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Abstract— Because of malfunction or noise in 15 out of the
20 detectors, band 6 (1.628–1.652 µm) of the Moderate Resolution
Imaging Spectroradiometer (MODIS) sensor aboard the Aqua
satellite contains large areas of dead pixel stripes. Therefore,
the corresponding high-level products of MODIS are corrupted
by this periodic phenomenon. This paper proposes an improved
Bayesian dictionary learning algorithm based on the burgeoning
compressed sensing theory to solve this problem. Compared with
other state-of-the-art methods, the proposed method can adap-
tively exploit the spectral relations of band 6 and other spectra.
The performance of the proposed method is demonstrated by
experiments on both simulated Terra and real Aqua images.

Index Terms— Aqua Moderate Resolution Imaging Spectro-
radiometer (MODIS), band 6, Bayesian dictionary learning,
compressed sensing (CS), image inpainting.

I. INTRODUCTION

THE Moderate Resolution Imaging Spectroradiometer
(MODIS) sensor aboard the Terra and Aqua satellites is a

flagship of the primary sensors of the earth observation system
project of National Aeronautics and Space Administration,
with the former launched in December 1999 and the latter in
May 2002. Moreover, the Terra satellite orbits the earth from
north-to-south (descending), passing the equator at 10:30 A.M.
local time, whereas the Aqua satellite passes in the opposite
direction (ascending) over the equator at 1:30 P.M. zone time.
As a result, they are making consecutive and compensative
morning and afternoon observations of the land, ocean, and
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lower atmosphere as their respective launches. Each MODIS
sensor, on both the Terra and Aqua satellites, senses the
earth’s surface by 36 spectral bands covering the wavelength
from 0.415 (visible spectrum) to 14.235 μm [infrared (IR)
spectrum] at three different nadir spatial resolutions: 250
(bands 1–2), 500 (bands 3–7), and 1000 m (bands 8–36) [1].
The bands of 250, 500, and 1000 m resolution have 40, 20,
and 10 detectors per band, respectively [2].

Specifically, 15 of the 20 detectors of band 6
(1.628–1.652 μm) of the Aqua MODIS sensor are out
of working as it was launched on May 4, 2002, meaning that
their data are periodically missing or are so noisy as to be con-
sidered unusable [3]. However, MODIS band 6 is an important
band that is used in various MODIS products and applications,
including aerosol products, the normalized difference snow
index, determination of cloud overlap, forest biomass
estimation, and canopy water stress [1]. Recently, there are
several research projects investigating this ongoing problem,
the purpose of which is to recover the incomplete data. In
addition, it is revealed that spectral correlation exists between
Aqua MODIS band 6 and the other bands. Rakwatin et al. [1]
proposed histogram matching, which corrects the detector-to-
detector striping of the functional detectors, and local least
squares fitting, which restores the missing data of the nonfunc-
tional detectors according to the relationship between Aqua
MODIS bands 6 and 7. Similarly, Shen et al. [4] proposed an
algorithm called within-class local fitting (WCLF), based on
the aforementioned two bands. Wang et al. [2] retrieved Aqua
MODIS band 6 using another band, based on the relevance
in Terra MODIS. However, these methods mainly exploit the
relationships between bands 6 and 7, with the other spectral
relations not being made use of. To obtain more information,
Gladcova et al. [3] developed a new quantitative image
restoration model utilizing the relationships between all seven
bands of the 500-m resolution granules and implemented the
recovery using multilinear regression. Above methods are
based on the establishment of explicit relations between band 6
and the other bands.

In the digital image processing field, the process of retriev-
ing the missing data in an image is known as image inpaint-
ing [5]. Up to now, many algorithms are used, such as
interpolation [6], [7], partial differential equation [8], [9], total
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variation [10]–[12], texture synthesis [9], [13], and the Huber–
Markov method [14], [15]. These algorithms are appropriate
for the inpainting of small areas, but for large areas such
as Aqua MODIS band 6, they are not so suitable. Happily,
these deficiencies can be eliminated by virtue of the new
compressed sensing (CS) theory. This indicates that a sparse
signal under some transform domain or compressible signal
can be approximately reconstructed from just a handful of
incomplete information. Considering its powerful handling
capacity, CS theory has come into use for remote sensing
image processing, e.g., image fusion [16], [17], classifica-
tion [18], [19], and unmixing [20], [21]. The CS and/or
sparse image representation are then incorporated into image
inpainting, in [22]–[24].

In this paper, we propose adaptive spectrum-weighted sparse
Bayesian dictionary learning to effectively recover the Aqua
MODIS band 6. In the CS framework, the latent spectral corre-
lations between different spectral bands are utilized adaptively
by the use of a beta process factor analysis (BPFA). The out-
come is pleasing, on the premise of some mature image priors.

The rest of this paper is organized as follows. In Section II
we survey the emerging and booming information sampling
approach of CS theory; both the fertile image priors and the
adaptive recovery model are discussed in succession. This is
followed by the retrieval experiments in Section III, and the
corresponding conclusions are summarized in Section IV.

II. RECOVERY METHOD

In the last decade, a great deal of effort has gone into the
development of image inpainting. However, the majority of
the recovery algorithms are focused on relatively ordinary or
small-area information losing patterns, such as spots, stripes or
random dead pixels. On the other hand, in view of the large-
area periodic dead pixel phenomenon in the Aqua MODIS
band 6, a few scholars have pioneered the reconstitution of the
missing data based on the relationship between bands 6 and 7
(see [1], [2], [4]). However, the relationships between band 6
and the other bands are not exploited. This is until the recent
birth of sparse representation and CS, both of which provide a
possible approach to the previous problem. The former lays a
solid theoretical foundation, and the latter solves many applied
problems. Individually, Bayesian dictionary learning is a kind
of sparse representation, which needs some proper prior image
information. It happens that the spectral correlations can be
employed by way of priors.

