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Cloud cover is generally present in remotely sensed images, which limits the potential of the images for
ground information extraction. Therefore, removing the clouds and recovering the ground information
for the cloud-contaminated images is often necessary in many applications. In this paper, an effective
method based on similar pixel replacement is developed to solve this task. A missing pixel is filled using
an appropriate similar pixel within the remaining region of the target image. A multitemporal image is
used as the guidance to locate the similar pixels. A pixel-offset based spatio-temporal Markov random
fields (MRF) global function is built to find the most suitable similar pixel. The proposed method was
tested on MODIS and Landsat images and their land surface temperature products, and the experiments
verify that the proposed method can achieve highly accurate results and is effective at dealing with the
obvious atmospheric and seasonal differences between multitemporal images.

© 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier

Keywords:

Cloud removal
Information reconstruction
Spatio-temporal MRF
Similar pixel replacement
Multitemporal

Remotely sensed image

B.V. All rights reserved.

1. Introduction

In recent decades, remote sensing has been widely used for
many applications, such as terrestrial, oceanic, and atmospheric
environmental surveying and parameters inversion. No matter
what purpose the remote sensing data are used for, the first thing
is to obtain the data required. However, due to the influence of the
weather, images acquired from remote sensors are often contami-
nated by clouds, especially in the humid tropical areas (Tseng et al.,
2008). When clouds appear in a region, the true ground informa-
tion is difficult to obtain, especially in the visible and infrared
range, which strongly limits the use of optical images. Although
a large number of remotely sensed images are available, there
are still big gaps between the data available and the data required.
Thus, how to get high-quality image data without cloud contami-
nation in the particular region and time we require is an important
issue.

Much research effort has been devoted to the task of cloud re-
moval, to relieve the trouble caused by cloud cover. Cloud removal
is essentially an information reconstruction process, and the recon-
struction approaches can be grouped into three categories (Lin
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et al, 2013a, b; Cheng et al., 2013): one category is the non-
complementation approaches; the second category is the multi-
spectral-complementation based approaches; and the last category
comprises the multitemporal-complementation based approaches.

In the non-complementation approaches, without the aid of
other complementary data, the information of the cloud-contami-
nated regions in the remotely sensed image is reconstructed using
the remaining parts in the image. The most common method in
this category is missing pixel interpolation (Rossi et al., 1994;
Van der Meer, 2012); however, most interpolation methods are
generally applicable for filling small data gaps and are not appro-
priate for large-scale cloud removal. In recent years, some new
techniques have been introduced to deal with this problem, such
as geometry wavelet (Maalouf et al., 2009), maximum a posteriori
(MAP) (Shen and Zhang, 2009), and patch filling (Lorenzi et al.,
2011). Furthermore, some digital image processing methods can
also be used for this problem (Criminisi et al., 2004; Elad et al.,
2005; He and Sun, 2012). Generally speaking, for all the methods
in this category, the missing regions are synthesized by propagat-
ing the geometrical structure from the remaining parts around the
missing zone. By using the radiometric information in the image it-
self, these synthesis methods can yield a visually plausible result,
which is appropriate for cloud-free visualization (Lin et al,,
2013a, b). However, when the missing regions are large, the disre-
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gard of information accuracy makes the results unsuitable for data
analysis or use in further applications.

In the multispectral-complementation based approaches, mul-
tispectral data are utilized for the information reconstruction.
The basic idea behind this category of methods is to make use of
another complete and clear band of data to restore the contami-
nated band of data by modeling a relationship between the con-
taminated band and the auxiliary band. Through an analysis of
the visible-band space characterization, Zhang et al. (2002) devel-
oped a haze optimized transformation (HOT) method to radiomet-
rically correct the visible-band data contaminated by clouds and
haze in Landsat images. Moreover, Li et al. (2012) utilized short-
wave infrared imagery to dehaze for visible imagery. These meth-
ods are only applicable for the removal of haze and thin clouds, and
they do not work for thick cloud removal because thick clouds usu-
ally contaminate all of the bands of the acquired images. Shen et al.
(2011), Rakwatin et al. (2009), and Gladkova et al. (2012) investi-
gated the reconstruction of the missing data of Aqua MODIS band
6 by using the data in other correlated bands. Similarly, Roy et al.
(2008) proposed to use information observed by MODIS to restore
Landsat ETM + images. In general, all these approaches are usually
constrained by the spectral compatibility (Lin et al., 20134, b) and
tend to have difficulty with thick clouds. Moreover, the multispec-
tral-complementation based approaches are incapable of restoring
the quantitative products of remote sensing.

