteriori (MAP) framework to set up the minimization
energy equation. The likelihood probability density function (PDF) is constructed based on the image
observation model, and a robust Huber–Markov model is employed as the prior PDF. Experimental results
are presented to illustrate the effectiveness of the proposed method.
. Introduction

It is well known that remote sensing imagery can be applied
n many fields, including mapping land-use and cover, agriculture,
oils mapping, forestry, city planning, archaeological investiga-
ions, military observation and geomorphological surveying. In

any cases, however, the performance of remote sensing images
n these applications is affected by some degradations of image
uality, such as the effects of random noise, sensor and/or atmo-
phere blurring, periodic stripes and corrupted pixels caused by
amage of detector elements. These make it more difficult to visu-
lly and automatically interpret the remote sensing data. Besides,
he spatial resolution of a remote sensing image is often not high
nough for some applications due to the hardware limits of the
maging sensor. In order to improve image quality and increase
pplication potential, implementing some digital image processing

echniques is a commonly used procedure. The related techniques
nclude image denoising, image deconvolution, image destriping,
mage inpainting, image interpolation and super-resolution (SR)
econstruction.
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The goal of image denoising is to recover the original image
from a noisy measurement. To denoise a remote sensing image,
some adaptive filters such as the Lee filter (Lee, 1980), Kuan fil-
ter (Kuan et al., 1985), Frost filter (Frost et al., 1982) and their
variations have commonly been embedded in commercial remote
sensing software. For high-performance denoising techniques, the
MAP (maximum a posteriori) (Isar et al., 2006; Achim et al., 2003)
and wavelet methods (Achim et al., 2003; Nasri and Nezamabadi-
pour, 2009) are two of the most popular frameworks.

Image deconvolution is the process of restoring the true image
from the degraded one. Here the degradation is mainly caused by
optical and atmosphere PSF (Point Spread Function). To restore
remote sensing images, the MTF (Modulation Transfer Function)
based methods are most commonly used. Some representative ref-
erences address the deconvolution problems of TM (Arbel et al.,
2004), SPOT (Pinilla Ruiz and Ariza Lopez, 2002), IKONOS (Ryan et
al., 2003) and CBERS-2 (Papa et al., 2008). The Wiener filter (Hillery
and Chin, 1991) is a widely employed method to restore the image
after the estimation of MTF.

The correction of image stripes is commonly called image
destriping. The simplest destriping technique is to process the

image data with a low-pass filter in the frequency domain using
the discrete Fourier transform (DFT) (Chen et al., 2003). Some
researchers remove the stripes using wavelet analysis, which takes
advantage of the scaling and directional properties to detect and
eliminate striping patterns (Torres and Infante, 2001; Chen et al.,
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Fig. 1. The functions

006). Another destriping approach examines the distribution of
igital numbers for each sensor, and adjusts this distribution to
ome reference distribution. There are also equalization methods
Algazi and Ford, 1981), moment matching (Gadallah et al., 2000),
nd histogram matching (Rakwatin et al., 2007) methods that are
ased on the assumption of homogeneous targets, the same mean
nd standard deviation and the same histogram distribution of each
canning line.

Image inpainting is the technique to recover corrupted pixels in
he image. This technique is also called pixel replacement. For this
roblem, the nearest neighbour, average, or median value replace-
ent methods are commonly employed (Ratliff et al., 2007). Wang

t al. (2006) provide a method to retrieve Aqua MODIS band 6 using
ther bands based on their relationships in Terra MODIS. It is worth
oting that there are a number of robust inpainting techniques
Bertalmio et al., 2003; Chan et al., 2003; Grossauer, 2004; Elad
t al., 2005) which have not been applied to remote sensing image
rocessing.

To increase the number of pixels in an image, single
rame interpolation techniques have been researched exten-
ively. These include nearest neighbour, bilinear and various
ubic spline interpolation methods (Chen and de Figueiredo,
993; Hou and Andrews, 1978; Karayiannis and Venetsanopoulos,
991; Parker et al., 1983). The traditional interpolation meth-
ds often suffer from blurred edges or introduce artefacts around

dges. To improve the subjective quality of interpolated images,
ayesian (Schultz and Stevenson, 1994), POCS (Projection-Onto-
onvex-Set) (Ratakonda and Ahuja, 1998) and edge-directed

nterpolation schemes (Wang and Ward, 2001; Li and Orchard,

Fig. 2. Illustration of image d
e proposed method.

