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Because of sensor failure and poor observation conditions, remote sensing (RS) images are easily sub-
jected to information loss, which hinders our effective analysis of the earth. As a result, it is of great
importance to reconstruct the missing information (MI) of RS images. Recent studies have demonstrated
that sparse representation based methods are suitable to fill large-area MI. Therefore, in this paper, we
investigate the MI reconstruction of RS images in the framework of sparse representation. Overall, in
terms of recovering the MI, this paper makes three major contributions: (1) we propose an analysis model
for reconstructing the MI in RS images; (2) we propose to utilize both the spectral and temporal informa-
tion; and (3) on this basis, we make a detailed comparison of the two kinds of sparse representation
models (synthesis model and analysis model). In addition, experiments were conducted to compare
the sparse representation methods with the other state-of-the-art methods.
� 2015 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Due to the sensors being out of working order (e.g., Aqua
Moderate Resolution Imaging Spectroradiometer (MODIS) band 6
(Li et al., 2014), the Landsat ETM+ SLC-off problem (Zeng et al.,
2013), the row anomaly problem of Aura OMI (Yan et al., 2012))
or in a cloudy atmosphere, the involved regions in remote sensing
(RS) images often have invalid information, which we call missing
information (MI). It is noteworthy that only passive RS images (vis-
ible and infrared) are affected by the atmosphere. MI greatly
reduces the availability of RS images. Thus, reconstruction of the
MI of RS images is a hot topic in the RS field. It is in fact similar
to the old and well-known inpainting (Bertalmio et al., 2000) prob-
lem in the image processing field. To date, a number of methods
have been aimed at image inpainting, e.g., interpolation
(Kokaram et al., 1995), partial differential equations (PDE)
(Bertalmio, 2006), total variation (TV) (Chan et al., 2005), and the
Huber–Markov method (Shen and Zhang, 2009). For small and
sparse missing areas of RS images, these methods can obtain a
satisfactory recovery effect. However, they are not able to recon-
struct large missing areas. These methods are all based on spatial
complementation. Unfortunately, the MI area is usually large in
RS images. As a result, the spatial complementation based methods
cannot successfully reconstruct the MI of RS images.

For multispectral RS images, the bands are correlated with each
other in the spectral domain, and it is the band-to-band correlation
which we call spectral complementation. Generally speaking, the
spectral complementation plays an important role on the condition
that (for multispectral images) some bands have MI and others are
intact. The authors in Li et al. (2014), Wang et al. (2006), Rakwatin
et al. (2009), Shen et al. (2011), and Gladkova et al. (2012) made
the best use of spectral complementation to reconstruct the cor-
rupted band by modeling the spectral relationship between the
corrupted band and the other good bands (one or more). As a result
of the effective mathematical or physical restrictions, they reduced
the error of the polynomial fitting. Cheng et al. (2014) proposed a
variation-based method by combining the strengths of a TV
method and a nonlocal method. Although this method aims to
reconstruct a multispectral image in which all the spectral bands
have the same MI, it is still suitable for the case stated here.
Additionally, Shen et al. (2014) proposed a sparse representation
based method which adaptively weights the intact bands
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according to the spectral importance. In short, the spectral comple-
mentation based methods have an advantage over the spatial com-
plementation based methods when coping with large-area MI.
However, if the atmosphere is cloudy and rainy, the RS images
acquired in the visible and infrared ranges will be occluded by
clouds. In this case, the spectral complementation is ineffective.

Correspondingly, a number of scholars have resorted to other
sources of complementary information. For RS images (over the
same region) acquired from different periods, they are correlated
in the temporal domain, and it is the image-to-image correlation
which we call temporal complementation. Hereafter, the images
from different periods and over the same region are referred to
as ‘‘multitemporal images’’. Temporal interpolation (Inglada and
Garrigues, 2010) and filters (Jakubauskas et al., 2001; Chen et al.,
2004; Roerink et al., 2000) are the most basic reconstruction meth-
ods; however, in order to obtain a satisfactory reconstruction, they
are dependent on a long time series of data. Regression analysis
(Zeng et al., 2015), mosaicing or completion (Helmer and
Ruefenacht, 2005; Lin et al., 2014; Cheng et al., 2014), and geosta-
tistical methods (Zhang et al., 2009) are simple and common algo-
rithms which just use a reference image from another period;
however, they sometimes do not obtain a good effect in the junc-
tion of a missing region and good region. Recently, sparse repre-
sentation based methods (Li et al., 2014; Lorenzi et al., 2013)
have also been used in this field and have obtained promising
results. Unfortunately, the temporal complementation based
methods have a fatal flaw in that once the multitemporal images
show a significant land-cover change, the methods are no longer
applicable.

In recent years, researchers have verified that the sparse repre-
sentation based methods are appropriate for recovering large-area
MI (Guillemot and Le Meur, 2014), which has inspired our interest.
Firstly, we make a simple review of sparse representation, as
follows.

� Sparse representation. Sparse representation was first pro-
posed in the 1980s (von zur Gathen and Kaltofen, 1985;
Coppersmith and Davenport, 1985; Pissanetzky, 1984), and is
a representation that accounts for most or all the information
of a signal by a linear combination of only a small number of
elementary signals, called atoms (Gemmeke et al., 2011). In
the 1990s, Mallat and Zhang (1993) proposed the concept of
the overcomplete dictionary to initiate a new development
stage. Sparse representation has found applications in numer-
ous domains and tasks, such as image inpainting, denoising,
super-resolution, fusion, classification, and target detection.
According to the crude estimation of the ISI Web of Science,
there have been more than 4000 papers related to sparse repre-
sentation (Nam et al., 2013). To the best of our knowledge,
Olshausen and Field (1996) first introduced sparse representa-
tion into the field of natural image processing, and since then
it has developed into two main classes: synthesis models and
analysis models.
� Synthesis models. As the name implies, synthesis models syn-

thesize a signal x 2 Rm by the multiplication of two compo-
nents, i.e., x ¼ Da, where D 2 Rm�nðm < nÞ is an overcomplete
dictionary (i.e. D is a matrix with m rows and n columns) and
a 2 Rn is the representation coefficient. The columns of D are
called dictionary atoms. This expression is called a sparse repre-
sentation, on the condition that the vector a is sparse, i.e.,
kak0 ¼ k� n, meaning that the number of nonzero elements
ðkÞ is far less than the total number ðnÞ. In other words, the sig-
nal x can be represented as a sparse linear combination of the k
atoms from the redundant dictionary (Aharon et al., 2006; Elad
and Aharon, 2006). The last decade has witnessed a great
amount of investigation into synthesis models, which attempt
to obtain a better sparse approximation to the real signal. To
date, synthesis models have been successfully applied to image
denoising (Elad and Aharon, 2006), super-resolution (Rehman
et al., 2012; Jianchao et al., 2010), inpainting (Mairal et al.,
2008; Fadili et al., 2009), and deblurring (Weisheng et al.,
2011). Relatively speaking, they are a mature class of model
with solid theoretical foundations and extensive applications.
� Analysis models. These models take an analysis point of view