Compared with the non-complementation and multispectral-
complementation based methods, the popular multitemporal-
complementation based methods are more effective and are able
to cope with thick clouds. Since satellite remote sensing systems
with a fixed repeat cycle can regularly acquire images in the same
area (Zhang et al., 2010), it is easy to get multitemporal images for
the same region. The cloud cover area of these images cannot just
completely overlap, which is the data source used in the multitem-
poral image processing methods to reconstruct information. The
work of Lee and Crawford (1991), Melgani (2006) and Salberg,
2011 studied the spectro-temporal relationships between the se-
quences of acquired images for the reconstruction of the areas ob-
scured by clouds or atmospheric disturbance. Image mosaic
techniques have also been applied to acquire cloud-free images
by mosaicking the cloud-free areas of the multitemporal images
(Li et al., 2003; Helmer and Ruefenacht, 2005; Tseng et al., 2008).
Chen et al. (2011) developed a neighborhood similar pixel interpo-
lator (NSPI) approach for filling gaps caused by the Landsat
ETM + Scan Line Corrector (SLC)-off problem. The NSPI approach
was then modified (MNSPI) for the application of thick cloud re-
moval (Zhu et al., 2012). Similarly, some other multitemporal-com-
plementation methods designed for the recovery of missing pixels
brought about by sensor failure can also be used for the cloud re-
moval problem, such as the local linear histogram matching
(LLHM) approach (Storey et al., 2005) and the weighted linear
regression (WLR) approach (Zeng et al., 2013).

In brief, almost all the existing cloud removal methods of the
multitemporal-complementation category take the cloud-free re-
gions in the reference image to fill the cloud-contaminated regions
in the target image, employing various methods to ensure consis-
tency between the incoming data and the remaining data of the
target image. When the multitemporal images do not have big dif-
ferences, the existing methods can generally work well. However,
in many cases, for example when the time interval of the multi-
temporal image acquisition is not short enough, or when the atmo-
spheric situations are quite different, the multitemporal images
may suffer from significant spectral differences, which seriously
limits the application of the above methods. In addition, with these
methods, the spatial continuity of the ground features may not be
preserved in the restored image.

To overcome these problems, this paper presents a new
framework for cloud removal, and we merge the ideas of the non-
complementation category and the multitemporal-complementation
category. A missing pixel is filled only using an appropriate similar
pixel within the remaining regions of the target image, and another
reference image is used as a guidance to locate the similar pixels. In
order to jointly select the most suitable similar pixels in the
remaining regions to replace all the missing pixels, a pixel-offset
based spatio-temporal MFR function is built, the optimal solution
of which is the optimal similar pixels combination. Therefore, the
proposed method combines the advantages of the synthesis meth-
ods, which reconstruct information using the radiometric informa-
tion in the image itself to ensure the results keep a high degree of
spectral coherence and are visually plausible, and the multitempo-
ral-complementation methods, which guarantee the fine informa-
tion accuracy of the reconstruction result. Moreover, based on
pixel offsets, the proposed spatio-temporal Markov random fields
(STMRF) method is able to deal with the obvious differences
between multitemporal images.

2. Methodology
2.1. Basic idea

Remotely sensed images are often used for generating a wide
range of surface information, so there will always be lots of similar
information within an image. This similar information not only in-
cludes the local neighborhood similarity, but also includes the non-
local similarity (Cheng et al., 2013; Gilboa and Osher, 2008), such
as some repeated ground information. For a cloud-contaminated
image, some pixel information will be missing. That is to say, we
can fill a missing pixel by a similar pixel in the remaining known
region. However, since the intensity information of pixels in large
cloud regions is totally lost, it is difficult and unreliable to match
similar pixels only using the target image information. Therefore,
in order to find the positions of similar pixels, we propose to em-
ploy another reference image as auxiliary data.

