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Abstract—The Moderate Resolution Imaging Spectrora-
diometer (MODIS) aboard the Aqua satellite has been working
well, except that 14 of the 20 detectors in Aqua MODIS band
6 (1.628–1.652 m) are ineffective. As a result, the periodic,
along-scan strips in Aqua MODIS band 6 create problems in
some high-level MODIS products. This paper demonstrates that
MODIS bands 6 and 7 are highly correlated for each scene type.
On this premise, we propose a within-class local fitting algorithm
to recover missing reflectances of Aqua MODIS band 6. To test
the efficacy of the proposed algorithm, experiments on real and
simulated data are performed and the recovered images are eval-
uated qualitatively and quantitatively. The experimental results
demonstrate that the proposed algorithm performs well.

Index Terms—Aqua, MODIS band 6, recovering, within-class
local fitting.

I. INTRODUCTION

T HE Moderate Resolution Imaging Spectroradiometer
(MODIS) aboard the Terra/Aqua satellite is a major in-

strument of the NASA Earth Observing System (EOS) [1]–[3].
It has 36 spectral bands ranging from the visible (0.415 m) to
infrared (14.235 m) spectrum at nadir spatial resolutions of
250 m (bands 1 and 2), 500 m (bands 3 to 7), and 1 km (bands 8
to 39). Since launched, both Terra and Aqua MODIS have been
making continuous, complementary morning and afternoon
observations (10:30 am equator-crossing orbit for Terra and
1:30 pm equator-crossing orbit for Aqua). The MODIS remote
sensing applications are of interest not only to land, ocean, and
atmosphere researchers but also to application, interdiscipli-
nary, and environmental scientists [4].

The Aqua MODIS instrument has been performing well ex-
cept for band 6 (1.628–1.652 m) [3]–[5]. Fourteen of the 20
detectors are either noisy or non-functional. Therefore, there are
periodic, along-scan strips of missing data over the entire image.
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MODIS band 6 is an important band, which has been widely
used in many high-level MODIS products, such as the aerosol
product (MOD04), snow cover product (MOD06) and cloud-
mask product (MOD35) [5]. Consequently, these MODIS prod-
ucts and other related research have to face the risk of degrada-
tion if no reasonable replacement for missing band 6 measure-
ments are found. Therefore, it is necessary to develop a recovery
algorithm for improving the radiometric quality of MODIS band
6 products to keep the consistency of the observations.

This research demonstrates that the MODIS bands 6 and 7 are
highly correlated for each scene type. On this basis, we devel-
oped a within-class local fitting (WCLF) algorithm to recover
missing band 6 reflectances. An unsupervised classification is
first performed to separate various scene types based on a band
selection method. With the classification map, a within-class
local fitting is performed to recover every single missing pixel
in each type. Moreover, a refinement procedure is included in
the local fitting process to eliminate the effect of outliers.

This paper is organized as follows. In Section II, previous
methods of recovering Aqua MODIS band 6 reflectances are
presented. Section III describes the within-class local fitting
method. Experimental results and quantitative evaluations are
shown in Section IV, and Section V concludes this paper.

II. PREVIOUS METHODS

To our knowledge, only two recovery algorithms have been
developed for Aqua MODIS band 6. Wang et al. [4] were the
first to advocate that the Aqua MODIS band 6 be recovered by
the stable analytical relationship between Terra MODIS bands
6 and 7. Their research is based on the observation that MODIS
bands 6 and 7 are highly correlated over snow coverage. For
recovering the Aqua MODIS band 6, the calibrated and geo-lo-
cated Terra MODIS Level 1B radiances are employed. Polyno-
mial regression was used to quantify the relationship between
Terra MODIS bands 6 and 7. Reflectances at the top of the at-
mosphere (TOA) in Terra MODIS bands 6 and 7 were corre-
lated with a correlation coefficient of 0.9821. Linear, quadratic,
cubic, and fourth-degree polynomials were fitted to the data
of Terra bands 6 and 7. Wang suggested using the following
polynomials:

(1)
or

(2)

where and are reflectances at TOA in Terra MODIS
bands 6 and 7, respectively. Similar results are obtained using
these two polynomials. In [4], Wang et al. emphasized that the
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Fig. 1. (a) Sub-image of homogeneous scene, (b) sub-image of heterogeneous
scene, (c) scatter plot of (a) using band 6 and band 7 reflectances, and (d) scatter
plot of (b) using band 6 and band 7 reflectances.

relationship between these two bands also depends on many fac-
tors, such as scene types, spectral characteristics, and scan ge-
ometry. Especially the scene type plays a rather important role.
As (1) and (2) were developed based on snow cover, their per-
formances are best for snow cover scenes, but have relatively
large errors for scenes without snow cover [5].

