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a b s t r a c t

Hyperspectral images (HSIs) have a high spectral resolution and ground-object recogni-
tion ability, but inevitably suffer from various factors in the imaging procedure, such as
atmospheric effects, secondary illumination, and the physical limitations, which have a
direct bearing on the visual quality of the images and the accuracy of the subsequent
processing. HSI restoration is therefore a crucial task for improving the precision of the
subsequent products. Currently, patch-based schemes have offered promising results for
the preservation of detailed information and the removal of additive noise. In HSIs, the
information in the spectral dimension is more redundant than the information in the
spatial dimension. We therefore propose a multidimensional hyperspectral nonlocal
model, in which both the correlation of the spectral bands and the similarity of the
spatial structure are considered. In the model, a multidimensional nonlocal total variation
constraint is applied to preserve edge sharpness. Experiments with both synthetic and
real hyperspectral data illustrate that the proposed method can obtain promising results
in HSI restoration.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Hyperspectral images (HSIs) simultaneously provide spa-
tial and spectral information to identify specific materials in
a scene. Unfortunately, during the acquisition procedure of
HSIs, atmospheric effects, secondary illumination, and the
physical limitations of the sensors (such as artifacts, sensor
noise, and dead pixels) degrade the quality of the images [1].
These disturbance factors influence the visual effect of the
HSIs and limit the precision of the subsequent applications,
such as land-surface classification, object identification, and
change detection. To achieve a more accurate estimation, it is
important to overcome these limitations and improve the
quality of the HSIs.

HSI restoration aims at generating a high-quality image
from its degraded version. To date, various HSI restoration
techniques have been proposed. We review the existing
popular HSI restoration methods in the following. One type
of methods is based on the strategy of transform domain
[2–6]. With these methods, the input hyperspectral signals
are converted into signals in another space, such as the
wavelet domain, in which the noise is easily separated from
the signal using the compactness of the true signal. The
traditional wavelet denoising techniques apply a 2D wave-
let transform on each band separately, and thus discard the
spectral correlation information. To improve its perfor-
mance with HSIs, the wavelet transform has been combined
with other spectral band decorrelation methods, such as
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discrete Fourier transform [2] and PCA [3,4]. To exploit the
inter-band correlation and spatial information, other
advanced HSI noise reduction techniques can be accom-
plished through wavelet thresholding [5] in the Bayesian
estimation framework, and in combination with different
prior models [7–10]. However, the biggest drawback of the
wavelet-based methods is that they often generate ringing
artifacts, shown as additional edges or structures [11].

To preserve the spectral feature, multidimensional filter
methods [12–14] have been developed to consider the HSI
as a multidimensional data cube in the spatial domain, to
simultaneously process the spatial and spectral informa-
tion. These methods include the multidimensional Wiener
filter [12], genetic kernel tucker decomposition [15], and
adaptive 3D filtering [16]. However, the classical multi-
dimensional analysis methods can have great difficulty in
distinguishing the signal and noise subspaces, and thus
may introduce some artifacts, and they also tend to over-
smooth the image and lose many textural details [13].

Together with the progress made in remote sensing, to
better preserve the textural details and overcome the
artifacts, regularization-based approaches [17–23] have
emerged in recent years to enhance both the spatial
structure and spectral feature. These approaches recover
the original image by adding a reasonable assumption or
prior knowledge into the observation model. The different
priors can be applied to meet different goals, such as
preserving edges, protecting textural details, and avoiding
artifacts and noise. Yuan et al. [18] employed a spectral–
spatial adaptive total variation (TV) model to adaptively
denoise image in both the spatial and spectral dimension.
Chen and Hu [19] proposed a spatial–spectral domain
mixing prior, in which an edge-preserving prior is used
to preserve the geometrical structure in the spatial
domain, and adaptive spectral weights for the different
materials are constructed in the spectral domain. Qian [20]
used variance-stabilizing transformation to simplify the
mixed-noise into Gaussian noise, and then introduced a
structured sparsity-based model to remove the noise.