It is a fact that images acquired at different times will usually
have some changes because of the different atmospheres or sea-
sonal situations. However, the relative positions of similar pixels
within an image will generally be coincident with another scene.
The similar pixels are assumed to have similar change trends in
multitemporal images (Zhu et al., 2012). For example, in Fig. 1,
the locations we picked out with black squares, which are similar
pixels in image (a), are also similar pixels in image (b). As another
example, a field growing crops will be green in summer but yellow
in autumn, and the field will have different spectral characteristics
in the images from the two different seasons. However, for each
image, the pixels within the field will have the same spectral char-
acteristics. Therefore, another scene can guide us to find the posi-
tions of the similar pixels. However, there can also be some other
cases, such as an image in early spring before the crop’s greenup,
in which the crop pixels will show similar spectral characteristics
to the bare land. In this case, we may need some other auxiliary
information to select similar pixels, such as the spatial neighboring
information, structural information, hyperspectral data, or even a
geographical map. Our future work will focus on solving this
problem.

In Fig. 1, image (c) is the cloud-contaminated image simulated
by (b), with some pixels lost in the blank area. We can use image
(a) as the reference to find the locations of similar pixels within im-
age (c), and then use a suitable similar pixel to replace the missing
pixel. In order to jointly select the most appropriate similar pixels
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Fig. 1. Two different scenes (a) and (b); (c) is the cloud-contaminated image simulated by (b).
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Fig. 2. The flowchart of the STMRF cloud removal method.

for all the missing pixels, the STMRF global model is built to
achieve this goal.

2.2. Spatio-temporal Markov random fields (STMRF) model for cloud
removal

Markov random fields (MRF) are commonly used to model the
contextual correlations among image pixels in terms of conditional
prior probabilities of individual pixels, given their neighboring pix-
els (Li, 2001). The joint distribution of these conditional prior prob-
abilities modeled by MRFs allows us to model the complex global
contextual relationship of an entire image by using the local pixel
neighborhoods of the MRFs, which makes MRF a very popular con-
textual model. Furthermore, when multitemporal image series are
observed, MRF can be extended to include the temporal dependen-
cies of pixels (Melgani and Serpico, 2003; Liu et al., 2006).

In our method, the relationship between an input image (ob-
served cloud-contaminated target image) I(x, y) and the corre-
sponding reconstructed image R(x, y) is defined by an offset map
L(x, ¥) = (sx Sy). A reconstructed pixel R(x, y) will be derived from

the input pixel I (x +s,, ¥ +s,). Therefore, our goal is to calculate
a suitable offset map L(x, y) for all the pixels in the missing region.
The optimal offset map minimizes the following spatio-temporal
MREF energy function:

E(L) =) Ea(L(p)) + o) E(L(p),L(P)) + B D E(L(p),LP")

peQ peQ (p.p")eN
M

Here, Q is the missing region (with boundary conditions). p = (x,y)
represents a pixel in the target image (cloud-contaminated image),
p’ is the pixel of the reference image in the same position as p, N
represents the spatial 4-connected neighbor system of the
images, and p” is a 4-connected neighbor of p in the target image.
L is the labeling, where the labels represent the pixel offsets.
“L(p) = (sx Sy)” means that we copy the pixel at (x+sy, y +s,) to
the location (x,y).

The first term E4 is a data term. E4 is O if the label is valid (i.e.,
(x +5sx y +s,) is a known pixel, not located at the missing region);
otherwise it is +oo. The second term E; is a temporal smoothness
term. We define E; as:
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(@)

Fig. 3. MODIS images for the first experiment: (a) original image acquired on August 2, 2010; (b) reference image acquired on March 11, 2010; (c) cloud-contaminated image
simulated by (a); (d)-(g) are the results recovered by LLHM, MNSPI, WLR, and the proposed STMRF method, respectively.

E(L(p).L(p")) = l(p +L(p)) — 1(p + L)) 2)

This temporal smoothness is in consideration of the same
change trend for similar pixels as time goes on. Therefore, the rel-
ative positions of similar pixels generally remain the same in mul-
titemporal images. This term is used to enforce the offset L(p) to be
similar to the offset L(p’), which ensures that we use a similar pixel
to replace the missing pixel. L(p’) is calculated in advance, and its
computing method is matching similar pixels to p’ in the reference
image and obtaining their offsets.

L(p) = argmin{iB(p" + L(p)) — B(p)? €)

Here, B(p') is a block centered at p’ , and in most of our experi-
ments we used the block size as 7 x 7 pixels. The similarity is mea-
sured by the sum of the squared differences between two blocks. In
this temporal smoothness term, in order to reduce the error
brought about by anomalous changes (Stein et al., 2002) between
the target image and the reference image, we obtain eight pixels

that are the most similar to p’, so we get eight offsets L(p’), then
we take the average of the eight values of I (p+L(p')) in the
calculation.