A. CS Theory

It is well-known that the traditional Nyquist–Shannon sam-
pling theorem specifies that to avoid losing information when
capturing a signal, one must sample at least two times faster
than the signal bandwidth [25]. Nevertheless, the information
we gain from the physical world is often abundantly redun-
dant for many reasons. For example, the image data have
many correlated forms, in general, and each form is often
sensed by all kinds of sensors [26]. Is there any approach
that could break through the bottleneck of recovery with
only a few or incomplete measurements? Apparently, the

answer is yes, and it is compressed/compressive sensing or
compressed/compressive sampling that can settle this puzzle,
as described by Donoho [27], Candes and Tao [28], and
Romberg [29] in 2006. This method employs nonadaptive
linear projections that preserve the structure of the signal; the
signal is then reconstructed from these projections using an
optimization process [25], setting off a revolution in signal
processing.

In practice, CS aims to reconstruct a signal with incomplete
and inaccurate measurements acquired by a projection matrix.
Given a signal x ∈ R

N expressed as

x = �α (1)

where � ∈ R
N×N is some orthogonal basis, and α ∈ R

N is
the basis coefficient. If α satisfies

‖α‖0 = K � N (2)

where ‖·‖0 is a zero norm, which means that the number of
nonzero elements, x , can be called K-sparse to the basis � .
Then, on the condition of measurement matrix � ∈ R

M×N

and M < N , there is a CS measurement y ∈ R
M

y = �x . (3)

Substituting (1) for (3)

y = ��α. (4)

Equation (4) is the CS prototype, and by means of the sparse
property, the ill-posed (4) can be solved by

min ‖α‖0 s.t. y = ��α. (5)

Additionally, when �� accords with a constraint factor
called the restricted isometry property [29], (5) is equivalent
to

min ‖α‖1 s.t. y = ��α (6)

where ‖·‖1 is the l1 norm, implying the elements sum of
absolute value for a vector. Until now, there are many recon-
struction algorithms for CS, such as BP [30], OMP [31],
ROMP [32], SP [33], CoSaMP [34], and so on.

B. Image Priors

CS indicates that a sparse signal under some transform
domain or compressible signal can be approximately recon-
structed from just a handful of incomplete information. Specif-
ically, the transform domain amounts to a sparse basis,
for which the course of looking is also cast as dictio-
nary learning [26], [35]–[37]. The dictionary, of which the
components are named atoms, is an overcomplete database,
which can express the signal as a linear combination of
a small number of atoms. In addition, dictionary learning
has developed into a branch known as Bayesian dictio-
nary learning [38]. Furthermore, it is recently considered as
a factor analysis problem, with the factor loadings corre-
sponding to the dictionary atoms [23]. Suppose an image
X ∈ R

m×n×b consists of a series of partially overlapping
patches

{
Xi ∈ R

m1×n1×b
}

i=1,...,N and is multi-spectral or
hyperspectral, then the patches will be unwrapped into vectors
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{
xi ∈ R

P
}

i=1,...,N and P = m1 × n1 × b, whereupon, the ith
observation yi ∈ R

P

yi = �i ◦ xi (7)

where the signature (◦) is the point-wise product of the ele-
ments, and �i ∈ R

P is the position matrix marking in which
data needs recovering. Subsequently, the sparse representation
of xi is as follows:

xi = Dαi + εi (8)

where D ∈ R
P×K is the overcomplete dictionary [equal to

the product of � and � in (4)], with αi ∈ R
K signifying the

coefficient of the dictionary, and εi ∈ R
P is the additive noise

and model errors.
Priors are necessary in a Bayesian framework, and the

beta-Bernoulli process provides a very convenient prior for
the sparse coefficient, according to [23], [39], and [40]. This
process, which refers to a combination of a beta distribution
and a Bernoulli one, is just a pair of conjugate priors. The
dictionary coefficient αi is used instead of (9) to better exploit
the sparsity

αi = zi ◦ si (9)

where the sign (◦) is the same as (7). zi ∈ {0, 1}K is a binary
vector implicating the K columns of D that are touched upon
the presentation of xi , and si ∈ R

K is the sparse coefficient,
just like αi , while zi is absent. The concatenate model of
(8) and (9) is the derivation of infinite sparse factor analysis
[41], more detailed proofs are described in [41]. Conceptually,
it is a nonparametric Bayesian extension of independent com-
ponents analysis. Initially, the Gaussian prior is imposed on si

as
si ∼ N(0, γ −1

s IK ) (10)

where IK is a K × K identity matrix, and γs is the hyperpa-
rameter obeying another hyperprior distribution

γs ∼ Gamma(a, b) (11)

where a and b are the parameters of the Gamma distribution,
and (10) and (11) are also a pair of conjugate priors which
can be interpreted as a “distribution over distribution” [42].

Accordingly, αi manifests more sparseness with zi . zi is
a binary vector acting as a mask on si and further on D,
which plays the part in specifying whether the hidden sources
si and D are active in the corresponding position. Under
this circumstance, the sparseness of the dictionary coefficients
is manifested appropriately. Particularly, zi is placed on the
Bernoulli priors

zi ∼
K∏

k=1

Bernoulli(πk) (12)

where the notation 	 does not denote the meaning of the
product, as is the usual case, but every element of zi , which
has K elements in all, obeys a different Bernoulli distribution,
and the argument πk has a beta prior

π ∼
K∏

k=1

Beta

(
c0

K
,

d(K − 1)

K

)
(13)

where c0 and d are the arguments of the beta distribution.
The alliance of (12) and (13) is the above-mentioned beta-
Bernoulli prior, as described in [23].