In regularization-based algorithms, the HSI recovery is
cast as the inverse problem of recovering the original high-
quality image. A robust estimation for the solution is
obtained relying on some strong image priors, and various
regularization functions have been proposed to further
stabilize the inversion of this ill-posed problem, such as
Tikhonov regularization [24], GaussianMarkov random fields
regularization [25], Huber-MRF regularization [26], TV reg-
ularization [18], nonlocal-based regularization [27,28], and
sparse regularization [21,22]. Among these models, the
nonlocal-based model [29] is a very popular and powerful
tool, which has been widely used in various applications,
such as denoising [30], super-resolution reconstruction [31],
inpainting [32], and shadow removal [33], because of its
good performance in edge and texture preservation.

For HSIs, the simplest way to apply a nonlocal-based
regularization is in a band-by-band manner. However, the
spectral dependency and inter-channel relationship of the
hyperspectral signals will not be fully made use of. Further-
more, owing to the relatively low spatial resolution of HSI
[34], the similarity between patches from only a single band
is insufficient. At the same time, as the noise-intensity in
each band is usually different, the denoising strength
should be adaptively adjusted with the noise-intensity in
each band. Therefore, we propose a spectrally adaptive
multidimensional nonlocal total variation (SAMNLTV)
model by exploiting the high correlation of bands to better
restore a low-quality HSI. The main ideas and contributions
of the proposed approach can be summarized as follows:
(1)
 A multidimensional nonlocal TV regularization is pro-
posed to acquire more redundancy from the highly
correlated bands. Since the intensity of the signal is
contiguous in the highly correlated or neighboring
bands, they are selected to provide more similar
patches in the scheme.
(2)
 A spectrally adaptive method is proposed for the
multidimensional nonlocal TV model. To suppress the
different intensities of noise in the different bands, a
wavelet method is applied to roughly estimate the
strength of noise in the different bands. By making use
of the noise strength, an adaptive regularization para-
meter selection strategy is proposed to improve the
restoration results.
(3)
 A split Bregman iteration algorithm is used to optimize
the proposed HSI restoration model. From the experi-
mental results with both simulated and real data, it is
illustrated that the proposed model produces good
image restoration results.
The rest of this paper is organized as follows. In Section 2,
the proposed multidimensional nonlocal total variation
model is formulated. Section 3 contains the experimental
results and discussion, and Section 4 is the conclusion.

2. The multidimensional nonlocal total variation model

Assuming that we have a HSI UARM1M2�B corrupted by an
additive noise VARM1M2�B. Mathematically, this is denoted as
UARM1M2�B, where the matrix representation of the original
HSI is of a size of M1 �M2 � B, in which M1 represents the
number of samples in a line, M2 stands for the number of
lines in the image, and B denotes the number of bands. The
degradation model for each band can then be defined as

f b ¼ ubþvb ð1Þ
where ubARM1M2 denotes the vector representation of one
band with a size of M1 �M2. fbARM1M2 denotes one band of
the degraded image FARM1M2�B, and the additive noise is
vbARM1M2 , which is added to the bands ub.

Applying the maximum a posteriori probability (MAP)
estimator, the HSI restoration model can be represented as
the following regularized least squares problem [18]:

_
U ¼ arg min

U

XB
b ¼ 1

‖ub�fb‖22þλΦ Uð Þ
( )

ð2Þ

In the cost function, the first term is called the fidelity
term, which denotes the fidelity between the observed
noisy data and the original clear data, while the second
term Φ Uð Þ is an additional regularization function. λ is the
regularization parameter used to balance the tradeoff
between the fidelity term and the regularization term.
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2.1. Related nonlocal framework

The nonlocal methods in image restoration are general-
ized from the Yaroslavsky filter [35], and the nonlocal
means (NLM) [34] filter was firstly proposed to explore the
nonlocal similarity in the image. In comparison with the
pixel-based filter, it allows a more robust similarity, and
the matching patterns are not restricted to be local.