(Rubinstein et al., 2013). Differing from the synthesis models,
which decompose the signal to get a redundant dictionary
and sparse coefficients, analysis models aim to gain a sparse
outcome by multiplying the signal by an analysis operator (dic-
tionary). Given an analysis dictionary X 2 Rp�mðp > mÞ, (i.e. X is
a matrix with p rows and m columns), the analyzed outcome is
y ¼ Xx 2 Rp. The representation y should be sparse (or we say
‘‘cosparse’’), meaning kyk0 ¼ p� l� p (l denotes the number
of zeros in y). These zeros carve out the low-dimensional sub-
space that the signal belongs to Rubinstein et al. (2013).
Analysis models have been preliminarily and empirically
applied to the restoration of information, including signal and
digital image recovery (denoising) (Yaghoobi et al., 2013;
Ophir et al., 2011; Yaghoobi et al., 2012; Giryes et al., 2011),
and the MI recovery of natural images (Hawe et al., 2013). To
the best of our knowledge, analysis models have not yet been
used in the processing of RS images. Compared to the synthesis
models, they are a young class of model.

Among the methods above, the authors of Shen et al. (2014), Li
et al. (2014), and Lorenzi et al. (2013) adopted sparse representa-
tion based methods, but not analysis-based methods. In this paper,
we propose an analysis-based method. We also want to know,
between the synthesis and analysis models, which is the better
approach to reconstruct missing RS information? In addition, is it
better to extract the complementary information from both the
spectral and temporal domains? We attempt to answer these ques-
tions in this paper.

This paper makes three contributions to the reconstruction of
missing RS information: (1) we introduce an analysis model to
reconstruct the MI in RS images; (2) a detailed comparison is made
between the synthesis and analysis models; and (3) the spectral
and temporal complementary information is jointly used.

The rest of this paper is organized as follows. In Section 2, we
present the algorithms used for reconstructing the MI of RS images,
based on synthesis and analysis models, respectively. Section 3
provides the specific comparisons between the two models, using
only multispectral images, using only multitemporal images, and
using both multispectral and multitemporal images. Finally, the
conclusions are drawn in Section 4.
2. Algorithms

As stated previously, the sparse representation based methods
are suitable for the reconstruction of large-area MI. To date, a num-
ber of researchers have proposed sparse-based reconstruction
methods for RS images (using synthesis models) (Shen et al.,
2014; Li et al., 2014; Lorenzi et al., 2013). However, to the best of
our knowledge, analysis models aimed at recovering the MI of RS
images have not been investigated. Accordingly, we propose an
analysis model based algorithm in this paper. For RS images, the
spectral and temporal complementation lays a solid foundation
for the reconstruction of the MI. However, the present methods
use only one kind of complementation to reconstruct the MI of
RS images. Our other goal is to explore whether the two



Fig. 1. Sketch diagram of the superimposition of multispectral/temporal RS images.
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approaches can be simultaneously used. Overall, the proposed
algorithm makes the best use of the sparse property and comple-
mentation for reconstructing the missing RS information. In the
following algorithms, multispectral and multitemporal images
can be jointly used. Therefore, before the algorithms are intro-
duced, we cover how to organize multisource RS images.

2.1. How to organize multispectral/temporal RS images

In our framework, the experimental RS images can be multi-
spectral, multitemporal, or a combination. As a result, we need to
organize the images from the different sources. The basic idea is
to superimpose them onto a three-dimensional (3D) data cube.
Without loss of any generality, we suppose that all the RS images
are multispectral. In other words, each image among the multitem-
poral images is multispectral. The 3D cube (jointly using the mul-
tispectral and multitemporal images) is derived as in the following
steps: Suppose that one band (we call it the corrupted band) of the
multispectral image (we call it the corrupted image) has MI. All the
bands of the corrupted image and the same band (that is the cor-
rupted band) extracted from other multitemporal images are
superimposed onto the 3D cube. In fact, the cube consists of mul-
tisource bands. If we only use the spectral complementation, the
cube will be the same as the corrupted image; and if we only use
the temporal complementation, the cube will be completely
extracted from the same band of the different multitemporal
images. Fig. 1 shows the superimposed result of the data cube.
As can be seen, the cube has multiple layers, in which each layer
represents a single-channel item from the ‘‘spectral channel’’ and
the ‘‘temporal channel’’. ‘‘Spectral channel’’ means the bands from
the corrupted image itself. ‘‘Temporal channel’’ means the bands
extracted from other multitemporal images. For example, if the
image has five bands, and we have four images in all, the 3D cube
with spectral and temporal complementation will have eight
bands (five bands are from the corrupted image, and three bands
are from other images); the 3D cube with spectral complementa-
tion will have five bands (all are from the corrupted image); and
the 3D cube with temporal complementation will have four bands
(all are from different images). We then reorder the layers, and this
process is described in Section 2.2.
2.2. Strategies for reducing image differences

As is widely known, for multispectral and multitemporal RS
images, their component bands have clear radiance differences,
which is also reflected in the data cube (as derived in
Section 2.1). As shown in Fig. 2(b) and (e), if the kind of difference
is paid no attention to, it will pass into the final reconstruction
results. Thus, it is necessary to eliminate these differences. In our
opinion, we think that the corrupted band and the good bands have
a transformation relationship. Depending on this reasonable trans-
formation, the intrinsic differences can be effectively relieved. To
date, there have been different kinds of transformation methods,
which can be linear or nonlinear. For simplicity, we selected the
general linear transformation in the experiments: least-squares fit-
ting (Rakwatin et al., 2009).