2001) have been widely researched. Using these methods, the
sharp edges can be preserved either by employing an effec-
tive prior model or interpolating along the edges detected in
advance.

Super-resolution image reconstruction refers to a process that
produces a high spatial resolution image from several low reso-
lution images using the non-redundant information among them.
The first multi-frame SR idea in (Lee, 1980) was motivated by
the requirement to improve the spatial resolution of Landsat TM
images. In 2002, CNES (National Space Study Centre, France) suc-
cessfully launched SPOT5, which could deliver a 2.5 m spatial
resolution panchromatic image through the SR processing of two
5 m spatial resolution images (Latry and Rouge, 2003). Shen et
al. (2009) proposed an image reconstruction algorithm for multi-
temporal MODIS images, and Merino and Nunez (2007) proposed
a variable pixel linear reconstruction based method and applied it
to Landsat ETM+ images.

The image processing techniques mentioned above are highly
related, but few studies so far have attempted to solve the related
problems using one model. In this paper, we present a univer-
sal image reconstruction method to solve all the posed problems
shown in Fig. 1. A universal image observation model is developed
to relate the desired image to the degraded image by consider-
ing most of the degradations. Based on the observation model, a
universal image construction model is set up using the MAP frame-

work. The gradient descent algorithm is employed to carry out the
optimization. The main objective of this paper is to validate the
universal applicability of the proposed reconstruction method for
different image processing problems such as denoising, deconvo-

egradation processes.
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ution, destriping, inpainting, interpolation and super-resolution
econstruction.

. Universal image observation model

To solve the inverse problems of image processing, it is advisable
o first analyse the degradation process and assume an image obser-
ation model to relate the desired image to the degraded images.
his section provides a universal observation equation, which can
odel most image degradations found in remote sensing acqui-

itions. The degradation process is illustrated in Fig. 2, and the
orresponding observation model is shown in Eq. (1).

k = GkDkHkMkz + Bk + nk (1)

Suppose the first left image of Fig. 2 is the ideal or desired image,
nd we use z to denote it. In ideal conditions, the observed image

k (k denotes the sequence number of observation) represents z.
owever, the image may be affected by several degradations during

mage acquisition, transmission and even by unexpected process-
ng and storage. The first degradation is the geometric motion.
onsidering the same projected coordinate system, the motions
etween multi-temporal images mainly come from different view-

ng directions and angles. In Eq. (1), matrix Mk is used to denote
he motion operator. The second degradation is the image blur-
ing Hk caused by PSF of the sensor and/or atmosphere. The next
s the effect of down-sampling, decided by the number of sensor
etectors. We denote the down-sampling operator as Dk. Then,
here are the three intensity-related effects of global luminance
hange, periodic stripes and random corrupted pixels. For simplic-
ty, it is assumed that these degradations can be linearly described,
ut the existence of a linear-assumption error is permitted. We use
k and Bk to model the intensity-related effects, and these elements
enote the gain and offset parameters, respectively (Gk is diagonal).
he last term nk in (1) denotes the sum of sensor noise and model
rror.

In the universal model (1), if the four matrices Gk, Dk, Hk and
k are all identity matrices, and Bk is a zero vector, namely, only

onsidering the noise degradation, the model can be simplified as
2) for image denoising.

= z + n (2)

Here, k is ignored as only one observed image is considered.
Based on (2), if the blurring H is further considered, the following

pecial model can be used for image deconvolution.

= Hz + n (3)

Eq. (4) is the special model for image interpolation, where the
own-sampling matrix D is considered.

= Dz + n (4)

The destriping and inpainting model can be obtained by consid-
ring the gain and bias matrices, as shown in (5).

= Gz + B + n (5)

It is worth noting that the photometric parameters are com-
only assumed to be only dependent on the row or column index

or image destriping. As for inpainting, if a pixel is corrupted, the
orresponding diagonal element of G is zero, and that of B is equal
o the pixel value. Otherwise, the diagonal elements of G and B are
espectively 1 and 0 for uncorrupted pixels.
Motion based SR reconstruction requires that there are sub-
ixel shifts between the observed images. Therefore, the motion
perator Mk must be considered in the observation model. Fur-
hermore, the sun zenith angle and atmospheric absorption and
cattering may also bring different intensity (Gk and Bk) and blur
ervation and Geoinformation 12 (2010) 278–286

(Hk) effects to the image. Under these considerations, the observa-
tion model of SR reconstruction is given by (6).

