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Since the scan line corrector (SLC) of the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor failed per-
manently in 2003, about 22% of the pixels in an SLC-off image are not scanned. To improve the usability of the
ETM+ SLC-off data, we propose an integrated method to recover the missing pixels. The majority of the de-
graded pixels are filled using multi-temporal images as referable information by building a regression model
between the corresponding pixels. When the auxiliary multi-temporal data cannot completely recover the
missing pixels, a non-reference regularization algorithm is used to implement the pixel filling. To assess
the efficacy of the proposed method, simulated and actual SLC-off ETM+ images were tested. The quantitative
evaluations suggest that the proposed method can predict the missing values very accurately. The method
performs especially well in edges, and is able to keep the shape of ground features. According to the assessment
results of the land-cover classification and NDVI, the recovered data are also suitable for use in further remote
sensing applications.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

From the first Landsat satellite launched in 1972 to the present,
the Landsat satellite series has provided the longest continuous mul-
tispectral terrestrial observation program (Arvidson et al., 2006;
Lauer et al., 1997; Lee et al., 2004). Due to the relatively high spatial
resolution, the Landsat data are informative with regard to human
activities on Earth's surface. Furthermore, the opening of the entire
United States Geological Survey (USGS) Landsat archive has made
all of the USGS Landsat imagery freely available through a web portal
(http://glovis.usgs.gov/) (Woodcock et al., 2008). This has resulted in
an increased capacity to undertake ambitious analyses of terrestrial
dynamics across large areas, using a dense time series of imagery.
These benefits have made Landsat imagery an invaluable information
source to both scientists and policy makers. Landsat-7, which carries the
Enhanced Thematic Mapper Plus (ETM+) sensor, is the latest version of
the Landsat series. It was launched in April 1999 and has sufficient fuel to
maintain operations through to 2016 (Wulder et al., 2011). The spatial
resolution of the ETM+ multispectral bands is 30 m, and the swath is
185 km. The ETM+sensor has a narrow15° field of view and overpasses
every location on Earth every 16 days (Lee et al., 2004; Markham et al.,
2006). Because of its excellent image quality, Landsat-7 data have been
widely used in agriculture, geological surveys, global change detection,
mapping, archeology, and planning management.

On May 31, 2003, the scan line corrector (SLC) of the ETM+ sen-
sor on board Landsat-7 failed permanently. The SLC is an electrome-
chanical device that compensates for the forward motion of the
satellite within the ETM+ scanning. When operating properly, it en-
sures that the sensor's forward and reverse cross-track scanning pat-
tern provides a continuous coverage of the full Landsat swath. With a
non-functioning SLC, instead of aligning in parallel scans, the individ-
ual scans alternately overlap and leave large wedge-shaped gaps that
range from a single pixel in width near the image nadir to about
14 pixels width towards the edges of the scene (USGS, 2003). Only in
the center of the image (approximately 22 km wide) do the scans give
near-contiguous coverage of the surface scanned below the satellite. To
differentiate the degraded data, the images acquired before the SLC fail-
ure are designated as ‘SLC-on’ images, and those acquired after the SLC
failure are designated as ‘SLC-off’ images. Approximately 22% of the
SLC-off image data are lost, and these parts are filled with zero values in
the commonly used L1G products (radiometrically and geometrically
corrected, rotated and georeferenced) (Arvidson et al., 2006; Ju & Roy,
2008; Wulder et al., 2011).

Although the anomalous Landsat-7 data resulting from the SLC
failure have become a major obstacle for Landsat ETM+ data applica-
tions, some users still prefer these data over more costly alternatives
(USGS, 2003). Moreover, with the failure of Landsat-5, SLC-off ETM+
data are the only Landsat data currently being acquired for related ap-
plications. Consequently, the SLC-off data have become particularly
important for applications using a long time series of Landsat imagery.
The gap-filling in SLC-off ETM+ images is therefore necessary to ensure
the continuity of this longest satellite observation series. However, it
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has been found that new tools and techniques to compensate for the
missing information can improve the usability of the deteriorated im-
ages, and a number of interesting approaches have been developed.
These approaches can be divided into three types: one type is the
non-reference methods, which fill the gaps directly, without any addi-
tional references; the second type uses multi-temporal Landsat data
to fill the black strips by predicting the un-scanned values; and the
last type ofmethod exploits auxiliary data fromother sensors to recover
the missing information.

The non-reference recovery approaches usually employ resampling
algorithms. The most commonly used resampling algorithms include
nearest neighbor, bilinear, and cubic convolution. Only a few of these
approaches utilize the spatial information, and these simple interpola-
tion methods are not appropriate for ETM+ image recovery. Zhang et
al. (2007) proposed using the kriging geostatistical technique to fill
the data gaps. This case study showed that the ordinary kriging tech-
niques can provide a useful tool for interpolating the missing pixels.
However, the intrinsic stationarity assumption, a theoretical premise
of the geostatistical methods, is not always valid, especially for hetero-
geneous landscapes (Pringle et al., 2009; Van der Meer, 2012).