Let the 3D cube be fxigN
i¼1 2 Rh�w, and xi denotes the ith layer of

the cube. For convenience, we suppose that x1 is the corrupted
band, and fxigN

i¼2 ðN P 2Þ are the good bands. As shown in Fig. 3,
W denotes the missing area in x1 and the same area in xi, and W�

denotes the complementary region for the corresponding W.
Based on the intact areas of x1 and xi, we obtain the transformation
relationship. We first assume they satisfy the expression:

x1ðW�Þ ¼ aixiðW�Þ þ bi; i ¼ 2;3; . . . ;N ð1Þ
where x1ðW�Þ indicates the elements contained in the region W� of
x1, as does xiðW�Þ. ai and bi are the coefficients acquired by the
least-squares fitting method, as follows:

ai ¼
u
P

x1ðW�ÞxiðW�Þ �
P

x1ðW�Þ
P

xiðW�Þ
u
P

xiðW�Þð Þ2 �
P

xiðW�Þð Þ2
; i ¼ 2;3; . . . ;N ð2Þ

bi ¼
P

x1ðW�Þ � ai
P

xiðW�Þ
u

; i ¼ 2;3; . . . ;N ð3Þ

where u denotes the pixel number of x1ðW�Þ. Once the coefficients
are known, the linear transformation is realized as:

xnew
i ðW

� [WÞ ¼ aixiðW� [WÞ þ bi; i ¼ 2;3; . . . ;N ð4Þ

where xnew
i denotes the transformed xi.

Usually, in the framework of patch-based sparse representation,
the natural overlapping order of the multiple layers in the 3D cube
does not guarantee the optimal path. Ram et al. (2013) proposed a
shortest spatial path ordering of the image patches. Inspired by
this, we seek a reasonable temporal/spectral path which reorders
the multisource bands to make better use of their complementary
correlations. The basic idea is to ensure that the bands with stron-
ger correlations are closer together in a patch. As stated in our pre-
vious paper (Li et al., 2014), the optimized path is similar to fused
lasso (Tibshirani et al., 2005; Rinaldo, 2009), which is designed for
problems with features that can be ordered in some meaningful
way. To date, there have been many different kinds of metrics of
correlation proposed, and in our framework, the metric of correla-
tion is picked as the correlation coefficients (CCs) between the
intact regions ðW�Þ of the corrupted and good bands. Suppose CCi

is the CC between x1ðW�Þ and xiðW�Þ, then it is calculated by:

CCi ¼
P

W� x1ðW�Þ � lx1ðW�Þ

� �
xiðW�Þ � lxiðW�Þ

� �
P

W� ðx1ðW�Þ � lx1ðW�ÞÞ
2

� �1
2 P

XðxiðW�Þ � lxiðW�ÞÞ
2

� �1
2
; i

¼ 1;2; . . . ;N

ð5Þ

where lx1ðW�Þ and lxiðW�Þ represent the average values of x1ðW�Þ and
xiðW�Þ, respectively. It can be easily seen that CC1 ¼ 1 is the maxi-
mum. Once the CCs are calculated, the permutation order inside
the patch is determined, which is sorted from the highest CC to
the lowest. The reordering permutation is the optimized path of
our patch-based reconstruction method. For a convenient descrip-
tion, LTRP refers to ‘‘linear transformation and reordering permuta-
tion’’ in the following.



Fig. 2. The reconstruction results using multispectral and multitemporal images, respectively, based on a sparse model. (a) The corrupted band 1. (b) Directly reconstructed
result of band 1 using the multispectral image. (c) The corresponding result of band 1 after reducing the differences. (d) The corrupted band 2. (e) Directly reconstructed result
of band 2 using the multitemporal images. (f) The corresponding result of band 2 after reducing the differences.

Fig. 3. Schematic diagram of corrupted and good bands of an RS image. (a) A
corrupted band. (b) A good band.

Fig. 4. Sketch diagram of the procedure for extracting patches.

4 X. Li et al. / ISPRS Journal of Photogrammetry and Remote Sensing 106 (2015) 1–15
2.3. Procedure of extracting patches

Based on the previous sections, the single-channel x1 and

xnew
i

� �N
i¼2 consist of a 3D data cube. For the convenience of

description, let xnew
1 ¼ x1. As with the popular methods based on

the sparse representation model (Aharon et al., 2006; Elad and
Aharon, 2006; Mairal et al., 2008), the first thing that needs doing
is to extract the patches. Fig. 4 shows the procedure of extracting
patches. In this cube, we extract the sliding patches with the size
of B� B� N pixels (e.g., in Fig. 4, N represents the layer of Patch
C, and B is the number of columns/rows of Patch C), as many as
possible, starting from the top-left-most patch, e.g., Patch C and
Patch D in Fig. 4. Therefore, with xnew

i 2 Rh�w we finally have
q ½q ¼ ðw� Bþ 1Þ � ðh� Bþ 1Þ� patches. The patches are then
ordered lexicographically as column-stacked vectors to form a

two-dimensional (2D) X 2 RNB2�q.

2.4. Synthesis model for reconstructing the MI

Based on X 2 RNB2�q, as obtained in Section 2.3, we utilize the
synthesis model to reconstruct the MI. The observation model is
as follows:

X ¼ M � ðDaÞ þ e1 ð6Þ
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where M 2 RNB2�q denotes a mask with zeros and ones implying

where the information is lost, D 2 RNB2�n (n is the atom number
with NB2 < nÞ represents the redundant dictionary, a 2 Rn�q is the
corresponding sparse representation, e1 is the observation error,
and Eð�ÞF denotes the point-wise (element-wise) product of E
and F.