Similarly, D is imposed on some other prior by making its
atoms dk Gaussian distributed

dk ∼ N(0, P−1 IP ) (14)

where dk ∈ R
P is nothing but one column of the dictionary D,

and IP is a P × P identity matrix. In the process of dictionary
learning, dk is adaptively updated via Gibbs sampling accord-
ing to the processing data itself [23]. The active sets are all
drawn from the shared probability, which contributes to the
encouraged consistent use of dictionary atoms. In addition,
with the help of zi , dk could be used repeatedly for the
representation of xi , it is a very advantage when overlapped
patches of images are processed.

The aforementioned image prior (14) can achieve good
recovery effects to some extent; however, the spectral relation-
ships between Aqua MODIS band 6 and the other bands are
not taken advantage adequately. To remedy this imperfection,
we propose an adaptive spectrum-weighted method. For this
model, the prior of the dictionary is modified in accordance
with (15), as follows:

dk ∼ N(0, (L Pw)−1 IP ) (15)

where L is a constant that is used to adjust the dictionary
atom. It represents the joint correlation property of atoms that
is a large deviation bound for sums of random variables [31].
To some extent, L can narrow the gaps of the elements of
one atom so that the representation of the processed image
approximates more to the ideal one. However, it does not
allow for the latent band correlation. Therefore, w, a spectral
weight which trades off the real correlation, is introduced. In
this hierarchical system, the more correlated the two spectral
bands are, the heavier the weight is. Nowadays, there are
many indicators that can measure the relationship between
two images, such as the correlation coefficient (CC), universal
image quality index [43], and the structural similarity (SSIM)
[44] index, and so on. Through a large number of trials
over many granules of different types and seasons, the SSIM
index evaluates the spectral correlation most accurately in
our inpainting case. That is, the spectral complementarity and
correlation are considered via the band weight of the SSIM
index.

SSIM is a kind of similarity measurement, proposed by
Zhou [44] in 2004, and is composed of three independent
comparisons of luminance, contrast, and structure, as

S(x, y) = f (l(x, y), c(x, y), s(x, y)) (16)

where x and y are two nonnegative image signals, and S(x, y),
l(x, y), c(x, y), and s(x, y) are the SSIM index, luminance,
contrast, and structure function of the two signals, respectively.
For the luminance function

l(x, y) = 2μxμy + C1

μ2
x + μ2

y + C1
(17)

where μx is the mean intensity of x , μy is the mean intensity
of y, and C1 is just a constant. Moreover, as far as the second
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comparison contrast is concerned, it has a similar modality to
(17), and the definition is

c(x, y) = 2σxσy + C2

σ 2
x + σ 2

y + C2
(18)

where σx and σy are the standard deviation of the image
signals x and y, and C2 is another constant. Here, the structure
function is as follows:

s(x, y) = σxy + C3

σxσy + C3
(19)

where C3 is also a constant, and σxy is the covariance of x
and y.

Finally, a combination of the three functions can be
described as another abstract form

S(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ . (20)

α, β, and γ (all positive numbers) are applied to coordinate
the relative importance of the three compositions. When α =
β = γ = 1 and C3 = C2/2, finally, (20) can be substituted by

S(x, y) = (2μxμy + C1)(2σxy + C2)

(μ2
x + μ2

y + C1)(σ 2
x + σ 2

y + C2)
. (21)

Even if the SSIM is a measure that encodes some heuristic
characteristics of the human visual system to produce a quan-
titative measure of perceptual similarity, it can also be thought
of as a similarity measure for comparing any two signals,
because of its symmetry measure [44]. It consists of three
independent components (luminance, contrast and structure)
that measure the similarities from three different aspects. In
other words, this similarity measure can also be considered
as a measure of the spectral structure correlation. Hence, the
SSIM is taken as a spectrally similar weight integrated into
the adaptive recovery model.

In (15), w is a diagonal matrix, of which the elements are
the SSIM of band 6 and the other bands as

wii = Si (22)

where Si is the SSIM index of bands i and 6, and wii is the
diagonal element.

Actually, in Aqua/Terra MODIS L1B products, they all have
only seven bands, which sense the earth’s surface with differ-
ent wavelengths of 0.620–0.670, 0.841–0.876, 0.459–0.479,
0.545–0.565, 1.230–1.250, 1.628–1.652, and 2.105–2.155 μm,
resulting in the reflectance shifting significantly. Just as its
name implies, SSIM measures the similarity of two given
images from the viewpoint of structure. To weaken the influ-
ence of luminance so that the similarities of band 6 and
the other bands are measured more accurately, we undertook
image normalization before SSIM is calculated. In the field
of image processing, there are lots of ways of normalizing,
and we chose a plain and fundamental one: the pixel values
except those of band 6 are added or subtracted by the mean
value difference with band 6.

Finally, an analogical prior to si is appended to the noise
and model errors εi

εi ∼ N(0, γ −1
ε IP). (23)

Here, IP is identical to that in (14). In addition, the prior
of γε has a parallel counterpart of γs

γε ∼ Gamma(e, f ). (24)

C. Adaptive Recovery Model

A significant advantage with the ample hierarchical prior
distributions above is that the posterior update equation in the
Bayesian system is analytical. However, (14) hardly makes use
of the complementary spectral relations, so a new paradigm
(15) is drawn into by the weight of the SSIM index.