Compared with the non-reference methods, the approaches using
auxiliary data are much more attractive. It is evident that the most con-
venient auxiliary data are themulti-temporal Landsat images. Therefore,
methods using multiple Landsat images have been widely developed.
Soon after SLC-off occurred, a report compiled by the USGS Earth
Resources Observation and Science Center (EROS) suggested that the
un-scanned gaps could be compensated for by previous SLC-on images
of the same area (Storey et al., 2005). A simple local histogrammatching
method was adopted in this early phase. As the gap-covered locations
vary in the different scenes, this allows the possibility of restoring the
missing pixels with multi-temporal SLC-off data. An improved method
using multiple SLC-off images was subsequently developed by the EDC,
where every missing value is obtained by employing a local linear histo-
gram matching in a moving window. This method is very simple and
easy to implement, and can perform well in most regions if the input
scenes are of high quality. Nevertheless, it tends to be more sensitive
with regard to data selection and has difficultywith heterogeneous land-
scapeswhere the features are smaller than the localmovingwindow size
(USGS, 2003). As an alternative,Maxwell et al. (2007) developed another
approachwhich uses amulti-scale segmentmodel derived from a previ-
ous SLC-on image to guide the spectral interpolation across the gaps.
However, this method has the disadvantage of having lower accuracy
at the pixel level, especially for narrow features such as roads and
streams (Maxwell et al., 2007). Boloorani et al. (2008a) developed a pro-
jection transformationmethod tofill the gaps. Unlike the othermethods,
absolute radiometric correction is a vital preprocessing step for this
algorithm. In addition, SLC-on imagery acquired before 2003 is
unreliable if landscape structural changes have occurred. A
geostatistics-based method using multi-temporal SLC-off images
has also been developed, in which co-kriging techniques are used
to recover the invalid pixels (Pringle et al., 2009). Although this
study showed that geostatistical methods can be effective, accurate
prediction is still difficult at the junction of different land-use types
(Pringle et al., 2009). Chen et al. (2011) developed a method known as
the neighborhood similar pixel interpolator (NSPI), and it was found
that NSPI can restore the value of un-scanned pixels accurately, even in
heterogeneous regions.

Approaches using data from other sensors have also been developed.
Boloorani et al. (2008b) proposed to use the information observed by the
Advanced Land Imager (ALI) on board the Earth Observing One (EO-1)
satellite,while Roy et al. (2008) choseMODIS imagery as a source of com-
plementary information. Reza and Ali (2008) used IRS products to recov-
er the defective images. Chen et al. (2010) estimated the value of
un-scanned pixels using auxiliary data from the China–Brazil Earth
Resources Satellite-02B (CBERS-02B). Although these methods can effec-
tively compensate for the missing information, using information from

non-Landsat sensors has the disadvantages of the issues of spectral com-
patibility, spatial resolution and financial constraints.

Since the development of the above methods, the usability of
ETM+ images has been greatly improved. However, these methods all
have their respective advantages and limitations. Generally, themethods
based on multi-temporal images are more attractive, but the missing
pixels can often not be filled completely, due to the lack of appropriate
auxiliary images. In this paper, a recoverymethod integrating the advan-
tages of a multi-temporal approach and a non-reference approach is
proposed. With the complementary information from multi-temporal
SLC-off images, a weighted linear regression (WLR) algorithm is pro-
posed to recover the missing pixels accurately in complex landscape
areas. Furthermore, a regularization algorithm is presented to fill the
possible remaining gaps which could not be covered by the auxiliary
multi-temporal images.

2. Methodology

For convenience, in this paper, an SLC-off image to be restored is
defined as the primary image, while an auxiliary image is referred to as
thefill image. An un-scanned pixel in the gaps of the primary image is de-
fined as a target pixel, and the respective location is named the target lo-
cation. Two types of recovery method are presented in this paper: when
there aremulti-temporal images as the input, WLR is implemented to fill
in the missing pixels in the primary image; if there are no auxiliary
images, or the auxiliary images do not contain sufficient complementary
information (i.e. the gaps cannot be completely covered by valid pixels), a
non-reference regularization recovery method is provided to fill the
remaining missing pixels.