gk = GkDHkMkz + Bk + nk (6)

We have deduced that the universal observation model (1)
can be used for several image improvement techniques, includ-
ing denoising, deconvolution, interpolation, destriping, inpainting
and super-resolution reconstruction. For simplicity, we combine
the first four matrices into one matrix as follows:

gk = Akz + Bk + nk (7)

3. Universal image reconstruction model

Generally, the inverse problems tackled in this paper are all ill-
posed because it is necessary to recover a high-quality image from
one or several degraded images. Therefore, a difficulty is the mul-
tiplicity of possible solutions. In order to obtain more desirable
results, the ill-posed problem should be stabilized. Traditionally,
regularization has been described from both the algebraic and sta-
tistical perspectives. Here we formulate the problem using the MAP
framework.

Let the full set of P observed images be denoted by g =
{g1, g2, ....gP}. The purpose is to realize the MAP estimate of desired
image z, given the observed images g. The estimate can be com-
puted by

ẑ = argmax
z

p(z|g) (8)

Applying Bayes’ rule, Eq. (8) becomes:

ẑ = argmax
z

p(g|z)p(z)
p(g)

(9)

Noting that p(g) is not a function of z, it can be removed from
the function. Assuming the observed images are independent, we
obtain:

ẑ = argmax
z

[∏
k

p(gk|z)

]
p(z) (10)

3.1. Likelihood density function

In (10), p(gk|z) is the likelihood density function, which pro-
vides a measure of the conformance of the estimated image to the
observed image according to the image observation model. It is
determined by the probability density of the noise vector. Using
the notation N(�, C) for a normal distribution with mean � and
covariance C , the noise nk can be modelled as a zero mean Gaussian
process.

nk∼N(0, Ck) (11)

Since nk = gk − Akz − Bk, the probability distribution function
p(gk|z) = p(nk) can be denoted as

p(gk|z) = 1
M1

exp
{

−1
2

(g − Akz − Bk)T Ck
−1(g − Akz − Bk)

}
(12)

where M1 is a constant. When the noise is assumed to be indepen-
dent, Ck is actually a diagonal matrix containing the noise variances.
Thus, the function can be rewritten as

p(gk|z) = 1
M1

exp
{

−1
2

∥∥Q k(gk − Akz − Bk)
∥∥2

2

}
(13)

√

where Q k is a diagonal matrix satisfying qii = 1/ cii, where qii and
cii are respectively the diagonal elements of Q k and Ck.

In the Gaussian distribution of (13), ‖·‖2
2 denotes the L2 norm.

Another choice for this term is the L1 norm
∥∥Q k(gk − Akz − Bk)

∥∥
1
,

which is often used from the algebraic perspective. In this case Q k
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epresents the weights of all pixels. Generally, the L1 norm function
as some robustness to noise and outliers, but the minimization can
nly be accomplished by some direct search methods, which often
esults in local minima. The L2 norm based Gaussian function is
mployed in this paper.

.2. Prior density function

The second density function p(z) in Eq. (10) is the image prior,
hich imposes the spatial constraints on the image. This may

nclude constraints such as positivity, smoothness, etc. (Borman
nd Stevenson, 1998). Generally, p(z) is commonly assumed as the
ibbs form

(z) = 1
M2

exp
(

− 1
ˇ

U(z)
)

(14)

here M2 is a constant, ˇ is an adjusting factor often called
he “temperature” parameter, and U(z) is the prior energy func-
ion. Traditionally, the Laplacian prior and Gauss–Markov prior are
ommonly employed in the fields of image restoration and recon-
truction. They regularize the corresponding ill-posed problem by
orcing spatial smoothness on the image. Their energy functions
re respectively

(z) =
∥∥Lz

∥∥2
(15)

and

(z) =
∑
x,y

∑
c ∈ C

�(dc(zx,y)) (16)

here L represents the 2-D Laplacian operation, c is a local group
f points called clique within the set of all image cliques C, the
uantity dc(zx,y) is a spatial activity measure to pixel zx,y, which is
ften formed by first-order or second-order differences, �(·) is the
uadratic potential function

(i) = i2 (17)

A common criticism of these prior models is that the sharp
dges and detailed information in the estimates tend to be overly
moothed. This problem is more obvious when the images are con-
aminated by noise. A popular edge-preserving prior is the total
ariation (TV) model, whose energy functional looks like (Rudin et
l., 1992)

(z) =
∑

x

∑
y

√∣∣∇zx,y

∣∣2 + � (18)

Here, ∇ is the gradient operator, and � is a small positive param-
ter that ensures the differentiability. The TV model has been
idely used in the image processing field because it is robust and
reserves the sharp edges in the image. However, for low spatial
esolution remote sensing images in which sharp edges often do
ot exist, the performance of the TV model has not been validated.