Rakwatin et al. [5] proposed to recover the missing data of
Aqua MODIS band 6 by combining a histogram-matching al-
gorithm with local least squares fitting. Histogram matching
corrects the detector-to-detector striping of the functional de-
tectors. Local least squares fitting recovers the missing data of
the non-functional detectors based on a cubic polynomial de-
rived from the relationship between Aqua MODIS bands 6 and
7. The algorithm was tested on both Terra and Aqua MODIS
images, and it can be used on both 1000-m and 500-m pixel
resolutions. Using simulated striping images of Terra MODIS
data, the results of recovering the synthetic non-functional de-
tectors of band 6 demonstrated that their method can recover the
missing data with little distortion. Although this algorithm has
greatly improved MODIS band 6 recovery, it also does not con-
sider the effect of scene types.

III. METHODOLOGY

A. The Necessity of Classification

As mentioned before, the relationship between Aqua band
6 and 7 reflectances depend on many factors, especially the
scene type. To validate this, an experiment has been performed.
Fig. 1(a) and (b) show two 1000 by 1000 sub-images of Terra
MODIS band 6 and 7 reflectances. One contains homogeneous
scene types, and the other contains heterogeneous scene types.
Fig. 1(c) and (d) are the scatter plots of band 6 to band 7 re-
flectance, corresponding to Fig. 1(a) and (b), respectively. From

Fig. 2. The reflectance of different scene types in the visible and infrared
spectrum.

Fig. 1(c), we can see that bands 6 and 7 are highly correlated
when the scene type is homogeneous. However, Fig. 1(d) shows
that it is difficult to fit one relation between the two bands using
one curve when the image contains different scene types. There-
fore, it is necessary to consider the scene types when recovering
missing band 6 pixels. To distinguish them, a classification pro-
gram can be implemented. The two main classification methods
are supervised classification and unsupervised classification. In
this paper, the unsupervised ISODATA classification method is
employed for convenience.

B. Band Selection for Classification

Generally, the bands involved in the classification process
should be at the same or an even higher resolution than the re-
covered band. Since band 6 is at 500-m pixel resolution, the
input bands can only be chosen from bands 1 to 7. The purpose
of the classification is to separate the various relations between
bands 6 and 7 for each scene type. So, the input bands must be
as similar to these two bands as possible. If not, the correlation
for each scene type will be worse. This situation is especially
evident when a scene contains a water body. As Fig. 2 shows,
clean water has a much higher electromagnetic wave absorption
in the 0.4–2.5 m range than any other features. With such a low
reflectance, water bodies always show a dark appearance in both
the visible and near-infrared spectrum. But the reflectance spec-
trum curves are different for vegetation and soil. They have an
absorption close to water in the visible spectrum, while the re-
flectance becomes much higher than water in the near-infrared
range. This means that vegetation and soil or some other fea-
tures may be as dark as water in the visible spectrum, but also
much brighter in the near-infrared spectrum at the same time.

For MODIS, bands 1, 3, and 4 are in the visible spectrum
[3]. As Fig. 3(a) shows, the boundary between water and land
in the band 1 image is not apparent; a similar situation can also
be found in bands 3 and 4. However, Fig. 3(b) shows that in
band 7, a water body is much darker than any other feature,
which can also be seen in other near-infrared spectrum bands,
i.e., bands 2, 5, and 6. Fig. 3(c) is the classification result using
visible and near-infrared bands 1, 2, 3, 4, 5, and 7, and Fig. 3(d)
is the classification result only using near-infrared bands 2, 5,
and 7. Obviously, the selection of only near-infrared bands is
more reasonable.
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Fig. 3. Sub-images of Aqua MODIS of 500-m pixel resolution acquired on
January 16, 2009, over the Yangtze River basin, China. These images are 50
pixels by 50 pixels. (a) Band 1 image, (b) band 7 image, (c) classification result
using bands 1, 2, 3, 4, 5, and 7, and (d) classification result using bands 2, 5,
and 7.