As a result, in the synthesis model, the objective function for
reconstructing the MI from the corrupted image is presented as:

arg min
D;a

kkX �M � ðDaÞk2
2 þ kak0 ð7Þ

where k denotes the regularization parameter. We use the same
method (K-SVD dictionary learning) as described in Elad and
Aharon (2006) and Elad (2010) to solve a and update D. The basic
idea is to solve a and D alternately. Firstly, assuming that D is
known (i.e., the initial is given), a is solved by (8) as follows:

ba ¼ arg min
a

kak0 s:t: kX �M � ðDaÞk2
2 6 cnr2 ð8Þ

where c is a constant satisfying the situation that it is larger than
the largest eigenvalue of DDT (DT is the transpose of D), n counts
the existing pixels in the observed data, r2 denotes the variance
of the noise (supposing that the data are degraded by zero-mean
Gaussian noise). This process is also called sparse coding. In fact,
the sparse coefficients a are solved column by column. Once all
the columns of a are obtained, we can then fix them and turn to
updating D as (9):

bD ¼ arg min
D

kX �M � ðDaÞk2
2 ð9Þ

The second process is usually called dictionary learning. For
more details, we recommend the reader refer to Elad and Aharon
(2006) and Elad (2010). In general, multiple alternations between
a and D are required, which lays a foundation for a more accurate
recovery result. Once the representation a is obtained under the
current dictionary D, the MI of X is reconstructed according to (10).

bX ¼ bDba ð10Þ

where bX means the reconstructed version of X. An inverse operation
of the patch extraction in Section 2.3 is then immediately imposed

on bX to obtain the final recovered image.

2.5. Analysis model for reconstructing the MI

In this section, we introduce the analysis model for reconstruct-

ing the MI. For X 2 RNB2�q, as obtained in Section 2.3, the observa-
tion model of cosparse representation (with analysis models,
researchers usually refer to ‘‘cosparse’’) is:

Y ¼ XðM � XÞ þ e2 ð11Þ

where X 2 Rp�NB2
(p is the atom number with p > NB2Þ denotes the

analysis dictionary, M and ð�Þ have the same meanings as in (6),
Y 2 Rp�q denotes the cosparse coefficients, and e2 represents the
error.

Before the formal introduction to the analysis model for the
reconstruction of MI in RS images, we describe some of the basic
concepts of an analysis model. In an analysis model, it should lay
an emphasis on the zeros of the outcome. For (11), we define
XKðM � XÞ ¼ 0, where XK is a sub-matrix of X that contains only
the rows indexed in K, and K is called the co-support of X
(Rubinstein et al., 2013). Correspondingly, the co-rank for the given
analysis dictionary X is defined by the rank of XK. In fact, the
co-support determines the orthogonal subspace of the original X.
If r denotes the dimension of the subspace that X belongs to, the
co-rank is NB2 � r. Consequently, in an analysis model, the objec-
tive function is of the form:

arg min
Z;K

kM � Z � Xk2
2 s:t: XKX ¼ 0

RankðXKÞ ¼ NB2 � r
ð12Þ

where Z is the ideal value of X; r represents the dimension of the
subspace that X belongs to. We use a similar method to that
described in Rubinstein et al. (2013) to solve Z and K. As in the syn-
thesis model, the analysis model resorts to a two-stage optimiza-
tion scheme. In the first stage, we calculate Z with the analysis
dictionary X fixed. In the second stage, we update X with the calcu-
lated Z from the first stage. The two-stage optimization scheme is
repeated alternately until the predefined number is reached.
Firstly, supposing that the initial X is given, the backward-greedy
pursuit method in Rubinstein et al. (2013) is used for solving Z,
and the basic expression is as (13). It is noteworthy that Z is still
solved column by column, as in the synthesis model.

bZ ¼ ðI �XyKXKÞX ð13Þ

where I represents an identity matrix, and XyK denotes the
pseudo-inverse of XK.

Once all the columns of bZ are calculated in the first stage, we
turn to updating the analysis dictionary X. The approximate solu-
tion of (14) is used for calculating the co-support of X and updating
X. In Rubinstein et al. (2013), Rubinstein et al. indicated that this
problem is equivalent to finding the smallest singular value by sin-
gular value decomposition (SVD), and we refer the reader to this
reference for further details.

bK ¼ arg min
K

kXKðM � ZÞk2
2 ð14Þ

In the second stage, the process of calculating K amounts to the
updating of X. After adequate alternation between Z and X, the
optimal reconstruction of the MI can be obtained by the expression
of (13). When the ideal 2D value of X is solved, the columns will be
transformed into the previous patches, as in Section 2.3. All the
patches will then return to their original positions and make up
the original 3D data cube. In fact, the transformation is the inverse
process of extracting patches. Since neighboring patches are partly
overlapped, one pixel may be included in different patches. In
other words, one pixel may be reconstructed many times, accord-
ing to how many patches it belongs to. Thus, the result is the aver-
age of the multiple reconstructions.

In fact, the sparse representation methods (synthesis model and
analysis model) are powerless in some cases: (1) spatial failure; if
only the spatial complementation is available, when the missing
area is very large, the sparse representation methods cannot
recover the MI effectively with insufficient supplementary infor-
mation; (2) spectral failure; if the atmosphere is cloudy and rainy,
many of the spectral bands of a multispectral image will be cov-
ered by thick clouds, and the sparse representation methods can-
not obtain a satisfactory effect only using the corrupted image
itself; (3) temporal failure; all the temporal complementation
methods are sensitive to abrupt land-cover changes. In considera-
tion of the limitations of the sparse representation methods in the
three kinds of complementation, we propose the integrated utiliza-
tion of them to fully utilize their individual advantages.

3. Comparisons and experiments

We conducted experiments to reconstruct the MI of RS images
using the most basic synthesis and analysis models described in
Section 2. In an actual situation, when the atmosphere is cloudy
or rainy, only the temporal complementation is helpful. However,
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if the time interval is so long that the land cover shows obvious
changes, this is not the case anymore. When the sky is clear, the
spectral complementation and temporal complementation are
both useful. In order to find the best complementation method,
the following three classes of experiments were undertaken: (1)
based on the spectral complementation only (using a multispectral
image); (2) based on the temporal complementation only (using
multitemporal images); (3) jointly based on the spectral and tem-
poral complementation (using both a multispectral image and
multitemporal images). When multitemporal images were used,
the time interval was not long. Note that when affected by a cloudy
and rainy atmosphere, both the spectral and temporal complemen-
tary information may be unavailable. Therefore, to make sure that
the spectral and temporal complementary information were both
available, we only undertook simulated experiments. In addition,
we also made a comparison between the sparse representation
methods and the state-of-the-art methods for a sequence of RS
images (multispectral and multitemporal).