In this paper, we employ the Huber–Markov image prior
odel. The difference between the Huber–Markov prior and the
auss–Markov prior is only the potential function �(·). The Huber

unction is defined as

(i) =
{

i2 |i| ≤ �
2�|i| − �2 |i| > �

(19)

here � is a threshold parameter separating the quadratic and lin-

ar regions (Schultz and Stevenson, 1996). The advantage of the
uber–Markov model is that it can adjust the penalty function by
according to the edge activity of the image. When � approaches
∞, it is the Gauss–Markov prior. Contrarily, when � approaches 0,

t has a similar function to the TV model or L1 -norm-based models.
ervation and Geoinformation 12 (2010) 278–286 281

As for the dc(zx,y) in (16), the following finite second-order differ-
ences are computed in four adjacent cliques for every location (x, y)
in the image:

d1
c (zx,y) = zx−1,y − 2zx,y + zx+1,y (20)

d2
c (zx,y) = zx,y−1 − 2zx,y + zx,y+1 (21)

d3
c (zx,y) = 1√

2

[
zx−1,y−1 − 2zx,y + zx+1,y+1

]
(22)

d4
c (zx,y) = 1√

2

[
zx−1,y+1 − 2zx,y + zx+1,y−1

]
(23)

3.3. Reconstruction model and optimization

Substituting (12) or (13), (14), (16) and (19) in (10), implement-
ing the logarithm function and performing some manipulations,
M1, M2 can be safely dropped, and the maximization of the posterior
probability distribution is equivalent to the regularized minimum
problem

ẑ = arg min

{
�
∑

k

(gk − Akz − Bk)T C−1
k (gk − Akz − Bk)

+
∑
x,y

∑
c ∈ C

�(dc(zx,y))

}
(24)

or

ẑ = arg min

{
�
∑

k

∥∥Q k(gk − Akz − Bk)
∥∥2

2
+

∑
x,y

∑
c ∈ C

�(dc(zx,y))

}

(25)

Here, � = ˇ/2 is the regularization parameter. It has been men-
tioned that the matrix Q k is diagonal and its elements represent the
reciprocals of the noise standard deviation in different pixel loca-
tions. For convenience, the element values are scaled to the range
of 0–1. The difference caused by the scaling can be balanced by �.
Thus the function of Q k can be regarded as the relative adjustment
of regularization at each pixel location in the kth image.

The gradient descent optimization method is used for the mini-
mum problem. Differentiating the cost function (24) and (25) with
respect to z, we have

r = −2�
∑

k

AT
k C−1

k (gk − Akz − Bk) + r′ (26)

and

r = −2�
∑

k

AT
k Q T

k Q k(gk − Akz − Bk) + r′ (27)

where r′ is the derivative of the regularization term that can be
solved on a pixel-by-pixel basis. Then, the desired image is solved
by employing the successive approximations iteration

ẑn+1 = ẑn − ˇnrn (28)

where n is the iteration number, and ˇn is the step size. By making a
second-order Taylor series approximation of the objective function

at the current state ẑn, a quadratic step size approximation becomes
(Schultz and Stevenson, 1996)

ˇn = rT
nrn

rT
n(∇2E)rn

(29)
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Table 1
Parameter settings of all experiments.

Test number Processing Intent Figure � � d Qk

Test 1 Denoising Fig. 3 3 8 1 × 10−7 Identity matrix
Test 2 Deconvolution Fig. 4 1000 1 1 × 10−6 Identity matrix
Test 3 Interpolation Fig. 5 100 1 1 × 10−6 Identity matrix
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Test 4 Destriping Figs. 6 and 7
Test 5 Inpainting Fig. 8
Test 6 Inpainting Fig. 9
Test 7 Super resolution Fig. 10

where ∇2E is the Hessian matrix of the cost function. The itera-
ion is terminated when

||zn+1 − zn||2
||zn||2 | ≤ d (30)

here d is a predetermined coefficient.
In order to ensure that the solution remains within specified sets

nd to reduce the feasible solution space, some prior constraints can
e placed on the image by performing corresponding projections
fter the solution of (26). The first is the amplitude constraint whose
rojection P1 is defined as