2.1. The weighted linear regression based multi-temporal recovery method

It is noteworthy that, even for data acquired from the same sensor, the
reflectance of the same location may be different in multi-temporal im-
ages. These differences can be divided into three kinds: one kind of differ-
ence is due to the effects of the variation in the observation conditions;
another comes from the regular changes in the objects; and the third
kind of difference is caused by an abrupt transformation in the target
type. Generally, the first kind of difference has less impact on the imaging
process and can allow a better correction than the other two kinds. The
second kind of difference can be widely found over most scenes, for ex-
ample as seasonal vegetation change. If the change is regular, the ten-
dency can be predicted by auxiliary information. The third kind of
difference is usually related to human activities such as urban expan-
sion. This brings about significant spectral change, which can be very
difficult to predict. Conventionally, to minimize the error brought
about by this kind of change, it is necessary to choose scenes that are
as close in time to the primary scene as possible. As abrupt scene changes
are unpredictable, like most studies, we do not discuss this issue in the
recovery approach.

In the early studies, a linear relationship was often assumed be-
tween multi-temporal scenes (Storey et al., 2005; USGS, 2003). As an
example, a simple analysis using two ETM+ images is presented here.
The 400×400 pixels Landsat area is located at Jilin, China, around
42.62°N and 127.17°E. Fig. 1(a) and (b) shows the SLC-on ETM+ im-
ages acquired on May 28, 2002, and April 26, 2002, respectively. The
red bands (band 3) of the two images are shown in Fig. 1(c) and (d),
and a classified scatterplot is shown in Fig. 1(e). The location of the clas-
ses is shown in Fig. 1(f). The basically unchangedwater and building re-
gions are classified as yellow in the scatterplot. The vegetation and
arable land areas are marked as green and red, respectively. The corre-
sponding regions show different changes. Generally, according to the
scatterplot, the relationships between the two images cannot be uni-
formly described. However, there are obvious linear relationships for
the pixels belonging to similar ground features.
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We propose that every single missing pixel can be recovered using
a linear relationship calculated from locally similar pixels. Then, the
hypothesis can be represented as:

pt ¼ a·f t þ b ð1Þ

where pt and ft are the pixels at the target location (t) in the primary
image and fill image, respectively, and a and b are regression coeffi-
cients calculated from the locally similar pixels. Accordingly, we
must first select the similar pixels of the target location in the primary
and fill images. Considering that the spectral values in each band can
vary greatly, it is unreasonable to determine the spectral similarity by

Fig. 1. Landsat ETM+ images for the case study area: (a)–(b) ETM+ image acquired on May 28, 2002, and April 26, 2002, respectively; (c)–(d) the corresponding band 3 images of
(a) and (b); (e) the scatterplot of (c) versus (d), classified as red=arable land, green=vegetation, and yellow=water/urban; (f) location map of the marked points in (e). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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a fixed qualification. In this study, an adaptive determination proce-
dure for the similar pixels is proposed. For each target pixel in each
band, the ith similar pixel must meet the following equation:

f i−f tj j≤ T ð2Þ

where fi and ft are the values of the similar pixel and target pixel in
the fill image, and T is the adaptive threshold, calculated pixel by
pixel and band by band. Here, the threshold is determined by the
local standard variation:

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
i¼1

f i−μð Þ2
vuut ; ð3Þ

where μ is the mean value of a local area. In this paper, the size of this
area is empirically set as a 5-pixel by 5-pixel window. Therefore, the
value of T represents the smoothness of the local area. The require-
ments of Eqs. (2) and (3) ensure that the appropriate similar pixels
can be selected in the various regions.

After the determination of T, similar pixels are then selected
according to Eqs. (2) and (3) in a search window. The common
valid pixels of the primary and fill images that are located in this win-
dow are all involved. For each target pixel, an adaptive window is
used for the similar pixel searching. To guarantee the robustness of
the follow-up regression algorithm, the reference value of the num-
ber of selected similar pixels is set as NR. The window size is first set
at an initial value. If the number of selected similar pixels cannot
meet the reference value NR, the window size will be enlarged by
two pixels. Considering that too large a window will take a lot of com-
puting time, a maximumwindow size can be set. Essentially, the initial
window size and the maximum window size are both largely affected
by NR. The determination of these parameters will be discussed in
Section 3.

The coefficients can then be calculated from the selected pixels
(Eq. 1). One of the most commonly used methods is least-squares
estimation. However, it is clear that the contributions of each pixel
vary due to the spectral and spatial differences. In our method, a
higher spectral similarity and a smaller distance for a similar pixel
to the target pixel is assigned a larger weight. Combining the spectral
and spatial differences, a synthetic difference index can be computed
as:

Di ¼ f i−f t þ αj j· xi−xtð Þ2 þ yi−ytð Þ2
� �

; ð4Þ

where xi, yi, xt and yt represent the locations of the similar pixel and
target pixel, and α is a small value to prevent Di equaling zero. The
term ((xi−xt)2+(yi−yt)2) describes the spatial difference between
the corresponding similar pixel and the target pixel in the fill image,
and |fi− ft+α| represents the spectral difference. It should be noted
that if the spectral value of the similar pixel equals the value of the tar-
get pixel, Di will be 0 without α. However, it is unreasonable to deem
that there is no difference between the two pixels. Therefore, we set a
small value of α to avoid this condition.