The experimental images were the 500-m resolution L1B reflec-
tance product of MODIS onboard the Aqua and Terra satellites,
which were directly downloaded from the NASA website (http://
ladsweb.nascom.nasa.gov/data/search.html). This product has
seven bands in all. Table 1 shows the original data, in which the
prefix ‘‘MOD’’ denotes Terra MODIS, and ‘‘MYD’’ denotes Aqua
MODIS. To acquire multitemporal images over the same geo-
graphic area, these reflectance products were georeferenced by
the MODIS conversion toolkit (MCTK), which was downloaded
from the NSDIC website (http://nsidc.org/data/modis/tools.html).
The experimental platform was a PC with an Intel 3.4 GHz CPU
and 8 GB of memory. In the experiments, without any special
instructions, B ¼ 2;n ¼ 256;D 2 R4N�256 (N is the layer number of
the cube), p ¼ 256;X 2 R256�4N , and r ¼ 2. Note that the initials of
D and X were both discrete cosine transform (DCT) bases.

In the experiments, we used mean absolute error (MAE), mean
squared error (MSE), mean relative error (MRE), and CC [calculated
by (5)] as the evaluation indicators. Given c 2 RK and d 2 RK (for
brevity, we supposed that they were both vectors here) as the data
to be compared, then MAE is defined by the following expression:

MAEðc; dÞ ¼ 1
K

XK

i¼1

jci � dij ð15Þ

MSE is calculated by:

MSEðc; dÞ ¼ 1
K

XK

i¼1

ðci � diÞ2 ð16Þ

Suppose d is the reference data, then MRE is computed by:

MREðc; dÞ ¼ 1
K

XK

i¼1

jci � dij
di

ð17Þ
Table 1
Experimental data.

No. Data name

1 MOD02HKM.A2013306.0735.005.2013309010548
2 MOD02HKM.A2013307.0815.005.2013309013119
3 MYD02HKM.A2013308.1030.005.2013309160325
4 MOD02HKM.A2013309.0805.005.2013309160525
5 MOD02HKM.A2013311.0750.005.2013311200217
6 MYD02HKM.A2013312.1005.005.2013313180516
7 MOD02HKM.A2013313.0740.005.2013313140307
8 MYD02HKM.A2013315.1035.005.2013316184251
3.1. MI reconstruction using only a multispectral image

This section focuses on the ability of the synthesis and analysis
models to reconstruct the lost RS information by extracting spec-
tral complementary information. Two experiments were under-
taken. Each experiment used only one multispectral image. The
two images were cropped from different regions of the data
ordered No. 4 in Table 1, with the size of 300 � 300 � 7. For sim-
plicity, they were called Image A and Image B, respectively. In
the experiments, the original bands were artificially corrupted.
The original bands are shown in Fig. 5(a). With 47.7867% and
48.6633% of pixels lost, respectively, the corrupted bands are
shown in Fig. 5(b). The missing pixels were then reconstructed
by the synthesis and analysis methods with LTRP.

Fig. 5 shows the corrupted bands of Image A and Image B before
and after the missing pixel reconstruction, respectively, based on
the synthesis and analysis models. From the overall visual perspec-
tive, the results of the two models both have a satisfactory effect
and do not show a great difference. For a more detailed compar-
ison, we zoom in on the green box areas in Fig. 5. Through careful
observation, it can be found that the original images have some
outliers (noisy points), which are removed in the results of the
analysis model. In other words, the analysis model has a denoising
effect. On the other hand, compared to the original images, the
reconstruction results of the analysis model have stronger struc-
tures relative to those of the synthesis model. To some extent,
the synthesis model results in edge expansion [e.g., the blue circled
areas in Fig. 5(c)]. In short, the analysis model does better in
denoising and structure enhancement than the synthesis model,
according to the reconstruction of the MI in a multispectral image.

In order to further expose the qualitative differences of the
reconstructions of the synthesis and analysis models in Fig. 5, we
resorted to scatter plots between the originals and reconstructions.
As shown in Fig. 6, the points in the scatter plot of the analysis
model [Fig. 6(b) and (d)] are distributed more closely around the
red diagonal than those of the synthesis model [Fig. 6(a) and (c)].
As pointed out in Elad et al. (2007), the analysis model reconstructs
the data through various forward measurements, while the synthe-
sis model seeks the reconstruction as a combination of atoms.
Since there are accurate prior measurements, the analysis model
is more successful in reconstructing the MI than the synthesis
model, and the points on the scatter plot are closer to the diagonal.
The scatter plots strongly indicate that the analysis model outper-
forms the synthesis model, as with the visual effect.

After the previous qualitative assessments, the objective evalu-
ations follow. Table 2 shows the quantitative evaluations by the
metrics of MAE, MSE, MRE, CC, and time cost for the results in
Fig. 5 (in this table, the rows with sources labeled S are the objec-
tive evaluations for this multispectral experiment). Generally
speaking, the lower the values of MAE, MSE, MRE, and time cost,
the better the result; and the higher the value of CC, the better
the result. As shown in Table 2 (rows labeled ‘‘S’’), as far as time
cost is concerned, the analysis model has an overwhelming advan-
tage over the synthesis model. As noted by Rubinstein et al. (2013),
one advantage of the analysis model is that it disjoints the update
of the atoms of the analysis dictionary, enabling all the atoms to be
updated in parallel, as opposed to the synthesis model, which
updates the dictionary atoms one after another, resulting in a high
time cost. As a result, the analysis model performs more efficiently.
Furthermore, in terms of other quantitative indicators, for both the
synthesis model and analysis model, the results show a clear
improvement. However, the improvement of the analysis model
is more obvious than that of the synthesis model. The reason for
this is that the analysis model is restricted by the forward mea-
surement of the intact components of the image itself, and the syn-
thesis model is restricted by the combination of a group of atoms,

http://ladsweb.nascom.nasa.gov/data/search.html
http://ladsweb.nascom.nasa.gov/data/search.html
http://nsidc.org/data/modis/tools.html


Fig. 5. The reconstruction results of the corrupted bands in Image A and Image B, based on the synthesis and analysis models, using a multispectral image. The upper row is
for Image A, and the lower row is for Image B. (a) The original image. (b) The corrupted image. (c) Reconstruction of the synthesis model with LTRP. (d) Reconstruction of the
analysis model with LTRP.