To generalize the above formulae, a hierarchical model is
introduced: adaptive BPFA (ABPFA), as shown in

yi = �i ◦ xi

xi = Dαi + εi

αi = zi ◦ si

si ∼ N(0, γ −1
s IK )

dk ∼ N(0, (L Pw)−1 IP)

εi ∼ N(0, γ −1
ε IP ). (25)

Overall, if dk obeys a distribution as (14), substituting for
the counterpart in (25), this model (the others remain the same)
is the primitive BFPA [23] model. Under such a framework,
the inference and solution of this process are implemented via
Gibbs sampling, as described in [23]. The Gaussian priors for
dk and si can provide the model convenience with consecutive
conjugacy in the hierarchical model. The dictionary learning
mode known as online dictionary learning [37], [45] can learn
a redundant dictionary in situ, in which a library of training
images is not necessary, based on the offline mode.

III. RECOVERY EXPERIMENTS

For the purpose of intuitive illustration, we conduct both
simulated and real experiments. The proposed restoring algo-
rithm can be used on both 500- and 1000-m resolution; for
brevity, we just applied it to 500-m images. Initially, we
describe the simulation experiments by the metrics of SSIM,
CC, and peak signal to noise ratio (PSNR), followed by
an analysis of the multifarious factors affecting the recovery
precision. Secondly, the real recovery of Aqua MODIS band 6
is evaluated with the objective metric of noise reduction (NR).
The Aqua/Terra MODIS image data used in the following
experiments are the reflectance (between zero and one), and
are not georectified. They are cropped from the granules
that are downloaded from the NASA L1B product website
(http://ladsweb.nascom.nasa.gov/data/search.html). As is well-
known, for Terra and Aqua MODIS, there are some bands
contaminated by striping noise, such as bands 3, 5, and 7 of
Terra MODIS; fortunately, the type of striping noise is not
complicated. In view of this situation, to mitigate some of the
effects on the proposed method resulting from the stripes, we
removed them by the simple average of the upper and lower
lines of the stripe line.
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(a)

(b) (c)

(d) (e)

Fig. 1. Simulated Terra recoveries (acquired on August 1, 2009), with
size of 400 × 400 × 7. (a) Simulated corruption of Terra MODIS band 6.
(b) HMLLSF recovery. (c) WCLF recovery. (d) BPFA recovery. (e) ABPFA
recovery.

A. Simulation Recovery Experiments

To allow a quantitative evaluation, we first undertook some
simulated recovery experiments. Generally, the Terra MODIS
and Aqua MODIS have analogous design patterns, which
make it possible to evaluate the retrieval method by simulating
the damage to Aqua MODIS band 6 on Terra MODIS band 6.
In our experiments, the degradation of Aqua MODIS band 6
is simulated using the twin Terra MODIS band 6 that does not
have the nonfunctioning problem. To test the effectiveness of
the proposed model, we undertook two simulation experiments
with images acquired on August 1, 2009 (Fig. 1), and on
April 1, 2003 (Fig. 2), respectively, with a subregion of
400 × 400 × 7. The simulated corrupt images of band 6 are
shown in Figs. 1(a) and 2(a). In these two experiments, the
size of the overlapping image patches is 4 × 4 × 7 (the L1B
product of MODIS has seven spectral bands, and the nadir
spatial resolution in all bands is 500 m), so P = 112. K is set
to 256 as usual. Therefore, D is a matrix of 112 × 256. The
other parameters are a = b = e = f = 1 ×10−6, c0 = d = 1,
L = 80, C1 = 1×10−4, and C2 = 9×10−4. Figs. 1 and 2 show
the simulated corruptions and the corresponding recoveries

(a)

(b) (c)

(d) (e)

Fig. 2. Simulated Terra recoveries (acquired on April 1, 2003), with size
of 400 × 400 × 7. (a) Simulated corruption of Terra MODIS band 6.
(b) HMLLSF recovery. (c) WCLF recovery. (d) BPFA recovery. (e) ABPFA
recovery.

by the histogram matching and local least squares fitting
(HMLLSF) [1], WCLF [4], and BPFA [23] methods. However,
from the subjective point of view of a visual assessment, the
recovery differences cannot be determined, and let alone their
advantages and disadvantages.

Therefore, objective quantitative contrasts for the four meth-
ods are made with regard to SSIM, CC, and PSNR. Initially,
the CC of signals/images x and y is calculated by the
following:

CC(x, y) =
∑N

i=1(xi − μx )(yi − μy)√∑N
i=1(xi − μx)2

√∑N
i=1(yi − μy)2

(26)

where μx and μy are the matching mean values.
The PSNR is most commonly used as the measure of the

quality of the reconstruction of lossy codecs. Generally, the
higher it is, the better the quality is. For a double-precision
image, which has pixel values between zero and one, the
PSNR is calculated by

PSNR(x, y) = −10 log10

(
1

N

N∑

i=1

(xi − yi )
2

)

. (27)



SHEN et al.: COMPRESSED SENSING-BASED INPAINTING 899

TABLE I

RECOVERY RESULTS OF TERRA MODIS BAND 6

BY DIFFERENT METHODS

Images Methods SSIM CC PSNR/dB

Fig. 1

HMLLSF 0.98076 0.99281 41.0822

WCLF 0.98221 0.99304 41.1712

BPFA 0.98444 0.99529 42.8943

ABPFA 0.98905 0.99619 43.7922

Fig. 2

HMLLSF 0.98403 0.98248 42.7871

WCLF 0.98491 0.98539 43.4987

BPFA 0.99014 0.98895 44.8417

ABPFA 0.99170 0.99065 45.5613

(a) (b)

(c) (d)

Fig. 3. Scatter plots between simulated and recovered Terra MODIS band
6 in Fig. 1. (a) HMLLSF method. (b) WCLF method. (c) BPFA method.
(d) ABPFA method.