C. Recovery

To perform data recovery, three images are involved: the band
6 image (P6), the band 7 image (P7), and the unsupervised clas-
sification result (Pc) calculated using bands 2, 5, and 7. Gener-
ally, it is inadequate to fit a curve using all the pixels from one
class. The reasons are as follows. Firstly, according to Tobler’s
First Law (TFL) [6], near objects are more related, so they are
more likely to share similar correlation between bands 6 and 7.
What is more, even for the same scene type in an image, the re-
lationship may also depend on some other factors, such as the
atmosphere and scan geometry. In general, the relationship is
more stable for closer pixels. Therefore, we proposed the fol-
lowing within-class local fitting method.

1) Initialize Fitting Region. For each missing pixel, outline a
rectangular region centered on the missing pixel as

the initial region for local fitting.
2) Search for Valid Pixels. Search this region and find the

pixels that have a valid value in P6 and belong to the same
class in the classification image Pc as the center pixel.
These pixels are the nearest valid pixels with a scene type
similar to the center pixel. If the number of these pixels
is less than a threshold M, enlarge the window until this
condition is met. This ensures that sufficient pixels are in-
volved in the curve fitting.

3) Eliminate Outliers. Find the maximum and minimum
values in P7 of these valid pixels. If the value of the center
pixel in P7 is not between them, enlarge the window until
this condition is met. We assume that if the value in P7 of

Fig. 4. Illustration of the refinement procedure. (a) Before the procedure, and
(b) after the procedure.

the center pixel is bounded within the search region, the
recovered value will be reasonable. This constraint is used
to ensure that the result is not an outlier.

4) Curve Fit. Solve for the quadratic polynomial function
using the least squares polynomial fitting method with the
valid pixels in the fitting region. The following quadratic
polynomial function is employed:

(3)

where is the value of band 7, is the recovered
value of band 6, and , , and are the polynomial coeffi-
cients. The relations of all valid pixels can be denoted using
a matrix-vector form:

(4)

where and are vectors containing the values of
and polynomial coefficients, respectively, and is the cor-
responding model matrix. Using the least squares method,
the coefficients can be solved by

(5)

5) Refinement Procedure. In most cases, step 3) works well
for outlier elimination and the fitting result of step 4) is
satisfactory. However, a very small number of outliers may
still appear in some complicated regions. The reason is that
in a few cases the maximum or the minimum value is too
far away from the others, which leads to a unrealistic fitting
error, as shown in Fig. 4(a). To solve this problem, we pro-
pose a refinement procedure. The valid pixels in the current
window region are checked to determine if there exists at
least one pixel whose value in P7 is less than the center
pixel satisfy the condition that its distance to the curve is
less than a threshold N. And analogously, at least one pixel
whose value in P7 is greater than the center pixel in P7
should also satisfy the same condition. If this condition is
not satisfied, the window is enlarged and processing returns
to step 4) to fit the curve again. In this way, more pixels
(hollow circle dots in Fig. 4(b)) are included and the curve
fit is improved.

6) Recovery Calculation. Calculate the recovered value of the
center pixel using (3) and the solved polynomial coeffi-
cients .

Using the aforementioned procedure, the missing pixels can
be recovered one by one. The processing is terminated when all
missing pixels are recovered.



188 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 4, NO. 1, MARCH 2011

IV. EXPERIMENTAL RESULTS

To test the performance of the proposed algorithm, ex-
periments on real Aqua data and simulated Terra data were
performed. The data were obtained from the MODIS website
of NASA (http://modis.gsfc.nasa.gov/). The 500-m resolution
MODIS data used in the experiments are stored as 32-byte
floating values, in the standard hierarchical data HDF-EOS
format. Information of non-functional and noisy detectors is
available in the global attributes of the HDF-EOS metadata.
Attributes 48 and 49 are “Dead Detector List” and “Noisy
Detector List”, which list all the ineffective detectors. It shows
that, except for detectors 1, 3, 7, 8, 9, and 11, the other 14
detectors in band 6 are either dead or noisy. Although the
missing pixels have been interpolated in the downloaded data,
we removed the interpolated values because they are too simply
obtained, thereby destroying information and set them to zero
for better visual comparison. All data used in the paper are
cropped sub-images with 400 pixels by 400 pixels.