Fig. 6. The scatter plots between the originals and the reconstructions of the synthesis and analysis models in Fig. 5(c)–(d), respectively. (a) For upper Fig. 5(c), synthesis
model. (b) For upper Fig. 5(d), analysis model. (c) For lower Fig. 5(c), synthesis model. (d) For lower Fig. 5(d), analysis model.
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and the latter approach results in more errors. Overall, Table 2
(rows labeled ‘‘S’’) indicates that the analysis model is a more
promising approach than the synthesis model.

To achieve an in-depth comparison of the abilities of the syn-
thesis and analysis models to utilize spectral complementary
information, experiments to reconstruct the lost information with
different numbers of extra spectral bands were also carried out. For
Image A and Image B, they have seven spectral bands, which lays
the foundation for our experiments. The corrupted bands were
both the first channels of the corresponding corrupted images.



Table 2
Comparison of the reconstructions of the synthesis and analysis models by extracting information from different sources.

Original data Methods Sources MAE/10�3 MSE/10�5 MRE/% CC Time/min

Upper Fig. 5(a) Corrupted n 66.9471 895.6120 52.2133 0.6579 nd

Synthesis Sa 3.5181 4.1120 2.7268 0.9898 7.1590
Tb 3.5851 3.9120 2.8329 0.9898 7.4570
STc 2.9971 2.7120 2.3490 0.9931 15.0028

Analysis S 2.2851 1.7120 1.8140 0.9956 0.2260
T 3.2111 3.3120 2.5929 0.9922 0.2286
ST 2.3481 1.8120 1.8824 0.9959 0.2627

Lower Fig. 5(a) Corrupted n 84.2921 1460.2120 51.3367 0.1523 n
Synthesis S 4.2351 5.6120 2.5270 0.9843 6.9092

T 4.8111 7.9120 2.9363 0.9743 8.5441
ST 3.7221 4.2120 2.2567 0.9877 15.4823

Analysis S 2.2081 1.6120 1.3586 0.9951 0.2230
T 3.9291 5.3120 2.3651 0.9835 0.2241
ST 2.7951 2.6120 1.6741 0.9921 0.2626

a Denotes using only spectral bands.
b Denotes using only temporal bands.
c Denotes using both the spectral and temporal bands.
d Denotes inexistence or non-use; 10�3 means the corresponding indicator is multiplied by it, for example, the meaning of 66.9471 is 66:9471� 10�3, so does 10�5.

Fig. 7. The MRE variation diagrams of the reconstructions using different extra numbers of spectral bands. (a) For upper Fig. 5(b). (b) For lower Fig. 5(b).
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According to their inherent spectral orders, the extra bands were
added one by one in the experiments. Note that the corrupted
bands were the same as in Fig. 5(b). In order to reveal the changes
in the reconstruction results, the MRE variation diagrams of the
reconstructions using different numbers of spectral bands (synthe-
sis and analysis models) are shown in Fig. 7. Here, it can be seen
from the figures that when using the same number of extra bands,
the MRE of the analysis model is lower than that of the synthesis
model, which demonstrates that the former reconstructs more
accurate result than the latter. As the number of spectral bands
increases, the MRE decreases at first, and then increases succes-
sively. In other words, using more extra spectral bands does not
mean extracting more useful information. This is because when
the band setting of the added-in spectral band is very different
from the corrupted band, the spectral complementation weakens,
and may even become harmful. However, on the condition that
the added-in spectral bands can provide valid complementary
information, the reconstruction result will become better.

3.2. MI reconstruction with multitemporal images

After the reconstruction capabilities of the synthesis and analy-
sis models were compared with each other from the aspect of
extracting spectral complementary information, they were then
compared from the other aspect of extracting temporal
complementary information. In order to simultaneously compare
the results with the multispectral reconstruction results in the pre-
vious section, we deliberately chose the same corrupted bands as
in the previous section [see Fig. 5(b)]. Since Image A and Image B
both have seven spectral channels, for consistency, we chose seven
images from different periods in total. To avoid the influence of
large areas of a cloudy atmosphere, for the upper Fig. 5(b), we
selected other data ordered Nos. 1, 2, 3, 6, 7, and 8 in Table 1 as
the experimental data. We then cropped the same region and band
of the upper Fig. 5(a) and combined them into Cube A. Similarly, for
the lower Fig. 5(b), we additionally selected the data ordered Nos.
1, 2, 3, 5, 7, and 8 in Table 1 and combined their same bands of the
lower Fig. 5(b) into Cube B. In other words, Cube A and Cube B were
of a size of 300 � 300 � 7.

The visual effect of the reconstruction results using the synthe-
sis and analysis models are compared, as before, in Fig. 8. Note that
Fig. 8(b) is the same as Fig. 5(b). As in the experiments using a mul-
tispectral image, the visual differences are not obvious. When
zooming in on the red box area of Fig. 8, we can see that the anal-
ysis model does as well as in the multispectral experiments at both
denoising and structure enhancement (see Fig. 5). Additionally, in
the reconstruction of the lower Fig. 8(b) with the synthesis model,
local anomalies appear, as shown in the green circled areas in the
lower Fig. 8(c). After careful checking, we found that one band
extracted from the original multitemporal images was



Fig. 8. The reconstruction results of the corrupted Fig. 5(b), based on the synthesis and analysis models, using multitemporal images. The upper row is for Cube A, and the
lower row is for Cube B (a) The original image. (b) The corrupted image. (c) Reconstruction of the synthesis model with LTRP. (d) Reconstruction of the analysis model with
LTRP.
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contaminated by clouds in the same place. Accordingly, the
cloud-contaminated pixels were preserved in the reconstruction
result. However, this was not what was wanted. In contrast, the
results of the analysis model do not show this kind of anomaly
[lower Fig. 8(d)]. The results of these experiments indicate that
the analysis model avoids the influence of local anomalies more
easily than the synthesis model.

The qualitative assessments for the results in Fig. 8 were made
with scatter plots between the recovered result and the original
data. The scatter plots are shown in Fig. 9. As can be seen, the
points in the scatter plots of the analysis model [Fig. 9(b) and
(d)] are focused on the diagonal more closely than those of the syn-
thesis model [Fig. 9(a) and (c)]. There are also some obvious out-
liers in Fig. 9(c) (green1 circled areas), which amount to anomalies
of the green circled areas in the lower Fig. 8(c). As in the multispec-
tral experiments, the analysis model reconstructs more satisfactory
results than the synthesis model.