Given the noisy observation fb, the pixel value ub ið Þ in the
clear band ub can be estimated by calculating a weighted
average of the neighboring pixels fb jð Þ, following this formula:

ub ið Þ ¼
X

ia j;8 iANi
w i; jð Þf b jð Þ with 0rw i; jð Þr1

and
X

ia j;8 iANi
w i; jð Þ ¼ 1 ð3Þ

where Ni is the size of searching window. The weights w i; jð Þ
can be calculated as

w i; jð Þ ¼ 1
C ið Þexp �Gan ‖f b iþ Uð Þ� f b jþ Uð Þ‖2� �

=2h2b
n o

ð4Þ

C ið Þ ¼
X

8 iANi
exp �Gan ‖f b iþ Uð Þ� f b jþ Uð Þ‖2� �

=2h2
b

n o
ð5Þ

where Ga is the Gaussian kernel with standard deviation a,
CðiÞ is the normalizing constant, and hb is a filtering parameter
of each band b. The weight is related to the similarity between
the neighboring patches f b iþ Uð Þ and f b jþ Uð Þ with defined
radius n, which is centered at pixel i and j.

With the nonlocal filter idea, several nonlocal-based
regularization models have been developed, in which the
most typical one is the nonlocal total variation (NLTV)
model [36]. For a given point i, j represents the point in the
searching neighborhood window around i, and the weight
w i; jð Þ is assumed to be symmetric. We define

Nonlocal gradient: ∇wub i; jð Þ ¼ ub jð Þ�ub ið Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w i; jð Þ

p
ð6Þ

The nonlocal total variation:

ΦNLTV ubð Þ ¼
XM1M2

i ¼ 1

∇wub ið Þ
�� ��

¼
XM1M2

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNi

jANi

ub ið Þ�ub jð Þð Þ2w i; jð Þ
vuut ð7Þ

The gradient measure of NLTV between point i and j is
computed with

ffiffiffiffiffiffiffiffiffiffiffiffiffi
w i; jð Þ

p
based on patches. With considera-

tion of the geometrical configuration, the weight measure
based on patch distances is robust to noise.

However, recovering hyperspectral data band by band
in (7) cannot fully exploit the high correlation between
spectral bands, and generates spectral distortion in the
recovered HSI. As a result, inspired by color TV regulariza-
tion [37], Cheng et al. [38] presented a multichannel NLTV
(McNLTV) regularization by coupling the channels in a
multichannel image.

ΦMcNLTV Uð Þ ¼
XM1M2

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXB
b ¼ 1

∇wub ið Þ
�� ��2

vuut

¼
XM1M2

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXB
b ¼ 1

XNi

jANi

ub ið Þ�ub jð Þð Þ2w i; jð Þ
vuut ð8Þ
Although the multichannel NLTV preserves the edge
information by joining all the nonlocal gradients along the
spectral dimension, it is only applied in image inpainting
and does not focus on information redundancy in the
spectral dimension. In this paper, we compute the non-
local gradient simultaneously along the spatial and the
spectral dimensions, and therefore form a three-dim-
ensional nonlocal gradient cube to maintain the spectral
characteristics.

2.2. The multidimensional nonlocal total variation model

Nonlocal regularization is mainly concerned with the
similarity of patches. More similar information helps to
better improve the processing result [39]. Finding similar
patches from the noisy image itself is popular because
patches tend to recur within the image. However, the low
repeatability of the texture results in a limited perfor-
mance for this approach with regard to images of low
spatial resolution. External clean natural image patches
have also been proposed as another source of similar
patches [40,41]. Targeted external image databases were
effectively applied to denoise images by means of group
sparsity and localized priors in [40]. Recently, external
databases were also demonstrated to be able to recover
patches with edges and texture better than internal
databases [41]. HSIs usually have a low spatial resolution
and high spectral resolution. Although patches from only
one band may be insufficient as a result of the low spatial
resolution, the highly correlated bands manifest similar
image patterns. Meanwhile, the highly correlated bands
with low noise-intensity can give clean patches to pre-
serve the details of the image, in the same way as external
databases. Here, we assume that the patches from highly
correlated bands offer extra redundant information,
instead of only finding the patches from one band. To
verify the assumption, the distribution of similar patches
in the current band to be restored, and its highly correlated
bands, is plotted in Fig. 1. Here, it is clear that the highly
correlated bands are able to obtain the same number of
similar patches as the current band, and even produce
more similar patches than the current band. It is con-
firmed that local patches from the highly correlated bands
have a similar structure.