To make a comparative analysis, three methods—globe fit-
ting (GF), within-class globe fitting (WCGF), and the proposed
within-class local fitting (WCLF)—are implemented. The GF
method does not include the classification process, and all the
missing pixels are recovered based on the same curve fitted
using all the valid pixels in the image. The WCGF method in-
cludes classification and global fitting, i.e., the missing pixels
belonging to one class are recovered based on the curve fitted
using all the within-class valid pixels. In the experiments, ISO-
DATA classification is employed as the unsupervised classifica-
tion method. The algorithm is not very sensitive to the number
of classes. A threshold of 10 is recommended as the maximal
number of classes for most images. The actual number is de-
termined by the classification algorithm. For WCLF, the initial
window size is set to 17 pixels by 17 pixels, the threshold M in
step 2) is set to 30 and the threshold (N in step 5) is set to half
of the reflectance value of the center pixel.

Fig. 5(a) shows one of the tested Aqua MODIS images (true
color composite band 1, band 4, band 3), ac-
quired on January 18, 2009, over southern China. The original
black stripes covering the band 6 image are shown in Fig. 5(b).
Fig. 5(c) shows that the pixels are classified into five classes.
Fig. 5(d)–(f) are the output images recovered by the GF, WCGF,
and WCLF methods, respectively. In Fig. 5(d), there are obvious
stripes and artifacts. This result proved that when the image con-
tains complex terrain, it is difficult to develop a reasonable rela-
tion between the two bands using one curve, and the incorpora-
tion of a classification procedure is reasonable. In Fig. 5(e), most
of the recovered pixels match well, but a few stripes still remain.
The proposed WCLF algorithm performed excellently. To facil-
itate detailed visual inspection, a homogeneous region cropped
from Fig. 5(b), (d), (e), and (f) is shown in Fig. 6(a)–(d).

Another experiment was performed on an Aqua MODIS
image acquired on January 16, 2009, over North Korea. The
original image and image resulting from the proposed al-
gorithm are shown in Fig. 7(a) and (b). Fig. 7(c) shows the
downloaded image produced using interpolation based method
by the MODIS team. Obviously, this image loses much detailed
information.

Fig. 5. Sub-images of Aqua MODIS of 500-m pixel resolution acquired on
January 18, 2009, over southern China. (a) True color composite � � band
1, � � band 4, � � band 3, (b) original band 6, (c) the classification result
calculated by bands 2, 5, 7, (d) recovered by GF method, (e) recovered by WCGF
method, and (f) recovered by WCLF method.

The results are quantitatively evaluated using the index of
inverse coefficient of variation (ICV) [7]–[9]. In general, ICV
values are calculated on homogeneous areas within the image.
It can be calculated as follows:

(6)

where refers to the signal response of a homogeneous
surface and is calculated by averaging the pixels within the
window and refers to the noise components estimated
by calculating the standard deviation of the pixels within the
window. In the experiments, three 20 pixels by 20 pixels homo-
geneous regions were selected for evaluation in each image, as
shown in Figs. 5(f) and 7(b). The evaluation results are shown
in Table I. From the ICV perspective, the proposed WCLF
algorithm greatly outperforms the GF and WCGF algorithms.
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Fig. 6. (a)–(d) Detailed homogeneous regions cropped from Fig. 5(b), (d),
(e), and (f).

Fig. 7. Sub-images of Aqua MODIS of 500-m pixel resolution acquired on
January 16, 2009, over North Korea. These images are 400 pixels by 400 pixels.
(a) The original band 6 image, (b) the recovered band 6 image using the pro-
posed WCLF method, and (c) the downloaded image produced using interpola-
tion based method.

The ratio of noise reduction (NR) method [5], [8]–[11] is used
to evaluate the recovered image in the frequency domain. It is
defined by

(7)

Fig. 8. Mean column power spectrum of the whole Aqua MODIS band 6 image
(2708 pixels by 4060 pixels) acquired on January 18, 2009. (a) The original
image, (b) recovered by the GF method, (c) recovered by the WCGF method,
and (d) recovered by the WCLF method.

where is the power of the frequency components produced
by stripes in the original image and for the destriped image.

and can be calculated by

(8)

where is the averaged power spectrum down the
columns of an image with D being the distance from the
origin in Fourier space. Let represent the stripe noise
region of the spectrum. For 500-m pixel resolution data,