The third term E; is a spatial smoothness term. We define E; as:

E(L(p).L(p") = lII(p +L(p)) — 1P+ L(®"))II* + (D" + L(p))
—1(p" + L") (4)

This smoothness term takes into account the consistency of the
spatial neighbors between the missing region and the remaining
region in the target image. An offset map discontinuity would oc-
cur between two neighboring locations p and p” if their offsets
were different: L(p)#L(p"). In this case, a seam will appear between
p and p” in the recovery image. Thus, (4) penalizes such a seam so
that the two offsets L(p) and L(p") are similar near this seam. This
smoothness term is similar to those defined in shift-map (Pritch
et al., 2009; He and Sun, 2012) or graphcut textures (Kwatra
et al., 2003).

o and B in (1) are the parameters weigh the influence of the dif-
ferent information sources on the decision process. There are some
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Fig. 4. (a)-(g) Detailed regions cropped from Fig. 2(a)-(g).

Table 1
The NMSE, ARE, and CC values of the four sets of experimental results.

LLHM MNSPI WLR STMRF IR (%)

Fig. 3 NMSE 0.10364 0.06701 0.06751 0.05214 22.19
ARE 0.08097 0.01202 0.01188 0.01056 11.11

Ccc 0.81618 0.83849 0.83804 0.86527 3.21

Fig. 5 NMSE 0.04139 0.01724 0.01573 0.01064 32.36
ARE 0.04271 0.00085 0.00094 0.00052 38.82

cc 0.88497 0.93460 0.93884 0.96197 2.46

Fig. 7 NMSE 0.00078 0.00049 0.00053 0.00042 14.29
ARE 0.00199 0.00132 0.00164 0.00104 21.21

CcC 0.91864 0.93816 0.93248 0.95187 1.46

Fig. 9 NMSE 0.00204 0.00148 0.00179 0.00095 35.81
ARE 0.03414 0.02633 0.02919 0.01891 28.18

cc 0.71535 0.79003 0.76721 0.81659 3.36

methods for optimizing parameters in MRF, such as “minimum
perturbation” method (Melgani and Serpico, 2003) and genetic
method (Liu et al., 2008). However, for this spatio-temporal MRF
model we proposed above, it can be inferred that the temporal
dependence is the main information source for the selection of
similar pixels; the spatial dependence is relatively weak, and used
to alleviate the spatial discontinuity of the results. In most of the
experiments, we used weights of 1 and 0.5 to balance the contribu-
tion of the temporal and spatial terms. If the spatial weight signif-
icantly increases, the reconstruction accuracy will decline sharply;
if the spatial weight significantly decreases, the reconstruction re-
sults will have an obvious spatial discontinuity.

We optimize the energy function (1) using multi-label graph
cuts (Boykov et al., 2001). The code of the multi-label graph cuts

can be downloaded at the following address: http://vision.csd.
uwo.ca/code/. A flowchart of the proposed cloud removal method
is presented in Fig. 2.

3. Experimental results
3.1. Evaluation of the proposed method

In this part, we conduct four groups of experiments to test and
quantitatively evaluate the efficacy of the proposed method. In
these four experiments, the cloud-contaminated regions are simu-
lated on the original clear images. The recovered images are then
compared with the original clear images from both visual and
quantitative fidelity aspects.

In the first experiment, the proposed method is tested on
MODIS images with a resolution of 500 m. We use the three bands
of band 1 (red), band 4 (green), and band 3 (blue) to undertake the
test. The original and reference true color composite images are
shown in Fig. 3(a) and (b), acquired on August 2, 2010, and March
11, 2010, respectively, in southeast of China. The cloud-contami-
nated image simulated by Fig. 3(a) is shown in Fig. 3(c). To make
a comparative analysis, the proposed STMRF method is compared
with the methods of local linear histogram matching (LLHM) (Sto-
rey et al., 2005), modified neighborhood similar pixel interpolation
(MNSPI) (Zhu et al., 2012), and weighted linear regression (WLR)
(Zeng et al., 2013). The recovery results of each method are shown
in Fig. 3(d)-(g).

From Fig. 3 and its zoomed detailed regions in Fig. 4, it can be
seen that the image reconstructed by the proposed STMRF method
(Fig. 3(g)) appears much closer to the original clear image
(Fig. 3(a)), compared to the results of the other methods. For the
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(9)

Fig. 5. Landsat TM images for the second experiment: (a) original image acquired on July 9, 2002; (b) reference image acquired on October 13, 2002; (c) cloud-contaminated
image simulated by (a); (d)-(g) are the results recovered by LLHM, MNSPI, WLR, and the proposed STMRF method, respectively.