The weights of each selected similar pixel are then normalized as:

Wi ¼ 1=Dið Þ=
XN
i¼1

1=Dið Þ: ð5Þ

After normalization, the range of weight Wi is from 0 to 1, and the
sum of all the selected similar pixel weights is 1.

Subsequently, theWLR algorithm is employed to calculate the coeffi-
cients. Generally, the regression equation can be solved by the weighted

least-squares method. For convenience, the expanded form is given as
(Ruppert & Wand, 1994):

a ¼

Xn
i¼i

Wi pi−pð Þ f i−f
� �

Xn
i¼i

Wi f i−f
� �2

ð6Þ

and

b ¼ p−af ð7Þ

where p and f are the mean values of all the similar pixels in the search
window on the primary and fill image, respectively.

For particularly small objects, it is possible that only a few, or even
no similar pixels will be found in the procedure. In the case that the
reference number of similar pixels, NR, does not meet the set value
when the window size reaches the maximum size, but the number
is more than 2, the WLR algorithm will still be performed using all
the selected similar pixels. For the exceptional situation when there
are not enough similar pixels for the algorithm, the target pixel will
be identified as an outlier. In this condition, the target pixel value
will be adjusted to fit the environment. Therefore, the coefficient is
calculated by:

a ¼ p

f
ð8Þ

and

b ¼ 0 ð9Þ

where μp and μf are the mean values of all the common pixels in the
window of the primary image and fill image, respectively.

2.2. The regularization based non-reference recovery method

Due to the different degrees of gap overlapping, twoormore auxiliary
images are needed in amulti-temporal recovery procedure. It is often the
case that the available images are not sufficient to fill all the missing
pixels because the gaps cannot be completely covered. In this case, it is
necessary to recover the remaining pixels using a non-reference recov-
ery method. In this paper, a regularization method is presented for this
problem. The recovery framework can be written as:

p ¼ argmin E pð Þ½ �; ð10Þ

where

E pð Þ ¼ jjQ p′−pð Þjj2 þ λR pð Þ; ð11Þ

is the cost function, in whichp′ and p represent the input primary image
and the desired primary image, respectively, R(p) represents the regu-
larizedmodel, andλ is the regularization parameter. Here,Q is a diagonal
matrix representing the reliable information in the different pixel loca-
tions, and its row number equals the image size. For the recovery issue,
the element values are set to one for all the valid pixels, and to zero for
the missing pixels. As for R(p), models such as the Laplacian prior,
Gauss–Markov prior and total variation prior have been widely used
(Shen & Zhang, 2009; Shen et al., 2010; Yuan et al., 2012; Zhang et al.,
2011). Generally, the latter two priors give a better performance in
edge-preserving but take a longer time (Strong & Chan, 2003). Since
the spatial resolution of ETM+ is not very high, there are seldom sharp
edges in the image. By further considering the computational efficiency,
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the Laplacian model is more appropriate for this work. Therefore, the
cost function can be written as:

E pð Þ ¼ jjQ p′−pð Þjj2 þ λLp2 ð12Þ

where L is the Laplacian operator. The only parameter requiring prede-
termination in this method is the regularization parameter λ. According
to Eq. (12), the regularization parameterλ balances the data fidelity (the

first term) and the image regularization (the second term). In this paper,
λwas empirically set as 0.01.

Differentiating E(p) with respect to p gives:

∇E pð Þ ¼ −2QTQ p′−pð Þ þ 2λLTLp: ð13Þ

Due to the problems involvedwith finding a solution to an equation
like Eq. (13), an iterative method using an initial guess to generate

Fig. 2. Landsat SLC-on ETM+ images for the simulated experiment: (a)–(b) acquired onMarch 19, 2002, andDecember 29, 2001, respectively; (c) SLC-off image simulated by (a); (d), (e)
and (f) are the results recovered by LLHM, NSPI and WLR, respectively.

186 C. Zeng et al. / Remote Sensing of Environment 131 (2013) 182–194
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successive approximations to a solution is often adopted. Thus, the de-
sired image can be solved by employing the successive approximations
iteration:

p̂nþ1 ¼ p̂n−βn∇E pnð Þ ð14Þ

where n is the iteration number, and βn is the step size. If βn is too small,
the convergence will be very slow. However, if it is too large, the algo-
rithmwill be unstable or divergent. To address this issue, the conjugate
gradient method (Concus et al., 1976) is employed in this paper. The
step size can be calculated by:

βn ¼
∇2E pnð Þpn−QTQp′

� �T∇E pnð Þ
∇E pnð Þð ÞT ∇2E pnð Þ� �

∇E pnð Þ ð15Þ

where ∇ 2E(p) is the Hessian matrix of the cost function E(p).