The SSIM, CC, and PSNR values between the Terra MODIS
intact band 6 and the recovered images [Figs. 1(b)–(e) and
2(b)–(e)] are shown in Table I. Compared with the HMLLSF,
WCLF, and BPFA methods, the SSIM, CC, and PSNR values
of the proposed ABPFA method are all clearly improved. In
addition, as far as these evaluation targets go, BPFA is better
than HMLLSF and WCLF. This is because the HMLLSF
and WCLF algorithms exploit the relation of bands 6 and 7
alone, but BPFA utilizes the spectral relations between band 6
and all the other bands. However, the spectral weights are
parallel in the BPFA framework structure, in which the actual
relationships are ignored. Given this imperfection, ABPFA
weighs the spectral correlations adaptively, relying on their
practical significance; therefore, it has the best recovery result.
As a whole, a rough ranking of the inpainting effects, from
worst to best, is as follows: HMLLSF, WCLF, BPFA, and
ABPFA.

To make a more straightforward comparison with these
aforementioned methods, we drew some scatter diagrams.
Fig. 3(a)–(d) shows the scatter plots between the original and
recovered images for Fig. 1(a), using the HMLLSF, WCLF,

(a) (b)

(c) (d)

Fig. 4. Scatter plots between simulated and recovered Terra MODIS band
6 in Fig. 2. (a) HMLLSF method. (b) WCLF method. (c) BPFA method.
(d) ABPFA method.

(a) (b)

Fig. 5. Simulated Terra recoveries (acquired on May 8, 2008), with size
of 400 × 400 × 7. (a) Simulated corruption of Terra MODIS band 6.
(b) ABPFA recovery.

BPFA, and ABPFA methods, respectively. Generally, the
points of HMLLSF and WCLF scatter most discretely, accom-
panied with many false outliers; those of BPFA become thinner
with less discrete points; and ABPFA is the best method
accordingly. The commensurate counterparts for Fig. 2(a) are
shown in Fig. 4. In general, the scatter plots in Figs. 3 and 4
agree with the quantitative evaluation in Table I.

Here, to ensure a comprehensive assessment of the pro-
posed algorithm, we undertook another two similar simulation
experiments. The Terra MODIS images were acquired on
May 8, 2008, and January 1, 2008, respectively, as shown
in Figs. 5 and 6. Identical parameters to those used in the last
experiment are used. From a visual perspective, the band 6
images are perfectly recovered. The quantitative evaluations
of the previous methods are shown in Table II, and it is not
difficult to arrive at the pleasing conclusion that both Tables I
and II confirm that the proposed method outperforms all the
other methods.

We describe the verification experiments undertaken on the
factors making a difference to the accuracy of the proposed
ABPFA method, accompanied with an analysis and discussion.
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(a) (b)

Fig. 6. Simulated Terra recoveries (acquired on January 1, 2008), with
size of 400 × 400 × 7. (a) Simulated corruption of Terra MODIS band 6.
(b) ABPFA recovery.

TABLE II

RECOVERY RESULTS OF TERRA MODIS BAND 6

Images Methods SSIM CC PSNR/dB

Fig. 5

HMLLSF 0.98634 0.99560 44.0449

WCLF 0.98658 0.99623 44.6419

BPFA 0.98873 0.99678 45.4552

ABPFA 0.99071 0.99733 46.2218

Fig. 6

HMLLSF 0.98601 0.97502 45.8223

WCLF 0.98818 0.98455 47.8810

BPFA 0.99027 0.98595 48.2368

ABPFA 0.99083 0.98740 48.6356

TABLE III

RECOVERY RESULTS FOR VALIDATION OF INFLUENCE OF SSIM BEING

CALCULATED BEFORE AND AFTER IMAGE NORMALIZATION

Images Normalization SSIM CC PSNR/dB

Fig. 1
No 0.98744 0.99578 43.3447

Yes 0.98905 0.99619 43.7922

Fig. 2
No 0.99113 0.99008 45.2888

Yes 0.99170 0.99065 45.5613

It is declared in Section II-C that image normalization is of
great significance before SSIM is calculated. The following
verification experiment is performed for Figs. 1(a) and 2(a)
to test this assumption. In this experiment, all the settings are
the same, except for the calculation of SSIM. The recovery
results of the two images by ABPFA with SSIM calculated,
before and after image normalization, are shown in Table III.
The results are better when the SSIMs of band 6 and the
other bands are calculated after image normalization. Because
the reflectance of the seven bands varies widely in intensity,
and SSIM has a close relationship with the intensity, if the
images are not normalized when SSIM is calculated, the band
similarities (mainly referring to the similarities in the image
structure) are measured less precisely. After normalization,
the discrepancies in the intensity of all seven bands will be
weakened, so the similarities in the structure can be strength-
ened accordingly. Ultimately, this way of calculating SSIM
estimates the weights of band similarity more precisely. It is
important that the normalization is just used for the calculation
of SSIM, not for the image retrieval.

(a) (b)

Fig. 7. PSNR and CC vary with different L parameters for Fig. 1
(by ABPFA). (a) PSNR varies with L . (b) CC varies with L .