LLHM method (Fig. 3(d)), the recovery result of the cloud-contam-
inated region has a serious spectral distortion, especially in the riv-
er region. This result indicates that when the two images contain a
complex terrain and have large spectral differences, a simple histo-
gram matching method is unsatisfactory. The results of the MNSPI
and WLR methods (Fig. 3(e) and (f)) appear similar, most of the
ground features are well recovered, but in the river region, the
spectral characteristic is still different from that in the remaining
river region, which may also result from the large spectral differ-
ences between the target image and the reference image. For the
STMRF method, it shows the most plausible visual result, some
of the detailed information is well recovered, and the recon-
structed region is consistent with the original image; moreover,
some unnecessary noise is effectively suppressed in the result of
the proposed method. It is worth noting that the two input images
(the original and the reference images) were acquired in different

seasons, and the spectral characteristics of the ground features
have been significantly changed. The LLHM, MNSPI, and WLR
methods cannot deal with this change very well, leading to more
errors in their results. Through the guidance of similar pixel offsets
and using the radiometric information of the image itself to fill the
missing region, the proposed STMRF method is better able to
address this issue. The quantitative assessment in Table 1 also
shows the clear superiority of the proposed STMRF method.

The second experiment is performed on Landsat TM images
with six bands (bands 1, 2, 3, 4, 5, and 7) and a 30-m resolution.
Fig. 5(a) and (b) shows the original and the reference TM images
(true color composite R = band 3, G = band 2, B = band 1), acquired
on July 9, 2002, and October 13, 2002, respectively, in Hubei.
Fig. 5(c) is the cloud-contaminated image simulated by Fig. 5(a).
Fig. 5(g) shows the reconstruction result of the proposed method.
The results of the other comparative methods are listed in
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Fig. 5(d)-(f). The zoomed regions cropped from Fig. 5(a)-(g) are
shown in Fig. 6(a)-(g).

It can be seen that there are some significant changes between
the two input images since their acquisition times were not close
enough. With a high spatial resolution, the ground features are
more complex in these images than those in the first experiment.
The results in Fig. 5(d)-(g) indicate that the proposed STMRF meth-
od can again achieve a better performance than the other three
methods. In the result of the LLHM method (Fig. 6(d)), some obvi-
ous spectral distortion still exists. For the MNSPI method (Fig. 6(e)),
a lot of the detailed information is lost, causing obvious blurring.
The same defect also occurred in the result of WLR method
(Fig. 6(f)). For the STMRF method (Fig. 6(g)), the result appears
more spectrally and spatially consistent with the surrounding fea-
tures, and we can see that it is the closest to the original clear
image.

Remotely sensed land surface temperature (LST) data from sa-
tellite images play an important role in a variety of environmental
and ecological applications; however, clouds and other atmo-
spheric disturbances often obscure parts of these satellite images.
Our third experiment involves the reconstruction of MODIS LST
data. The proposed method is tested on MODIS daily LST images
with a resolution of 1km. Fig. 7(a) and (b) shows the original
and the reference LST images, acquired on March 21, 2012, and

(9)

Fig. 6. (a)-(g) Detailed regions cropped from Fig. 5(a)-(g).

March 16, 2012, respectively. The image with missing pixels simu-
lated by Fig. 7(a) is shown in Fig. 7(c). Fig. 7(g) shows the recon-
struction result of the proposed method. The results of the other
comparative methods are shown in Fig. 7(d)-(f). From Fig. 7, we
can see that the proposed STMRF method can provide a better
reconstruction result for the LST data, and the result is closer to
the original clear image data than the results of the other three
methods. LST data usually change quickly over a short time inter-
val, which is the reason why most of the existing methods cannot
work well for this kind of data. However, the proposed STMRF
method is better able to deal with this change.

In order to further compare the results of the four methods, we
randomly select a line of pixels in the recovered region of the result
image and display their temperature values, as shown in Fig. 8.
From Fig. 8, we can see that the temperature curve of the STMRF
result is closer to the curve of the original image than the other
three curves. This again suggests that the proposed STMRF method
can achieve a result that is closer to the original clear image.