3. Experimental results

To test the performance of the proposed method, experiments were
performed on both real and simulated ETM+ data. The data used were
L1G products obtained from the USGSwebsite (http://glovis.usgs.gov/).
Considering the differences in spatial resolution, only bands 1–5 and
band 7 were used in the experiments. All data used in the paper were
cropped sub-images of 400×400 pixels, andwere stored as the original
8-byte integer value.

Experiments were performed on both simulated images and real
SLC-off images. The three multi-temporal data based methods of local
linear histogram matching (LLHM) (Storey et al., 2005), neighborhood
similar pixel interpolator (NSPI) (Chen et al., 2011), and the proposed
WLR method were compared. Furthermore, the two non-reference
methods of moving neighborhood kriging interpolation (MNKI)

(Haas, 1990) and the proposed Laplacian prior regularization method
(LPRM) were implemented for comparison purposes.

3.1. Experiments on simulated SLC-off images

In the simulated experiments, the recovered images were com-
pared with the original image by the calculation of several statistical
indices, allowing a quantitative assessment. The first index used was
the Pearson correlation coefficient (r). This metric can be used to assess

Fig. 3. (a)–(f) Detailed regions cropped from Fig. 2(a)–(f). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Table 1
The accuracy of the results recovered by local linear histogram matching (LLHM),
neighborhood similar pixel interpolator (NSPI), and weighted linear regression (WLR),
as shown in Fig. 2.

LLHM NSPI WLR

r B1 0.854 0.884 0.908
B2 0.853 0.882 0. 912
B3 0.833 0.868 0. 898
B4 0.853 0.891 0. 915
B5 0.861 0.911 0. 921
B7 0.837 0.887 0. 904

ARE (%) B1 2.974 2.464 2.258
B2 4.231 3.601 3.200
B3 7.183 6.094 5.473
B4 11.043 7.992 7.136
B5 14.891 9.461 8.979
B7 17.506 12.207 11.178

UIQI B1 0.852 0.884 0.908
B2 0.850 0.882 0.913
B3 0.829 0.868 0.898
B4 0.849 0.890 0.915
B5 0.854 0.911 0.923
B7 0.833 0.887 0.904

MSA 4.456 3.178 2.861

187C. Zeng et al. / Remote Sensing of Environment 131 (2013) 182–194
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the degree of consistency between predicted values and the observed
values. It is defined as:

r ¼

XM
j¼1

NRj−NR

� �
NOj−NO

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
j¼1

NRj−NR

� �2XM
j¼1

NOj−NO

� �2

vuut
ð16Þ

whereM is the total number of gap pixels, andNRj andNOj are the recov-
ered and original values of the jth invalid pixel, respectively. A larger r
indicates a closer consistency between the two groups of pixels, and
the data will be identical when r equals 1.0.

The second metric used was the average relative error (ARE) of a
predicted value. It is defined as:

ARE ¼
XM
j¼1

NOj−NRj

���
���=NOj

� �0
@

1
A=M � 100%: ð17Þ

Fig. 5. The classification results corresponding to Fig. 2(a) and (d)–(f).

Fig. 4. The mean ARE of six bands when using different NR values, as tested by Fig. 2(a)–(c).

188 C. Zeng et al. / Remote Sensing of Environment 131 (2013) 182–194
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The smaller the ARE, the better the prediction.
A universal image quality index (UIQI) (Wang & Bovik, 2002) was

also used. This indicator provides a measure of the closeness between
the filled and the original areas by utilizing the differences in the sta-
tistical distributions.

UIQI ¼ σRO

σRσO
⋅ 2NRNO

NR
2 þ NO

2⋅
2σRσO

σR
2 þ σO

2 ð18Þ

where σRO, σR and σO are the covariance and the variances of the re-
covered and original regions, respectively. Under ideal conditions,
UIQI equals 1.0.

As these three indices are calculated band by band, but the results
can only display the effect on each single band. In order to assess the
spectral fidelity, the mean spectral angle (MSA) was also employed. It
can be calculated by (Dennison et al., 2004):

MSA ¼
XM
j¼1

arccos
Xn
b¼1

NOjNRj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
b¼1

NOj
2Xn
b¼1

NRj
2

vuut
0
@

1
A

0
@

1
A=M ð19Þ

where n is the total number of bands. A smaller MSA value means that
the prediction is better.

The first experiment region is located in Wuhan, China, around
30.59°N and 114.02°E, and is covered by Path 123 and Row 39 in
World Reference System 2 (WRS-2). Fig. 2(a) and (b) shows the two
tested ETM+ images (true color composite R=band 3, G=band 2,
B=band 1), acquired on March 19, 2002, and December 29, 2001, re-
spectively. The input primary image covered by the simulated gaps is
shown in Fig. 2(c). In this experiment, the reference number of similar
pixels (NR) was set to 30, and the initial and maximum window sizes
were 7 and 99, respectively.