(a) (b)

Fig. 8. PSNR and CC vary with different L parameters for Fig. 2
(by ABPFA). (a) PSNR varies with L . (b) CC varies with L .

The contributions that the different bands made to the
recovery of band 6 are revealed by the recovery experiments
of Figs. 1(a) and 2(a). Table IV shows the recovery results
with another two bands, using the BPFA and ABPFA methods,
except for the last column, which uses all seven bands. The
SSIM, CC, and PSNR values between the intact and recovered
band 6 are taken as the evaluation indicators. In this table,
“Bands” represents the bands that are utilized to recover
band 6. Whether using BPFA or ABPFA, the differences in
the recoveries with the different bands are all obvious. The
Terra/Aqua MODIS band 6 has a different correlation with
the other bands, such as the visible, near-IR, and middle-IR,
which brings about a direct influence on the recovery effects.
Generally, bands 2, 5, and 7 are more similar than the other
bands in the L1B product, so better results are obtained when
using them, no matter whether BPFA or ABPFA is used.
Therefore, it is important to take the different functions of
the different bands into account. In addition, the outcome of
the recovery using only two bands is not as good as that
using seven bands, because of the reduced amount of available
information.

In (15), L and w are both introduced for the remarkably
important role that they play in the recovery. The importance
of these parameters is investigated in a further verification
experiment. In Table V, we list the recovery results of the
different ways of weighing the band similarities between band
6 and the other bands for Figs. 1(a) and 2(a), and their corre-
sponding counterparts multiplied by parameter L (e.g., 10).
To save time, we used 2 × 2 × 7 image patches here. In
the framework of ABPFA, BPFA amounts to the situation
where the value of L is one and w has all ones (equivalent
weights). L plays an important part in the adjustment of the
joint correlation of the dictionary atoms and w measures the
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TABLE IV

RECOVERY RESULTS FOR VALIDATION OF BAND CONTRIBUTIONS RECOVERED TERRA MODIS BAND 6 BY ANOTHER TWO DIFFERENT BANDS

Images Methods Bands (3, 4, 6) (2, 3, 6) (1, 2, 6) (4, 5, 6) (2, 6, 7) (5, 6, 7) All

Fig. 1

BPFA CC 0.88984 0.93936 0.96615 0.97444 0.98850 0.99081 0.99529

ABPFA 0.90440 0.95336 0.97016 0.97564 0.98895 0.99146 0.99619

BPFA PSNR/dB 28.6457 31.8853 34.3196 35.5218 38.7452 39.9489 42.8943

ABPFA 29.3722 33.0185 34.8076 35.6851 38.9085 40.2509 43.7922

BPFA SSIM 0.87766 0.91808 0.94143 0.94686 0.96184 0.96825 0.98444

ABPFA 0.89371 0.92981 0.94541 0.94856 0.96274 0.97059 0.98905

Fig. 2

BPFA CC 0.79790 0.84611 0.90392 0.93053 0.94696 0.96198 0.98895

ABPFA 0.82589 0.84969 0.90663 0.93341 0.94848 0.96545 0.99065

BPFA PSNR/dB 32.7141 33.7934 35.3074 37.0372 37.5674 39.3397 44.8417

ABPFA 33.3182 33.8926 35.4428 37.2114 37.6934 39.7098 45.5613

BPFA SSIM 0.91927 0.92280 0.93886 0.94902 0.95359 0.96147 0.99014

ABPFA 0.92113 0.92752 0.93887 0.95237 0.95547 0.96666 0.99170

TABLE V

RECOVERY RESULTS FOR VALIDATION OF INFLUENCES OF L AND w

Images Methods L w SSIM CC PSNR/dB

Fig. 1

BPFA 1 1 0.97302 0.99196 40.5931

ABPFA (CC) 1 CC 0.97342 0.99204 40.6360

ABPFA (SSIM) 1 SSIM 0.97483 0.99254 40.9161

BPFA (×10) 10 1 0.98350 0.99513 42.7475

ABPFA (CC ×10) 10 CC 0.98384 0.99527 42.8727

ABPFA (SSIM ×10) 10 SSIM 0.98511 0.99557 43.1549

Fig. 2

BPFA 1 1 0.98186 0.98223 42.7839

ABPFA (CC) 1 CC 0.98205 0.98270 42.9007

ABPFA (SSIM) 1 SSIM 0.98226 0.98321 43.0472

BPFA (×10) 10 1 0.99019 0.98954 45.0676

ABPFA (CC ×10) 10 CC 0.99023 0.98973 45.1533

ABPFA (SSIM ×10) 10 SSIM 0.99074 0.98987 45.2009

L and w: the parameters in (25).

latent band similarity. The table shows that, for the same
method with identical w, but with different L (one or ten), the
results with L being ten become much better. This is because
when L has the value of ten, the joint atom correlation is more
suitable, which contributes to the image representation being
closer to the perfect situation. Additionally, it also shows that
no matter whether L = 1 or 10, on the premise that L has the
same value, the recovery effect becomes better according to
the order of BPFA, ABPFA (CC), and ABPFA (SSIM). This
illustrates that SSIM weighs the band similarity more precisely
than CC. Here, we just take SSIM as a relative weight to
measure the band similarity between band 6 and the other
bands. It is more important that the result is encouraging. In
terms of the reflectance used in our experiments, we set SSIM
as a relative indicator, not an absolute one, trading off the
actual importance, so it does not settle out the physical terms
from the perceptual terms.