The quantitative evaluations of the reconstructions in Fig. 8 are
shown in Table 2 (in this table, the rows with sources labeled T are
the objective evaluations for this multitemporal experiment). For
all the indicators, the analysis model again outperforms the syn-
thesis model. That is to say, the quantitative assessments are in
line with the previous scatter plots and the multispectral experi-
ments. As we know, the temporal complementary information
may be damaged by land-cover changes. Consequently, the recon-
struction results of the two models are both worse than those
using the spectral complementary information (see Table 2 (rows
labeled ‘‘T’’)). Additionally, the gap between the synthesis model
and analysis model is not as obvious as in Table 2 (rows labeled
‘‘T’’). The results of these experiments not only demonstrate that
the analysis model outperforms than the synthesis model, but they
also demonstrate that spectral complementary information is bet-
ter than temporal complementary information.

For a further comparison of the abilities of the models to extract
temporal complementary information, reconstruction of the MI
based on different numbers of temporal bands (the same band
1 For interpretation of color in Fig. 9, the reader is referred to the web version of
this article.
extracted from multitemporal images) was undertaken. The extra
temporal bands were added chronologically. Fig. 10 shows the
MRE variation diagrams using different numbers of temporal
bands. As in the multispectral experiments, when the same num-
ber of temporal bands was used, the MRE of the analysis model
was lower than that of the synthesis model. As the number varies,
it can be seen that the trends for Fig. 10(a) and (b) are very differ-
ent. This stems from the fact that the bands from different periods
are correlated with the corrupted band differently. When the
added-in bands can provide supplementary information, the MRE
will decrease; otherwise, it will increase. In the two cubes, their
different correlations result in the inconsistent variations in the
two subfigures. However, for the same experimental data, the
varying results of the synthesis and analysis models are generally
accordant.
3.3. MI reconstruction using both a multispectral image and
multitemporal images

In the interests of reconstructing the MI, in the previous exper-
iments, the supplementary information was extracted either from
the spectral domain or from the temporal domain. In these exper-
iments, we simultaneously extracted complementary information
from both the spectral and temporal domains. That is to say, we
used the previous multispectral image and the multitemporal
images at the same time, according to the synthesis and analysis
models. Removing the repetitive corrupted band, we combined
Image A and Cube A to form Cube C, and combined Image B and
Cube B to form Cube D. As a result, Cube C and Cube D were of a
size of 300 � 300 � 13. Moreover, the corrupted bands were kept
the same as in Fig. 5(b).

The reconstruction results of the corrupted bands in Cube C and
Cube D are shown in Fig. 11. As can be seen in these figures, the
reconstruction results are still satisfactory when the spectral and
temporal complementary information is simultaneously used. To
allow a more intuitive observation, the yellow box areas are
zoomed in on. As in the multispectral and multitemporal experi-
ments, the analysis model is good at simultaneous denoising and
edge enhancement. Note that for the synthesis model, the



Fig. 9. The scatter plots between the originals and the reconstructions of the synthesis and analysis models in Fig. 8(c)–(d), respectively. (a) For upper Fig. 8(c), synthesis
model. (b) For upper Fig. 8(d), analysis model. (c) For lower Fig. 8(c), synthesis model. (d) For lower Fig. 8(d), analysis model.

Fig. 10. The MRE variation diagrams of the reconstructions using different extra numbers of temporal bands (the same band extracted from multitemporal images). (a) For
upper Fig. 8(b). (b) For lower Fig. 8(b).
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anomalies seen in the multitemporal experiments [see lower
Fig. 8(c)] no longer appear, which is due to the effective aid of
the spectral domain.

The subjective evaluations of the results in Fig. 11 with scatter
plots are shown in Fig. 12. The results are again consistent with the
previous experiments (Figs. 6 and 9), in that the scatters of the
analysis model are more concentrated on the diagonal than those
of the synthesis model. These experiments demonstrate that the
analysis model is a more promising method. By comparing
Figs. 6, 9 and 12, the scatters can be ranked from the most
concentrated to the least concentrated: for the analysis model, it
is Figs. 6, 12 and 9; for the synthesis model it is Figs. 12, 6 and 9.
The reasons for this are explained in the next part.

In order to further reveal which is the best reconstruction
approach for extracting information from the spectral domain,
from the temporal domain, or from both, the results and the quan-
titative evaluations for Figs. 5, 8 and 11 are shown in Table 2 (in
this table, the rows with sources labeled ST are the objective eval-
uations for the multispectral and multitemporal experiment). As
can be seen in Table 2, the time cost of using both the spectral



Fig. 11. The reconstruction results of Fig. 5(b), based on the synthesis and analysis models, using the multispectral image and multitemporal images. The upper row is for
Cube C, and the lower row is for Cube D. (a) The original image. (b) The corrupted image. (c) Reconstruction of the synthesis model with LTRP. (d) Reconstruction of the
analysis model with LTRP.

Fig. 12. The scatter plots between the originals and the reconstructions of the synthesis and analysis models in Fig. 11(c)–(d), respectively. (a) For upper Fig. 11(c), synthesis
model. (b) For upper Fig. 11(d), analysis model. (c) For lower Fig. 11(c), synthesis model. (d) For lower Fig. 11(d), analysis model.
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and temporal information is the highest because the used data
cube is the largest. When the complementary information is
extracted from the same domain, the analysis model has an
advantage over the synthesis model, especially from the aspect of
time cost. For the analysis model, the complementary information
source ranking from the best to worst is: spectral domain, joint
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spectral and temporal domains, and temporal domain. For the syn-
thesis model, the complementary information source ranking from
the best to worst is: joint spectral and temporal domains, spectral
domain, and temporal domain. As we know, the ground object fea-
tures and land cover change with time; therefore, extracting infor-
mation from the temporal domain is the worst approach for both
models. However, when adding the temporal information to the
spectral information, the reconstructions of the two models are
affected differently. As noted by Elad et al. (2007), the analysis
model reconstructs the information via forward measurements,
so the harmful information has a greater impact on the result. In
contrast, the synthesis model reconstructs the information via
atom combination, so the harmful information is weakened to
some degree. As a result, when combining temporal information
with spectral information, the result of the analysis model
becomes worse; for the synthesis model, even if the added infor-
mation is somewhat harmful, it can provide more useful informa-
tion, and so the result becomes better. On the whole, for the
analysis model, extracting information from the spectral domain
is the best approach; and for the synthesis model, extracting infor-
mation from both the spectral and temporal domains is the best
approach.