Panels (d)–(f) of Fig. 2 are the output images recovered by the
LLHM, NSPI and WLR methods, respectively. Generally, the image re-
covered by the proposedWLR method appears much closer to the ac-
tual image (Fig. 2(a)) than the other two methods. In Fig. 2(d), for
LLHM, obvious artifacts can be found near the edge of the river. This
result shows that when the image contains complex terrain, a simple
linear algorithm using all the common pixels is unsatisfactory. In
Fig. 2(e), for NSPI, most of the edges are well recovered, but there is
noise in the recovered region. To facilitate a detailed visual inspec-
tion, zoomed regions cropped from Fig. 2(a)–(f) are shown in
Fig. 3(a)–(f). The recovered details are emphasized with a red mark.
Fig. 3(f), for WLR, shows the best visual result and is consistent
with the original image. It is noteworthy that the two input images
were acquired in different seasons, and the ground features have
been significantly changed. The LLHM and NSPI methods cannot adapt
to this change very well, so more errors occurred near the river's edges.
Benefiting from the adapted similar-pixels searching procedure, the pro-
posed WLR method was better able to address this issue.

In order to quantitatively compare the results of the abovemethods,
the r, ARE, UIQI and MSA values of all the recovered pixels were com-
pared. The results are listed in Table 1. Generally, WLR shows a higher
accuracy in all the indices, compared with the other two methods.

As previously mentioned, the most important parameter that
needs to be determined is the reference number of similar pixels,
NR, which also dominates the value of the initial and maximum win-
dow sizes. The determination of NR was optimized through a series of
comparative experiments, using the images shown in Fig. 2(a)–(c).
The mean ARE values of the six bands were calculated using different
NR values from 2 to 90, and the result is shown in Fig. 4. It is apparent
that the more pixels used in the reference, the more reliable the results.
This is because of the advantage of the regression algorithm in that more
sample points that make the estimation steadier. All the other metrics
and filled results show similar results. However, considering that a larger

NR will greatly decrease the computational efficiency, and only improves
the filling accuracy to an insignificant degree, we recommend 30 to 40 as
an appropriate range ofNR. Moreover, in practical situations, the value of
NR can be adjusted, as appropriate, according to the demands of accuracy
and computing time.

Fig. 6. The scatterplots of the real and the recovered NDVI values: (a) the LLHM method;
(b) the NSPImethod; and (c) the proposedWLRmethod. Yellow points represent a greater
density of points, while blue points represent the opposite. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
The classification accuracies of the results recovered by local linear histogrammatching
(LLHM), neighborhood similar pixel interpolator (NSPI), and weighted linear regression
(WLR), as shown in Fig. 2.

LLHM NSPI WLR

OA 0.695 0.795 0.812
Kappa 0.484 0.664 0.693
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In order to assess the capabilities of the recovered data for further
applications, we produced land-cover images using the filled data
shown in Fig. 2 and compared the results with an analogous classifi-
cation generated from the original image data. Land-cover data
were generated using the maximum likelihood supervised classifier,
and high-resolution imagery from Google Earth was used to help
define and categorize the sample points. The classification scheme
consisted of the following land-cover categories: water, urban area,
agricultural fields, forest and bare soil. The sample areas were selected
from the valid region of the original image. The classification results
shown in Fig. 5(a)–(d) correspond to the images of Fig. 2(a) and
(d)–(f). Table 2 shows the accuracy assessment of the classifications of
all the filled pixels, using the classification map of the original image as
reference data. For WLR, relatively high values of OA (overall accuracy)
and kappa (Congalton & Green, 2008) indicate a strong agreement
between the classifications of the recovered image and the actual
image. The classification of the LLHM result has the lowest values of OA
and kappa, and the NSPI result shows an intermediate level of accuracy.

In addition, to further assess the usability of the recovered data in
quantitative applications, the normalized difference vegetation indi-
ces (NDVI) of the filled images were also compared. An atmospheric
correction of a dark object subtraction method (Chavez, 1988) was
implemented before the NDVI calculation. According to the scatterplots
shown in Fig. 6, it is apparent that LLHM estimated the values of the
un-scanned locations with larger errors, the results derived from NSPI
have a better agreement with the reference data, but the proposed
method still gave the best performance. The R2 value of the LLHM result

is 0.731, which is the lowest, and the NSPI result is 0.859, which shows
an obvious increase. The result of the proposed WLR method gives
the highest value of 0.908. It should be noted that the outliers in
the recovered images can significantly affect the atmospheric correction
procedure, and that is the reasonwhy there are biases in the former two

Fig. 7. Landsat SLC-on ETM+ images for the simulated experiment: (a) original SLC-on image; (b) SLC-off image simulated by (a); (c) and (d) are the results recovered byMNKI and
LPRM, respectively.