The fourth experiment is performed on some other MODIS LST
daily data images. Fig. 9(a) and (b) shows the original and refer-
ence LST images, acquired on March 12, 2012, and March 14,
2012, respectively. Fig. 9(c) is the cloud-contaminated image sim-
ulated by Fig. 9(a). The reconstruction results are listed in
Fig. 9(d)-(g). Here, we can see that the two input LST images have
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Fig. 7. MODIS LST images for the third experiment: (a) original image acquired on March 21, 2012; (b) reference image acquired on and March 16, 2012; (c) image with
missing pixels simulated by (a); (d)-(g) are the results recovered by LLHM, MNSPI, WLR, and the proposed STMRF method, respectively.
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Fig. 8. The temperature values of the pixels in a recovered line for the third
experiment.

changed more than in the third experiment. From Fig. 9, it can be
seen that the result using the proposed STMRF method (Fig. 9(g))
can still give a better result which is closer to the original image.
The results of the other three methods suffer from more errors
since they cannot adapt to this large degree of change very well.
In order to further compare the results of the four methods, we dis-

play the temperature values of a line of pixels in the recovered
region, as with the third experiment. The temperature curves are
shown in Fig. 10. From Fig. 10, we can see that the temperature
curve of the STMRF result is closer to the curve of the original
image than the other three curves.

The effectiveness of the proposed STMRF method can also be
illustrated by the quantitative assessment. Here, the normalized
mean square error (NMSE) index, the average relative error (ARE)
index, and the correlation coefficient (CC) index are used to give
a quantitative evaluation of the results of the above experiments.
Furthermore, an improvement ratio (IR) index (Shen et al. 2013)
is defined to evaluate the degree of the improvement of the pro-
posed method with respect to the three comparative methods.
The definitions of these evaluation indices are as follows:

St oy — Igy)?

NMSE =
S (o)

(5)

M
ARE = ( (|Ioj—1Rj|/10j)>/M ©
j=1

J
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T

(9)

Fig. 9. MODIS LST images for the fourth experiment: (a) original image acquired on March 12, 2012; (b) reference image acquired on March 14, 2012; (c) image with missing
pixels simulated by (a); (d)-(g) are the results recovered by LLHM, MNSPI, WLR, and the proposed STMRF method, respectively.
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Fig. 10. The temperature values of the pixels in a recovered line for the fourth
experiment.
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existing

where M is the total number of missing pixels, Io; and Ig; are the ori-
ginal and the recovered values of the jth missing pixel, respectively,
and Ip and I; are the mean values. Vexisting 1S the best evaluation
value in the three comparative methods. Vproposea is the evaluation
value of the proposed method. The smaller the NMSE and ARE
values are, the better the recovery is. A larger CC indicates a closer
consistency between the groups of data, and the data will be
identical when CC equals 1.

The NMSE, ARE, and CC indices are all calculated on the cloud-
contaminated regions, and we compute their mean values of all the
bands for the four experiments. The results are listed in Table 1. It
can be seen from Table 1 that, for the result using the proposed
STMRF method, the NMSE and ARE values are both lower, and
the CC value is higher than for the other methods. The same
improvements are evident in all the four groups of experimental
results. Moreover, from the quantitative assessment of Figs. 7
and 9 shown in Table 1, we can see that the superiority of the pro-
posed STMRF method is more distinct in Fig. 9 than in Fig. 7. This is
because the changes in the input multitemporal images in Fig. 9
are greater than in Fig. 7, and the proposed STMRF method is much
better at handling these big changes. Overall, the four groups of



NDVI of image recovered by LLHM

DNVI of image recovered by WLR

0.5

0.0

-1.0

0.5

0.0

CC=0.774
-1.0 . -0|.5 0.Io 0f5
NDVI of original image
(a)
CC=0.915
-1.0 —OI.5 O.IO 015

Q. Cheng et al./ISPRS Journal of Photogrammetry and Remote Sensing 92 (2014) 54-68

NDVI of image recovered by MNSPI

NDVI of image recovered by STMRF

DNVI of original image

(c)

1.0

0.5

0.0

0.5

0.0

63

CC=0.906
-ol. 5 0.I 0 0:5 1.0
NDVI of original image
(b)
CC=0.948
—OI.5 O.IO O.IS 1.0

NDVI of original image

(d)

Fig. 11. The scatterplots of the real and the recovered NDVI values: (a) the LLHM method; (b) the MNSPI method; (c) the WLR method; and (d) the proposed STMRF method.