Therefore, differing from single-band NLTV, we inte-
grate the similarity of the spectral band into the nonlocal
TV model. The weights associated with the multiple bands
are then computed with the distance between the patch in
the current band and the patch in the structurally similar
band, as written in (9):

w i; b; j; dð Þ ¼
1

C i;bð Þexp �Gan ‖fb iþ Uð Þ� fb jþ Uð Þ‖2ð Þ
2h2b

� �
; if b¼ d; jANb

i

1
C i;bð Þexp �Gan ‖fb iþ Uð Þ� fd jþ Uð Þ‖2ð Þ

2h2b

� �
; otherwise; jANd

i

8>>><
>>>:

ð9Þ

C i; bð Þ ¼
XΩi

jAΩi

exp �Gan ‖fb iþ Uð Þ�fd jþ Uð Þ‖2� �
2h2b

( )
; dANSb

ð10Þ
where w i; b; j; dð Þ represents the Euclidean distance weight
between two patches from the selected b and d bands.
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Fig. 1. Percentages of similar patches from three bands.

Current band b Selected similar band dRecord Spectral Position of Red Region
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Fig. 2. The searching scheme of the proposed multidimensional nonlocal TV model. “A” denotes the current patch f b iþ Uð Þ, and “B” denotes the searched
patch fd jþ Uð Þ. For given patches fb iþ Uð Þ in band b, every similar pixel neighborhood fd jþ Uð Þ in the structurally similar band is given a weight w i; b; j; dð Þ.
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i denotes the spatial coordinate of band b, and j denotes the
spatial coordinate of band d. NSb denotes the set of all the
selected bands for the current bth band. The set contains the
current bth band and these similar bands. We define f b iþ Uð Þ
as the neighboring patches centered at pixel i with a size of
n� n in the bth band. The searched patch fd jþ Uð Þ stands the
patch at pixel j with a size of n� n in the dth band. Nd

i is the
searching neighborhood window in the dth band, and Ωi is

the union of all Nd
i

n o
dANSb

sets. The normalization factor

C i; bð Þ is the sum of the weights of current band b. Further-
more, the bandwidth hb controls the softness of the results.
Usually, the bandwidth hb is chosen as the standard deviation
of noise added [34]. For the bands with high-intensity noise,
hb is set to be a larger value. Conversely, hb is set to be a
smaller value for low-intensity noise.

Owing to numerous and continuous spectral bands, HSI
is firstly divided into many groups. For a clear HSI, these
bands with high value of correlation coefficient are
assigned to a group. However, in the real noising situation,
the correlation coefficients are usually affected by noise.
Some bands which should be cross-correlation show the
low correlation after corrupted by noise. For this case, we
selected the adjacent bands around it within 10 bands
range as the highly correlated bands.

For those bands in the same group, we suppose that the
patches from the same spatial coordinates (i, j) of different
spectral bands should be similar in spatial structure. With
less impact of noise, the low-noise band can obtain the
optimal weight value and position of the similar patches.
Therefore, we can find a batch of more accurate spatial
coordinates of similar patches for each group by introdu-
cing a low-noise “indicative band”. For each group, the
“indicative band” is the lowest-noise band in the current
group by the estimated noise-intensity, and is used to
choose and record the accurate position of the similar
patches. The recorded coordinates are used to extract the
similar patches from the selected bands. The process of
searching the similar patches in the multidimensional
nonlocal TV is described in Fig. 2.

Using the multidimensional nonlocal algorithm to esti-
mate the value of ub ið Þ, the function is expressed as

ub ið Þ ¼
X

8 jAΩi
w i; b; j; dð Þf d jð Þ ; Ωi ¼ [ Nd

i

n o
dANSb

ð11Þ

where f d jð Þ is the value of pixel j in the dth band of the
corrupted (noisy or contaminated) HSI.