The MRE variation diagrams of the reconstruction results using
the synthesis and analysis models with different numbers of spec-
tral/temporal bands are shown in Fig. 13. Note that the horizontal
axis has a slightly different meaning here. The ‘‘Extra number of
spectral/temporal bands’’ represents the band number in the given
Fig. 13. The MRE variation diagrams of the reconstructions using different extra number
Fig. 5(b), analysis model. (c) For lower Fig. 5(b), synthesis model. (d) For lower Fig. 5(b)
domain(s). For example, if the horizontal axis is 4, for ‘‘Spectral’’, it
means there are four extra spectral bands being used; for
‘‘Temporal’’, it means there are four extra temporal bands being
used; for ‘‘Spectral and temporal’’, it means there are four extra
spectral bands and four extra temporal bands being used. As can
be seen in Fig. 13, for the two models, as the number varies, the
MRE curve using both the spectral and temporal information is
the most stable. When the data are sufficient, for the synthesis
model, using both the spectral and temporal information gets the
best result; for the analysis model, using only the spectral informa-
tion gets the best result. This is consistent with Table 2.

3.4. MI reconstruction comparisons between the sparse representation
methods and others

In Sections 3.1–3.3, we made a comparison with the reconstruc-
tions of the synthesis model and analysis model (in the framework
of sparse representation). In this section, we focus on comparisons
between the sparse representation methods and the other
state-of-the-art methods. For the reconstruction of a sequence of
RS data, the representative methods include the harmonic analysis
of time series (HANTS) method in Roerink et al. (2000) and the SG
filter in Chen et al. (2004); thus, we compared them with the
sparse representation methods. Although the HANTS method and
the SG filter were first applied to the processing of normalized dif-
ference vegetation index (NDVI) series data, with a little of modifi-
cation, they can still be applied to RS images. For consistency, we
s of single-channel data items. (a) For upper Fig. 5(b), synthesis model. (b) For upper
, analysis model.



Fig. 14. The reconstruction results of Cube C (upper row) and Cube D (lower row) using different methods. (a) Corrupted images. The results of the following methods: (b) the
HANTS method in Roerink et al. (2000); (c) the SG filter in Chen et al. (2004); (d) synthesis model; (e) analysis model.

Table 3
Comparison of the reconstructions in Fig. 14 (sparse methods and other methods).

Data Methods MAE/10�3 MSE/10�5 MRE/% CC

Upper Fig. 14(a) Corrupted 66.9471 895.6120 52.2133 0.6579
HANTS 14.2711 42.2120 11.2398 0.9426
SG 12.3811 30.8120 10.0425 0.9593
Synthesis 2.9971 2.7120 2.3490 0.9931
Analysis 2.3481 1.8120 1.8824 0.9959

Lower Fig. 14(a) Corrupted 84.2921 1460.2120 51.3367 0.1523
HANTS 9.3721 20.3120 6.2673 0.9617
SG 11.7851 30.9120 7.8679 0.9451
Synthesis 3.7221 4.2120 2.2567 0.9877
Analysis 2.7951 2.6120 1.6741 0.9921
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used the four methods (HANTS, SG filter, synthesis model, analysis
model) to reconstruct the corrupted band of Cube C and Cube D,
and the visual results are shown in Fig. 14. Here, it can be clearly
that the junction of the good area and missing area shows an obvi-
ous discontinuity in the results of the HANTS method [Fig. 14(b)]
and SG filter [Fig. 14(c)]. However, the results of the synthesis
model [Fig. 14(d)] and analysis model [Fig. 14(e)] show a good con-
tinuity. This indicates that the sparse representation methods have
Fig. 15. Error statistics for Fig. 14. (a) For
an advantage over the HANTS method and the SG filter, from the
aspect of visual continuity.

The quantitative evaluations of the results in Fig. 14 are shown
in Table 3. For MAE, MSE, MRE, and CC, the results for the HANTS
method and the SG filter are worse than for the synthesis model
and the analysis model. Moreover, the analysis model obtains
slightly better results than the synthesis model. In order to further
reveal the differences, we show the error statistics curve of the
reconstructed area and its corresponding original area for Fig. 14
in Fig. 15, with the four methods, respectively. For both Fig. 15(a)
and (b), the errors of the synthesis model and analysis model are
mostly concentrated in the neighborhood of zero; however, the
errors of the HANTS method and the SG filter are concentrated in
the neighborhood of a positive value. In other words, the errors
of the HANTS method and the SG filter are higher (positive > neg-
ative) than those of the synthesis model and analysis model. In
fact, the errors of the HANTS method and the SG filter tend to be
positive, which is connected with the basic ideas of the algorithms
themselves (for the HANTS method, low value suppression is set;
for the SG filter, it makes the data approach the upper envelope).
Overall, the sparse representation methods show clear advantages
over the HANTS method and the SG filter.
upper Fig. 14. (b) For lower Fig. 14.
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4. Conclusions

In the framework of sparse representation, aiming at recon-
structing the MI of RS images, this paper has introduced an analysis
model, and we made a comparison between the reconstruction
abilities of the basic synthesis and analysis models, using spectral
complementation only, using temporal complementation only, and
using joint spectral and temporal complementation. For recon-
structing missing RS information, the analysis model has a clear
advantage over the synthesis model by the metrics of MAE, MSE,
MRE, CC, and time cost. The experiments indicate that the two
sparse models differ in their abilities to extract complementary
information from the spectral and temporal domains. For the syn-
thesis model, using joint spectral and temporal complementation
is the best way to reconstruct MI when enough images are avail-
able. However, for the analysis model, using spectral complemen-
tation is the best way. In addition, for the two models, the
reconstruction using joint spectral and temporal complementation
is more stable than only using one of them. Since it was not easy to
find enough data satisfying the requirement of multispectral and
multitemporal images over the same geographic area, we did not
undertake real data experiments in this study. However, the con-
clusions will have a guiding significance for the reconstruction of
the MI of RS images. In addition, the experiments demonstrate that
the sparse representation methods perform better than the current
representative methods for reconstructing a sequence of RS images
(the HANTS method and the SG filter).
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