(f)

(h)

(i

()

Fig. 12. The simulated clouds with different sizes, and the results of the STMRF method. The length of the major axis for the lower-left cloud is: (a) 50 pixels; (b) 100 pixels;
(c) 150 pixels; (d) 200 pixels; and (e) 250 pixels. (f)-(j) are the corresponding results of the STMRF method.

experiments confirm that the proposed STMRF method can provide

a more accurate and robust reconstruction result.

In order to assess the usability of the reconstructed data for fur-
ther applications, the normalized difference vegetation indices

(NDVI) of the recovered images in the second experiment are com-

pared. Before the calculation of the NDVI, an atmospheric correc-

tion using a dark object subtraction method (Chavez, 1988) is
implemented on the original and recovered images. According to
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Fig. 13. The NMSE values of the reconstruction results for various cloud sizes.

the scatterplots listed in Fig. 11, it is suggested that: the LLHM
method estimate the values in the cloud-contaminated regions
with larger errors; the results of the MNSPI and WLR methods have
a better agreement with the original image; and the proposed
STMRF method still gives the best performance. As shown in
Fig. 11, the CC value of the LLHM result is 0.774 and, which is
unsatisfactory; the MNSPI and WLR results are 0.906 and 0.915,
respectively, which have an obvious increase; and the result of
the proposed STMRF method gives the highest value of 0.948.
These results demonstrate that the cloud removal results derived
from the proposed STMRF method can provide a better support
for further applications.

In this part, we analyze the sensitivity of the proposed method
to cloud size. The clouds are simulated at five different levels, as
shown in Fig. 12. The image in this test is of 400 x 400 pixels size.
The length of the major axis for the simulated cloud in the lower-
left corner of the image is about 50 pixels in Fig. 12(a), 100 pixels in
Fig. 12(b), 150 pixels in Fig. 12(c), 200 pixels in Fig. 12(d), and 250
pixels in Fig. 12(e), and the length of the minor axis is half of the
length the major axis. The other two clouds are just a little bit
smaller than the lower-left one. The NMSE values of the five groups
of reconstruction results are calculated, as shown in Fig. 13.
Through the contrast and comparison of the NMSE values for the
different methods with different cloud sizes, we can observe the
following phenomenon: (1) the smaller the cloud size is, the more
obvious the advantages of the proposed STMRF method are; (2)
when the cloud size grows to the 200 pixels level (about 35% of
the test image), the proposed STMRF method still shows a better
reconstruction result than the other three methods; and (3) when
the cloud size grows to the 250 pixels level (about 55% of the test
image), the four methods have a similar poor performance. These
phenomenon can be explained as follows: for the LLHM, MNSPI,
and WLR methods, they all generally use the local neighborhood
information to predict the missing information. However, as the
cloud size increases, the valid local neighborhood information
decreases. For the proposed STMRF method, it not only uses the
local information but also the non-local information, and is able
to achieve a better result. Despite considering the 1st geographic
law (pixels with a greater distance between them may be less sim-
ilar), the combination of local and non-local information is still

Fig. 14. MODIS images for the first real data experiment: (a) original cloud-contaminated image acquired on March 20, 2008; (b) reference image acquired on November 21,
2007; (c)-(f) are the results recovered by LLHM, MNSPI, WLR, and the proposed STMRF method, respectively.
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more effective than only using the local information. Besides, the
integration of spatio-temporal information into the reconstruction
may also is a reason to improve the accuracy values.

3.2. Real data experiments

In this part, we conduct three groups of real data experiments
with different image data. For the first real data experiment, the
proposed method is tested with cloud removal for a MODIS image.
In Fig. 14(a), the original image is partially contaminated by cloud,
which leads to parts of the ground information being lost in this
image. This cloud-contaminated image was acquired on March

20, 2008, and the reference image was acquired on November 21,
2007, as shown in Fig. 14(b). The cloud removal results of the pro-
posed STMRF method and the other comparative results are shown
in Fig. 14(c)-(f). The zoomed regions cropped from Fig. 14(a)-(f)
are shown in Fig. 15(a)-(f).

From Figs. 14 and 5, we can see that the result of the LLHM
method (Fig. 15(c)) suffers from serious spectral distortion, as with
the results of the simulated experiments. For the results of the
MNSPI and WLR methods, the spectral consistency is generally
kept well; however, there is some obvious noise in the restored re-
gion, as shown in Fig. 15(d) and (e). For the result of the proposed
STMRF method, as we can see in Fig. 15(f) that the restored region

Fig. 16. Landsat TM images for the second real data experiment: (a) original cloud-contaminated image acquired on August 3, 2000; (b) reference image acquired on February
10, 2000; (c)-(f) are the results recovered by LLHM, MNSPI, WLR, and the proposed STMRF method, respectively.
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(d) (e) (f)

Fig. 17. (a)-(f) Detailed regions cropped from Fig. 15(a)-(f).