1[z(x, y)] =
{

˛, z(x, y) < ˛
z(x, y) ˛ ≤ z(x, y) ≤ ˇ
ˇ, z(x, y) > ˇ

(31)

here ˛ and ˇ are the amplitude bounds. Furthermore, in order to
revent the original information of uncorrupted pixels from being
moothed during the inpainting or destriping process, we assign
heir values to the original observed ones at the end of each iteration
y projection P2

2[z(x, y)] =
{

z(x, y), dead or stripe pixels
g(x, y), healthy pixels

(32)

. Experimental results

To test the performance of the proposed method, we conducted
series of experiments for denoising, deconvolution, interpola-

ion, destriping, inpainting and super-resolution reconstruction.
he parameter settings are shown in Table 1. The regularization
arameter �, Huber threshold � and iteration termination param-
ter d are determined heuristically. Since we assume the noise
s identically distributed in image denoising, deconvolution and
nterpolation, the matrix Q k in (25) is an identity matrix in these
ases. For image inpainting and super-resolution reconstruction,
he corresponding elements of corrupted pixels and outliers (pix-

ls which strongly deviate from the registration model) are set to
, and other diagonal elements are set to 1, i.e. it satisfies

ii =
{

0 dead or outlier pixels
1 otherwise

(33)

Fig. 3. Denoising experiment. (a) The noisy image, (b) denoised image using
15 5 2 × 10 Eq. (32)
50 60 1 × 10−7 Eq. (31)

5 60 1 × 10−10 Eq. (31)
15 1 5 × 10−6 Eq. (31)

For pixels on the stripes, the following equation is used to deter-
mine the diagonal elements in Qk

qii = ln
[

(e − 1)(std − min)
max − min

+ 1
]

(34)

where std represents the standard deviation. It is worth noting that
the std value should be computed on a neighbouring region that
does not contain any stripes or corrupted pixels. max and min are
the std thresholds corresponding to the maximum value 1 and min-
imum value 0. They are set to 3 and 250 respectively in this paper.
Eq. (34) ensures that larger element values are chosen for sharp
regions to retain the high frequency information.

4.1. Image denoising

Fig. 3 shows the experimental results of image denoising.
Fig. 3(a) is the noisy image simulated by adding Gaussian noise to
an original image. Fig. 3(b) is the denoised result using a common
Gaussian filter. It is seen that the edge information in the image has
been overly smoothed with the denoising process. In contrast, the
proposed algorithm is preferable because it can provide simulta-
neous denoising and edge preservation, as shown in Fig. 1(c). The
PSNR (peak signal to noise ratio) values of Fig. 3(b) and (c) are 22.21
and 23.17 dB, respectively.

4.2. Image deconvolution

In the blurring experiment, the proposed algorithm was per-
formed on an original CBERS-2 (China-Brazil Earth Resource
Satellite) sub-image, which is shown in Fig. 4(a). This image is
strongly blurred by the PSF of the imaging sensor and atmosphere.
Fig. 4(b) is the deblurred image, and Fig. 4(c) and (d) are the contrast
enhanced results of Fig. 4(a) and (b). It is seen that the deblurred
image is much clearer than the observed one. The image average
gradients of Fig. 4(a) and (b) are 3.7 and 7.1. Fig. 4(c) and (d) are
respectively the contrast enhancement of Fig. 4(a) and (b).
4.3. Image interpolation

In the interpolation experiment, an aerial image was first down-
sampled by a factor of 2 in both dimensions. The down-sampled

Gaussian filter, and (c) denoised image using the proposed algorithm.
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ig. 4. Deconvolution experiment on a CBERS-2 image. (a) The observed image, (b)
nhanced result of the deblurred image.

mage was interpolated to the original size using the cubic interpo-
ation method and the proposed method. These images are shown
n Fig. 5. By comparison, we can see the proposed method pro-
ides more desirable results with sharper edges and more detailed
nformation than with the traditional cubic interpolation. The PSNR
alues of Fig. 5(b) and (c) are 24.63 and 25.82 dB, respectively.