.
Table II shows the NR values obtained from the whole image
(2708 pixels by 4060 pixels) of Aqua MODIS acquired on
January 18, 2009. The proposed algorithm obtains the best
evaluation result. Fig. 8 shows the Fourier transforms of
the original and recovered data of different algorithms. The
horizontal axis represents the normalized frequency, and the
vertical axis represents the averaged power spectrum of all
columns. In Fig. 8(b), the stripes are still obviously reflected
in the frequency domain. Fig. 8(c) shows a better scene, but
Fig. 8(d) reveals an even smoother result. The corresponding
NR values are shown in Table II.

To further test the performance of the proposed algorithm,
Terra MODIS band 6 values have been recovered and com-
pared to the original Terra MODIS band 6 values. The Terra data
were acquired on August 1, 2009, over Indonesia, as shown in
Fig. 9(a). Fig. 9(b) is the simulated data, and Fig. 9(c) is the clas-
sification map. Fig. 9(d)–(f) are, respectively, the recovered im-
ages using the GF, WCGF, and WCLF methods. Fig. 10 shows
the reflectances for an image column that crosses an area con-
sisting of cloud, sea, and land, which is shown in Fig. 9(a). Note
that the proposed algorithm recovers the missing data with very
little distortion, even when the scene type changes abruptly.
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TABLE I
ICVSOF THE ORIGINAL AND RECOVERED AQUA MODIS DATA

TABLE II
NOISE REDUCTION RATIOS OF THE ORIGINAL AND RECOVERED

AQUA MODIS DATA

TABLE III
CORRELATION COEFFICIENT, MEAN SQUARE ERROR (MSE), AND AVERAGE

RELATIVE ERROR (ARE) OF THE GF, THE WCGF, AND THE

PROPOSED WCLF OUTPUT IMAGES

Fig. 11 shows the scatter plots between the original Terra
MODIS band 6 reflectances and the recovered band 6 re-
flectance. Ideally, all the points should be spread over the 45
degree line. Compared to Fig. 11(a) and (b), (c) shows the
closest agreement. Moreover, we can recognize that the points

in Fig. 11(a) and (b) are obviously scattered into two main
parts, while the points are spread over a continuous range in
Fig. 11(c). This is because the region mainly contains sea and
land. Fig. 11(a) shows that the error would be unacceptable
using the global fitting method. In Fig. 11(b), the reflectances
of the recovered data are discontinuous, which means that
the WCGF cannot recover the transitional pixels very well.
Fig. 11(c) shows that the WCLF can cope with this problem
much better.

The correlation coefficient (CC), mean square error (MSE),
and average relative error (ARE) between the original Terra
band 6 and the recovered band 6 reflectances (shown in Fig. 9)
are listed in Table III. The proposed method shows satisfactory
results. It should be noted that the Terra MODIS bands 5 and
7 were contaminated by obvious stripe noise, which does not
appear in Aqua MODIS bands 5 and 7, so the actual accuracy
would be even better.

V. CONCLUSION

This paper presents a method to recover Aqua MODIS band
6 reflectances using within-class local fitting. Compared to pre-
vious algorithms, the proposed method incorporates scene types
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Fig. 9. Sub-images of Terra MODIS of 500-m pixel resolution acquired on
August 1, 2009, over Indonesia. These images are 400 pixels by 400 pixels.
(a) Original band 6 image, (b) simulated Terra MODIS band 6, (c) the classifi-
cation result calculated by bands 2, 5, and 7, (d) the band 6 image recovered by
the GF method, (e) recovered by the WCGF method, and (f) recovered by the
WCLF method.

Fig. 10. Reflectances for the image column shown in Fig. 9(a), (d), (e) and (f).

and band spectral characteristics. The method has been tested
using both real and simulated data. Some indices, such as the

Fig. 11. Scatter plots between the original and recovered Terra MODIS band 6
reflectance data shown in Fig. 8. (a) GF method, (b) WCGF method, and (c) the
proposed WCLF method.

inverse coefficient of variation, ratio of noise reduction, corre-
lation coefficient, mean square error and average relative error,
are employed for quantitative evaluation. All the experimental
results demonstrate that the proposed recovery algorithm per-
forms well. Further work can potentially expand the method to
incorporate a fast implemention strategy.
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