Fig. 18. MODIS LST images for the third real data experiment: (a) original image acquired on March 21, 2012; (b) reference image acquired on and March 7, 2012; (c)-(f) are
the results recovered by LLHM, MNSPI, WLR, and the proposed STMRF method, respectively.
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is more spectrally and spatially continuous with the remaining
region, and the noise is suppressed to some degree in this result.

The second real data experiment is cloud removal for a Landsat
TM image. Fig. 16(a) and (b) shows the original cloud-contami-
nated image and the reference TM image, acquired on August 3,
2000, and February 10, 2000, respectively. Since the images were
acquired in different seasons, the spectral characteristics of the
ground features are significantly different between the two input
images. Again, we can see that the weaknesses of the LLHM,
MNSPI, and WLR methods are clearly shown in their results
(Fig. 16(c)-(e)). The result of the proposed STMRF method is shown
in Fig. 16(f). From Fig. 16(c), it can be see that obvious spectral dis-
tortion exists in the result of the LLHM method. For the results of
the MNSPI method (Fig. 16(d)), a lot of detailed information is
not recovered well, and serious noise arises in the restored region.
The result of WLR method (Fig. 16(e)) suffers from the same defect
with the MNSPI method. For the result of the STMRF method,
although the detailed spatial information is not fully recovered,
the visual quality is more convincing, and the spectral information
is consistent with the remaining region. For the convenience of vi-
sual judgment, a series of detailed regions cropped from Fig. 16(a)-
(f) are shown in Fig. 17(a)-(f).

The third real data experiment is reconstruction of MODIS LST
data. Fig. 18(a) and (b) shows the original and the reference daily
LST image, acquired on March 21, 2012, and March 7, 2012, respec-
tively. The recovery results using the proposed method and the
comparative methods are listed in Fig. 18(c)—(f). In Fig. 18(c), for
the result of LLHM, obvious artifacts can be found. In Fig. 18(e),
for WLR, the temperature values are not continuous, with obvious
jump, which does not make sense. For STMREF, it provides a more
convincing recovery result, as shown in Fig. 18(f). Another compet-
itive result for this test is that of the MNSPI method (Fig. 18(d)).

4. Discussion and conclusion

When affected by cloud cover, much ground information usu-
ally cannot be acquired in optical remotely sensed images, which
significantly limits the application of these images. Although a
large amount of remotely sensed images are available nowadays,
a high-quality image which can provide complete, clear ground
information is still what we strive for. Therefore, this paper pro-
poses a new and effective method to remove clouds and precisely
reconstruct the ground information. A missing pixel is replaced
using a similar pixel within the remaining regions of the cloud-
contaminated image. Another complementary temporal image is
used as a reference to locate the similar pixels. In order to select
the most appropriate similar pixels to replace the missing pixels,
a pixel-offset based spatio-temporal MFR function model is built,
and we use a multi-label graph cut algorithm to get its optimal
solution. The optimal solution is the optimal similar pixels combi-
nation to replace all the missing pixels.

The experimental results show that the integration of the spa-
tio-temporal image information by Markov random fields for
image reconstruction clearly improves the accuracy values over
the conventional methods. Moreover, by using the radiometric
information in the image itself to reconstruct the missing informa-
tion, the proposed method is effective and robust to the significant
changes brought about by various atmospheric situations and the
seasonal changes in multitemporal images. In general, the pro-
posed STMRF method is capable of achieving temporally, spatially,
and spectrally coherent reconstruction.

There are, however, some limitations to the proposed method.
The method is good at dealing with the significant changes in mul-
titemporal images; however, when the time interval is very short
and the atmospheric situation is similar, the acquired multitempo-

ral images will be very similar, or their changes will be simple and
linear. In this case, some traditional methods such as fitting,
matching, and regression (Zeng et al. 2013) are capable of getting
excellent reconstruction results, and their calculations are very
fast. Therefore, comparing with these conventional methods, the
method we proposed will not have obvious advantage, and will
be time consuming. Therefore, in order to remedy this defect, we
thus consider combining the proposed method with the traditional
methods to deal with the different levels of changes in multitem-
poral images in our future work.
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