.4. Image destriping
The destriping experiment was performed on a MODIS (Mod-
rate Resolution Imaging Spectrometer) image. The Aqua MODIS
and 30 data acquired on 26 December 2003 was used, and a sub-

mage is shown in Fig. 6(a). To make a comparative analysis, the
oment matching, histogram matching and the proposed destrip-

Fig. 5. Interpolation experiment. (a) The down-sampled imag
blurred image, (c) contrast enhanced result of the observed image, and (d) contrast

ing methods were implemented. The destriped results are shown
in Fig. 6(b)–(d). Fig. 7 shows the detailed regions around the lake
of the destriped results of the different methods. Experimental
results indicate that moment matching and histogram matching
can remove most stripes, but there are still considerable radiance
fluctuations within the non-dominated uniform regions. The pro-
posed algorithm, however, provides a much more robust destriping
from the visual perspective.
4.5. Image inpainting

Fig. 8 shows the inpainting experiments for the recovery of
vertical corrupted lines. Fig. 8(a) is contaminated by 1 corrupted
column that is 8 pixels wide. Fig. 6(b) and (c) are respectively the

e, (b) cubic interpolated, and (c) the proposed method.
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Fig. 6. Destriped results of the Aqua MODIS image. (a) The original image, (b) moment matching, (c) histogram matching, and (d) the proposed algorithm.

Fig. 7. Detailed lake regions of the destriped results of different methods. (a) The original image, (b) moment matching, (c) histogram matching, and (d) the proposed
algorithm.

Fig. 8. Inpainting experimental results for the recovery of vertical corrupted lines. (a) Original image contaminated by a corrupted line of 8-pixel width, (b) inpainted image
using ENVI 4.4, (c) inpainted image using the proposed algorithm.
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ig. 9. Horizontal profiles of digital values of the 112th line on each of the images
n Fig. 8.

npainted results using the interpolation based “Replace Bad Lines”
unction in ENVI 4.4 and the proposed algorithm. It is seen that
he conventional interpolation-based method in ENVI 4.4 is not
mployable for such a wide corrupted line. The proposed algorithm,

owever, is more robust for the increase in width of the corrupted
egion. Although the lost information cannot be completely recov-
red, the visual quality of the result is improved sufficiently. Fig. 9
hows the horizontal profiles of digital values of the 112th line on
ach of the images in Fig. 8. It is seen that the proposed method

ig. 10. Inpainting experiment for the recovery of random corrupted pixels. (a) The origi
he inpainted image using the proposed algorithm.

ig. 11. (a)–(f) Images captured on 28/12/2003, 30/12/2003, 01/01/2004, 04/01/2004, 0
econstructed image.
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produces much gentler easement curve around the corrupted
region.

Fig. 10(a) is an original QuickBird image. Fig. 10(b) assumes the
image is contaminated by randomly distributed corrupted pixels
whose percentage is 90%. In this image no objects can really be
seen. The inpainted result is shown in Fig. 10(c). Even although
the percentage of corrupted pixels is so high, the ground objects
can still be distinguished from the inpainted image. The PNSR of
Fig. 10(b) and (c) are respectively 8.17 and 23.24 dB.

4.6. Super-resolution reconstruction

In the experiments, we used six MODIS band-4 images with
ground resolution of 500 m. These images were captured from
28 December 2003 to 8 January 2004. Our data processing was
restricted to typical 50 by 50 block images in order to reduce the
effects of clouds and mosaicing errors. A 3 × 3 Gaussian blur ker-
nel with unit variance was assumed and employed. The original six
images are shown in Fig. 11(a)–(f). Fig. 11(g) is the cubic interpo-
lated image. The corresponding super-resolution result is shown in
Fig. 11(h).

By visual comparison, it is seen that the results of the proposed

SR algorithm are much clearer than those of the cubic interpolation
algorithms, the reason being that these results fused the com-
plementary information in different observed images. The image
average gradients of Fig. 11(g) and (h) are respectively 18.9 and
29.0.

nal QuickBird image, (b) the image contaminated by 90% corrupted pixels, and (c)

6/01/2004 and 08/01/2004, respectively, (g) cubic interpolated image, and (h) SR
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. Conclusions

In order to improve quality and increase the application poten-
ial of remote sensing images, this paper presents a universal
econstruction method. This method was developed based on a uni-
ersal image observation model and MAP framework. The proposed
ethod was tested for image denoising, deconvolution, destrip-

ng, inpainting, interpolation and super-resolution reconstruction.
xperimental results demonstrate that this method outperforms
any other widely used methods for solving the same problems.
evertheless, further work can potentially expand the method to
erform image fusion of different spectral bands.
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