Figs. 7 and 8 show the PSNR and CC values between the
image recovered (by ABPFA) and the original band 6 images
(for Figs. 1 and 2, respectively) varying with different values
of the parameter L [see (15)]. In both Figs. 7 and 8, L ranges
from 5 to 95, with an increment of five, except for the initial
value one, which is equivalent to the occasion in which there is
no L in (15). Broadly speaking, Fig. 8(a) and (b) have the same

variation tendency; two small peaks at the horizontal ordinates
of 20 and 80, and a minimum at the horizontal ordinate of
one. Analytically, from previous section, L plays an important
role in the joint correlation of the dictionary atoms. When
L = 1, it does not affect the correlation, so the recovery
outcome is the worst. In contrast, when it works, the result
becomes better. In addition, if L is larger than ten and increases
in a certain range, its capability of adjusting the correlation is
strong, and changes little, as shown in Figs. 7 and 8. After a
great number of tests, we discovered that L is connected to
the information loss type of the diverse sensor types. In other
words, the different types of information loss hold different
values of L when the joint correlation is optimally considered.
Generally, for Aqua MODIS band 6, the correlation is optimal
whereas L has a value of between 20 and 80.

As with most other image block processing methods, the
inpainting result by ABPFA is affected by the patch size. In
Figs. 1 and 2, we only chose one popular kind of patch size
at 4 × 4 × 7. In general, the program takes a multiple of the
running time as the proportionate relation of the patch size.
Overall, we adopted 4 × 4 × 7 patches in all the experiments,
except in Tables V and VI, in which the objective is to validate
the influence of the different patch sizes on the result of the
inpainting. Similarly, in Table VI (Fig. 9), we took pending
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TABLE VI

RECOVERY RESULTS OF DIFFERENT IMAGE PATCH SIZES

Images Patches 2 × 2 × 7 3 × 3 × 7 4 × 4 × 7 5 × 5 × 7 6 × 6 × 7 7 × 7 × 7 8 × 8 × 7

Fig. 9(a)

SSIM 0.98278 0.98931 0.99418 0.99423 0.99405 0.99379 0.99333

CC 0.98536 0.99221 0.99688 0.99710 0.99701 0.99689 0.99662

PSNR/dB 40.5457 43.3099 47.2768 47.5929 47.4651 47.2924 46.9312

Fig. 9(c)
SSIM 0.99195 0.99233 0.99212 0.99183 0.99102 0.99034 0.98887

CC 0.99099 0.99151 0.99206 0.99180 0.99144 0.99088 0.98994

PSNR/dB 46.1907 46.4702 46.7614 46.6490 46.4479 46.1666 45.7330

Fig. 9(e)

SSIM 0.98409 0.98440 0.98230 0.97927 0.97668 0.97443 0.97086

CC 0.98743 0.98981 0.99002 0.98875 0.98751 0.98722 0.98488

PSNR/dB 41.7321 42.6592 42.7649 42.2533 41.8165 41.7234 40.9937

Fig. 9(g)

SSIM 0.98004 0.98053 0.98063 0.97891 0.97826 0.97671 0.97466

CC 0.97923 0.97977 0.97996 0.97786 0.97710 0.97522 0.97225

PSNR/dB 43.4530 43.5535 43.5904 43.1704 43.0497 42.7209 42.2366

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. Recovery results of four Terra MODIS band 6 images by ABPFA. Images are all 200 × 200 × 7. (a), (c), (e), and (g) are simulated corruption of
four images and (b), (d), (f), and (h) are their matching recoveries, respectively.

images with a size of 200 × 200 × 7 to save time, with the
patch sizes ranging from 2 × 2 × 7 to 8 × 8 × 7. In addition,
the four images have manifold types of feature distribution,
and the discrepancies are great in both their textures and
gray ranges. From the impersonal metric indicators of SSIM,
CC, and PSNR in Table VI, the patch should not be undersized
or oversized. Therefore, on the one hand, if it is too small,
the structural information and spatial correlation are easily
overlooked. On the other hand, redundant information is
introduced by the overlapping blocks with large patch sizes.
For example, the latent relationship is undermined with an
oversized, man-made and segmented neighborhood of image
objects. In Table VI, the recovery results of Fig. 9(a), (c), (e),
and (g) show that the medium sizes of 4×4×7 or 5×5×7 give
first-class effects. In a nutshell, for most of the Terra MODIS
images, the 4 × 4 × 7 patches result in the best recoveries
[e.g., Fig. 9(c), (e), and (g)]. Nonetheless, Fig. 9(a) does not

conform to this rule, with the reason being that its dynamic
range of gray is plain, that is, the pixels are either white or
black (without smooth transition). Accordingly, the optimal
patch size becomes larger (5 × 5 × 7). However, the results of
the 4×4×7 and 5×5×7 patches are only just differentiable.

B. Recovery of Real Aqua MODIS Band 6

In this experiment, real images of Aqua MODIS band 6
are used, shown in Fig. 10(a) (acquired on January 18, 2009)
and Fig. 11(a) (acquired on September 1, 2008). The size of
the Aqua MODIS images is 400 × 400 × 7 (cropped). The
SSIM indexes are calculated by the region of the five detectors
(a 25% in total, the same as the simulated experiments)
that are working well. The other parameters in the ABPFA
approach are the same as in the foregoing simulation recovery
experiments for Terra. Figs. 10 and 11 show the recovery
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(a)

(b) (c)

(d) (e)

Fig. 10. Aqua recoveries (acquired on January 18, 2009), with size of 400 ×
400 × 7. (a) Original Aqua MODIS band 6. (b) HMLLSF recovery. (c) WCLF
recovery. (d) BPFA recovery. (e) ABPFA recovery.