Table 3
The accuracies of the results recovered by moving neighborhood kriging interpolation
(MNKI) and the Laplacian prior regularization method (LPRM), as shown in Fig. 7.

MNKI LPRM

r B1 0.904 0.926
B2 0.960 0.972
B3 0.977 0.985
B4 0.981 0.989
B5 0.976 0.984
B7 0.977 0.984

ARE (%) B1 4.050 3.633
B2 4.908 4.119
B3 6.270 5.392
B4 7.053 5.390
B5 10.420 8.708
B7 10.589 9.412

UIQI B1 0.903 0.926
B2 0.960 0.972
B3 0.977 0.985
B4 0.981 0.989
B5 0.976 0.984
B7 0.977 0.983

MSA 2.354 2.246
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plots. In summary, due to its robustness, the proposed method can be
widely applied. These results demonstrate that the gap-filled results
derived from the newmethod can provide a better support for applica-
tions such as land-cover mapping and NDVI calculation.

In the previous experiment, the proposed multi-temporal recovery
method was tested. The following experiment was implemented for
the validation of the non-referencemethod. The 400×400pixels Landsat
area is located in Tibet, around 30.72°N and 90.25°E. The original image
of the experiment region is shown in Fig. 7(a), and the corresponding

simulated gap image is shown in Fig. 7(b). The recovered images
using MNKI and LPRM are shown in Fig. 7(c) and (d), respectively.
In Fig. 7(c) of MNKI, obvious artifacts can be seen at the junction of
water and land. On the one hand, MNKI cannot adequately fit the
scene changes, and, on the other hand, the gap width is beyond the fill-
ing capabilities of the algorithm. Therefore, the artifact phenomenon is
particularly significant. In Fig. 7(d), LPRM provides a better visual con-
nectivity, and this is further supported by the quantitative accuracy
assessment shown in Table 3.

Fig. 8. Landsat SLC-off ETM+ images: (a)–(b) acquired on October 23, 2011, and November 8, 2011, respectively; (c)–(e) are the results recovered by LLHM, NSPI and WLR,
respectively.
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3.2. Experiments using actual SLC-off images

To further verify the efficacy of the proposedmethod, experiments
using actual SLC-off images were implemented. The first experimental
region of real data is located in California, U.S., around 39.10°N and
76.14°W, and is covered byWRS 2 Path 41 and Row36. Regular features
formed by vegetation and bare soil are distributed over the area.

Fig. 8(a) and (b) shows the two tested SLC-off ETM+ images ac-
quired on October 23, 2011, and November 8, 2011, respectively. Panels
(c)–(e) of Fig. 8 are the results recovered by the LLHM, NSPI and WLR
methods, respectively. As the gaps cannot be completely covered by
the single auxiliary SLC-off image, there are still invalid pixels remaining
in the recovered images. The zoomed regions cropped from Fig. 8(c)–(e)
are shown in Fig. 9(a)–(c). The recovered details are also marked. As the
two input images are temporally close, no significant changes occurred,
and the ground features are very regular, the three recovered results
are relatively close to each other. In Fig. 9(a), as with the results of the
simulated experiments, there are obvious artifacts near the edges of
the ground features. In Fig. 9(b), noise can still be found in the edge re-
gions. As can be seen in Fig. 9(c), the proposed algorithm achieved the
best visual effects. It is worth noting that the remaining gaps in
Fig. 8(d) are wider than for the other two methods. This is because, in
the NSPI method, only the pixels that have valid values in all bands can
be used to fill the gap pixels. As the gaps are not completely covered
in each band, the pixels near the gaps do not have valid values in all
bands. Therefore, some referable information is omitted in the NSPI
method. In this respect, the proposedmethod can better use all the aux-
iliary information.

The remaining gaps in Fig. 8(c) were filled by MNKI and LPRM, re-
spectively, and the results are shown in Fig. 10. In Fig. 10(c), the edge
of the circular object is incorrectly filled. However, the sharpness is
much better preserved in the filled image of Fig. 10(d). This demon-
strates that the shape of a ground feature can be better recovered
by the use of the proposed regularization method.

The second experiment region is located in eastern Maryland, U.S.,
around 39.10°N and 76.14°W, and is covered by Path 15 and Row 33.
The primary image was acquired on February 11, 2008. Another image
acquired on June 2, 2008 was used as the fill image. Almost all the miss-
ing pixels can be recovered by just employingWLR. The recovered image
is shown in Fig. 11. Four sub-images chosen from the verge area and the
corresponding original images are zoomed. This experiment demon-
strates that the proposedmethod can be used in the production of entire
Landsat scenes. The satisfactory details also verify that the algorithm is
applicable to different scene types.