Combining the search mechanism of the multidimen-
sional nonlocal model with the computation of the gra-
dient, the multidimensional nonlocal gradient is defined as

∇Mwub i; b; j; dð Þ ¼ ud jð Þ�ub ið Þð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w i; b; j; dð Þ

p
; dANSb ð12Þ

where ∇Mwub i; b; j; dð Þ is defined as the vector of all the
partial derivatives about i in the current bth band, ub ið Þ and
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ud jð Þ represent the pixel in the current band and the selected
band, respectively. When d¼ b, the selected band is equal to
the current band, and the nonlocal gradient is analogous to
(6), in which the nonlocal gradient is only computed in the
spatial domain. When dab, the nonlocal gradient is com-
puted with the current bth band and the selected dth band,
in both the spatial and spectral dimensions.

For HSIs, the multidimensional nonlocal gradient con-
sists of the spatial dimension and the spectral dimension.
The gradient of the spectral dimension preserves the
continuity of signals in the spectrum, and the more similar
structural patches can be obtained in the spectral domain
because of the high spectral resolution.

Using the multidimensional nonlocal gradient, the
multidimensional nonlocal TV (MNLTV) is shown as

Φ Uð Þ ¼
XB
b ¼ 1

XM1M2

i ¼ 1

∇Mwub ið Þ
�� ��

¼
XB
b ¼ 1

XM1M2

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
dANS

q X
jANd

i
ub ið Þ�ud jð Þð Þ2w i; b; j; dð Þ

ð13Þ
Then, in conjunction with the proposed MNLTV, we pre-
sent the following energy minimization problem to
address the MNLTV-based model for HSIs:

_
U ¼ arg min

U

XB
b ¼ 1

‖ub� f b‖22þ
XB
b ¼ 1

λb
XM1M2

i ¼ 1

∇Mwub ið Þ
�� ��( )

ð14Þ
where the parameter λ¼ ½λ1;…; λb;…; λB� controls the
tradeoff between the nonlocal regularization term and
the other terms in the objective function, which also
means that in different bands, the regularization strength
should be different.

2.3. Spectral adaptation for multidimensional nonlocal TV

As noise usually appears in different distributions in
different bands, each band should be treated with a
different degree of penalty; that is to say, the regulariza-
tion parameter λb should be adaptively computed in
different spectral bands with different noise-intensities.
For example, for the high-noise bands, a high value of
parameter λb should be used to reduce the noise. Con-
versely, a low value of parameter λb is needed for the low-
noise bands. To reduce the cost of manual selection, it is
crucial to define an adaptive parameter for the different
noise strengths.

Firstly, to adjust the regularization parameter, the coeffi-
cient of the highest frequency wavelet sub-band HHsf gJ�1

s ¼ 1
can be used to estimate the intensity of the noise [42].

_σ ¼
Median FHHS

� 	J�1
s ¼ 1


 �
0:6745

; FHHS

� 	J�1
s ¼ 1Asubband HHsf gJ�1

s ¼ 1

ð15Þ
where FHHS

� 	J�1
s ¼ 1 denotes the diagonal detail coefficient

matrix.
Next, with the estimated noise standard deviation_σb for

each band, we apply them to set the different regularization
parameters λb, with λbAλ. To treat the different noise level
bands with different denoising strengths, we refer to the
idea used in the SSAHTV model [18], and propose a new
spectrally adaptive strategy for the hyperspectral multi-
dimensional nonlocal TV model in the following:

_
U ¼ arg min

U

XB
b ¼ 1

‖ub� f b‖22þ
XB
b ¼ 1

λb
XM1M2

i ¼ 1

∇Mwub ið Þ
�� ��( )

;

ð16Þ

λb ¼
τ ∇Mwub

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPB
b ¼ 1 ∇Mwub

�� ��2q ð17Þ

where τ is a constant parameter. In (16), the estimated noise
standard deviation σb is related to ∇Mwub