TABLE VII

NR RATIOS OF ORIGINAL AND RECOVERED AQUA MODIS BAND 6 DATA

Images Original HMLLSF WCLF BPFA ABPFA

Fig. 10 1.0000 122.2345 120.9718 126.3384 128.5941

Fig. 11 1.0000 912.1388 784.7355 883.5137 1006.6000

results of the two different Aqua MODIS band 6 images by
the different methods.

Based on the two real experiments, in both Figs. 10 and 11,
in terms of a visual judgment, the reconstruction results
of HMLLSF and WCLF are closer to that of ABPFA.
The reason is that HMLLSF and WCLF are based on
the relation of bands 6 and 7, but BPFA draws support
from the equally spectral weights of all bands, and ABPFA
adaptively sets the weights depending on their real rela-
tive importance. It is important that, in the framework of
ABPFA, the weight of band 7 is the largest (some researchers
have confirmed that the radiative properties of bands 6
and 7 are very similar, as described in [1], [2], and [4]);
although HMLLSF and WCLF only use the correlation
between the two bands, it actually increases the weight of

(a)

(b) (c)

(d) (e)

Fig. 11. Aqua recoveries (acquired on September 1, 2008), with size of
400 × 400 × 7. (a) Original Aqua MODIS band 6. (b) HMLLSF recovery.
(c) WCLF recovery. (d) BPFA recovery. (e) ABPFA recovery.

band 7 to some degree, which is very similar to ABPFA.
Ultimately, the visual effects of HMLLSF, WCLF, and ABPFA
are approximately equal to each other. It is this point that is
neglected by the BPFA results in some dissimilarities. More
intuitively, the inconsistency of HMLLSF and WCLF acts on
our visual subjective feelings, to a greater or lesser degree.

Because of the lack of primary intact image data, the
assessment criteria used in the simulation experiments are not
applicable to the real experiments, so we resorted to evaluating
the recovered images in the frequency domain by the ratio of
NR [4]. The higher the NR is, the more the noise is reduced.
It has the following definition:

NR = N0

N1
(28)

where N0 is the power of the frequency ingredients provided
by the dead pixel stripes in the original image and N1 is the
retrieved image.

The corresponding NR values for Figs. 10 and 11 are shown
in Table VII. Table VII shows that the values of NR for Fig. 11
by the four methods are greater than those of Fig. 10, with
the reason for this being that the other spectral bands are
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(a) (b)

Fig. 12. Mean column power spectrum of original Aqua MODIS band 6
and ABPFA recovery in Fig. 10. (a) Original. (b) ABPFA recovery.

(a) (b)

Fig. 13. Mean column power spectrum of original Aqua MODIS band 6
and ABPFA recovery in Fig. 11. (a) Original. (b) ABPFA recovery.

more correlated with band 6 in Fig. 11. Unlike the simulated
experiments, the HMLLSF method obtains better evaluation
results than the WCLF and BPFA methods in terms of the NR
index. The reason for this is that HMLLSF employs histogram
matching, which contributes to improving the NR values, as
described in [1]. In spite of this, the proposed ABPFA still
results in the highest NR, meaning the most NR, which owes
much to the weight of the band similarities involved in the
handling process.

Figs. 12 and 13 show the Fourier transforms of the original
and inpainted Aqua MODIS data (for Figs. 10 and 11 respec-
tively). The dead pixel stripes are displayed in the frequency
domain. Fortunately, the proposed ABPFA can effectively
remove the frequency pulses caused by the dead pixel stripes.
The results are both fascinating and smoother.

With a subjective evaluation, many different approaches
to the recovery of Aqua MODIS band 6 achieved appealing
results (e.g., WCLF, HMLLSF). However, with an objective
quality metric perspective, this is often not the case as the
latent spectral relations are not being made the most of.
It is this point that is settled by the proposed adaptive
spectrum-weighted sparse Bayesian dictionary learning; there-
fore ABPFA can achieve better recovery results for Aqua
MODIS band 6. Although there is a very wide variance in
reflectance types and the kinds of scenes in MODIS granules,
this does not matter much for the recovery of ABPFA. Through
our experiments, the geographic features are revealed well.
In addition, the method does not introduce significant visual
artifacts. Because the data we process are reflectances, even if
the visual effect is pleasing, the subsequent and quantitative
applications of Aqua MODIS band 6 (e.g., estimation of snow
and cloud cover) are influenced to some degree, fortunately,
for ABPFA, the influence is slight.

IV. CONCLUSION

This paper proposed an algorithm to retrieve the dead
pixel stripes of Aqua MODIS band 6 by an adap-
tive spectrum-weighted sparse Bayesian dictionary learning
method–ABPFA–which was based on the flourishing theory
of CS. The proposed method took the spectral correlations
between band 6 and the other bands into account to weigh
the spectral characteristics more effectively, as confirmed
by the indexes of SSIM, CC, and PSNR in the simulated
data, and NR in the real Aqua MODIS experiments. The
experimental results demonstrated that the proposed approach
performed well. Although the complexity of ABPFA was high,
because of the ever-growing computational capabilities, the
computational cost may become secondary in importance to
the improved performance. On the whole, ABPFA provided
Aqua MODIS band 6 with a competitive method to recover
the detectors’ failure without regard to land cover types and
spectral features. Many subsequent quantitative applications,
such as the calculation of NDSI, the normalized difference
infrared index [46], and aerosol optical depths [47], could
benefit from it. However, for other problems (e.g., saturated
pixels and sun glint), further research was still needed.
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