4. Discussion and conclusion

Despite the malfunction of the SLC, the quality of the radiometry
and geometry of the Landsat 7 ETM+ data is still excellent for many

applications. Therefore, in order to make better use of this important
data source, it is necessary to develop techniques to recover themiss-
ing information in the SLC-off imagery. Considering the limitations of the
existing restoration methods, this paper proposes an integrated method
to fill the un-scanned gaps. With multi-temporal auxiliary data, the pro-
posedWLR method can restore the invalid pixels accurately, even when
obvious changes take place. Furthermore, in the case of lacking enough
auxiliary information, the regularization recoverymethod can complete-
ly fill the remaining gaps by using the spatial information of the whole
image. For the regions with undesirable climate condition which causes
frequent cloud cover, this characteristic is especially important.

The proposed method can make good use of the consistency in ob-
ject changes. Beforehand, according to the scatterplot study of ETM+
images, the hypothesis that pixels in unchanged or regularly changed
regions share a linear correlation with similar pixels is proposed. This is
the foundation of the following recovery method using multi-temporal
images. Subsequently, an adapted similar-pixel searching method is
proposed. The procedure can determine an appropriate threshold for
each pixel in each band. Using this adapted threshold, the similar pixels
can be accurately selected in various scene types. This is partly why the
proposed method is more effective in complex scene types. In addition,

Fig. 9. (a)–(c) Detailed regions cropped from Fig. 8(c)–(e).

Fig. 10. Landsat SLC-off ETM+ images: (a) and (b) are the results using Fig. 8(e) recovered
byMNKI and LPRM, respectively; (c) and (d) are detailed regions cropped from (a) and (b).
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a reference number of similar pixels (NR) is suggested in this procedure.
After that, the WLR method using similar pixels is implemented. With
an appropriate number of concerned pixels, the result of the linear re-
gression algorithm can be more reliable. It is worth noting that the WLR
method is based on the precondition that the ground features change
regularly between scenes. The recovered result may be unsatisfactory
when the scenes change abruptly.

Furthermore, to copewith the situationwhere not all of the gap pixels
can be covered by valid multi-temporal auxiliary data, a non-reference
filling method is proposed. By considering the spatial correlation of the
observed scene, a simple regularization method using a Laplacian prior
is employed to restore the remaining gaps. This approach does not re-
quire the availability of timely and cloud-free ETM+ images, and is
requisite for regions with a changeable climate, such as humid tropical
forest areas. However, this method cannot restore complicated textures
when the invalid area is too large.

It should be noted that there are also several potential limitations
for the proposedmethod. Only local spectrally similar pixels are used in
the regression algorithm. However, it is worth noting that non-local in-
formation (Gilboa & Osher, 2008), which contains the structures and
textures of the regions far from the missing pixel, can also play an im-
portant role in the recovery procedure. Several studies (Lou et al.,
2010; Peyré et al., 2008) have shown that using the constraint of a
non-local regularization method can effectively improve the detailed
texture of the processing results. We will explore how such non-local
information affects the recovery result in our future work.

There are somepredetermined parameters for the proposedmethod.
As an adaptive threshold determination approach is used in the WLR
method, only the window size and NR are critical for the result. As for
LPRM, the determination of the regularization parameter λ is the most
important part. However, these parameters are not sensitive to the
different scenes. Therefore, for most regions, satisfactory products can
be generated by using a set of fixed parameters.

It should also be noted that the main disadvantage of the proposed
method is its relatively slow computing speed. In the experiments, it
took about five times the time of LLHM to fill the gaps. However, con-
sidering the high accuracy, the relatively slow computing speed is ac-
ceptable. Furthermore, the computing time can be markedly reduced
by shrinking the maximum searching window size, with the cost of a
slight precision loss. As every pixel is filled independently and uses
local information only, a parallel processing scheme based on a graphics
processing unit (GPU) can be used in the bulk processing. Additionally,
the computing efficiency can be further improved by using a hybrid tac-
tic. The advantage of theWLR method is the relatively high accuracy in
complex regions. For homogeneous regions, the LLHMmethod can still
yield acceptable results. Therefore, these two methods can be hybrid-
ized and automatically switched according to the situation.

It is unclear how the spatial difference affects the recovery result
(Brunsdon, 1998). When we tried to combine the spectral difference
and the spatial difference, the experimental results demonstrated
that the spatial difference has a greater impact on the recovery result
than the spectral difference. We therefore used the squared Euclidean

Fig. 11. An entire recovered Landsat SLC-off ETM+ image with the detailed regions and the corresponding original sub-images.
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distance in Eq. (4) when computing the integratedweight. In our future
research,more spatialweighting functionswill be tested and calibrated.
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