�� ��, because hb ¼ 2σb.
According to Yuan et al. [18], the value of the TV model is

related to the intensity of the noise and can adaptively control
the strength of the denoising. Therefore, we believe that the
nonlocal TV can also be regarded as an index that reflects the
noise-intensity. We can further keep the anomaly of the
weights caused by structural differences to a minimum with
the band grouping. This is because the highly correlated bands
which are grouped into the same cluster have closer gradient
information and minimal structural differences. On the other
hand, the nonlocal gradient in the spectral dimension can
reflect the difference of the spectral noise. Compared to the
simple TV model, nonlocal TV is a more robust index for
reflecting the intensity of the noise, because of the more
stable weight and themore comprehensive gradient direction.
To prove the effectiveness of the spectral adaptation in (17),
the results of the tuning parameters from SAMNLTV and
SSAHTV are discussed in Section 3.
2.4. Model optimization

The SAMNLTV-based recovery model for HSIs is a
reweighted L1 minimization problem, which can be effectively
solved by Bregmanized operator splitting (BOS) [43]. With
auxiliary variable Q added into (16), and ub regarded as the
column vector of U, the algorithm reformulates the problem as

_
U ¼ arg min

U
‖U�F‖2F þ

XB
b ¼ 1

λb
XM1M2

i ¼ 1

Q bi

�� ��( )
; s:t: Q b ¼∇Mwub

ð18Þ

The constrained problem in (18) can be changed into an
unconstrained problem with the Bregman iteration
method, as follows:

_
U ¼ arg min

U
‖U�F‖2F þλ Q

�� ��þμ‖Q�∇MwU�P‖2F
� 	 ð19Þ

where P is also an auxiliary variable. The problem in (19)
can be solved by performing an alternating minimization
processing:

Ukþ1 ¼ arg min
U

‖U�F‖2F þμ‖Q k�∇MwU�Pk‖2F
n o

ð20Þ

Q kþ1 ¼ arg min
Q

λ Q
�� ��þμ‖Q�∇MwU

kþ1�Pk‖2F
n o

ð21Þ
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To solve the subproblem equation in (20) for Ukþ1, the
equation can be solved as

Ukþ1�F

 �

�μdivMw ∇MwU
kþ1þPk�Q k


 �
¼ 0 ð22Þ

For the diagonal linear system (22), one of the most
efficient methods is the Gauss–Seidel method:

Ukþ1 ¼ 1� μΔMw
� ��1 FþμdivMw Pk�Q k


 �h i
ð23Þ

The Q kþ1 subproblem in (21) can be obtained by
applying the shrinkage operator for the vector field at
Table 1
Quantitative evaluation of the denoising results in the simulated experiment.

Method Evaluation index Adaptive Wiener filter NLM

σ ¼ 10 MPSNR 29.40170.0014 30.26
MSSIM 0.84670.0001 0.87
MSA (degree) 5.45770.0008 5.26

σ ¼ 20 MPSNR 26.75370.0016 27.04
MSSIM 0.75570.0001 0.75
MSA (degree) 8.36370.0026 7.16

σ ¼ randð25Þ MPSNR 28.72570.0011 30.06
MSSIM 0.81670.0001 0.84
MSA (degree) 6.73170.0015 6.16

σspectra ¼ Gauð150;15Þ MPSNR 30.32370.0015 47.35
MSSIM 0.86070.0001 0.92
MSA (degree) 5.71270.0024 5.45

Fig. 3. Results of the proposed method with
each point ðb; iÞ, representing the point i in band b.

Q kþ1
bi ¼ shrink ∇MwUkþ1þPk


 �
bi
;

λ
μ

� 

ð24Þ

where shrink p; λ=μ
� �¼ p= p

�� ��� �
max 0; p

�� ���λ=μ
� 	

.
Finally, for the parameter P, it should be updated in

each iteration in the following way:

Pkþ1 ¼ Pkþ∇MwU
kþ1�Q kþ1 ð25Þ

We outline the optimization procedure below.
different values of parameters τ and μ.
SANLTV SSAHTV SAMNLTV

570.0012 30.91270.0021 31.61470.0025 34.04470.0031
970.0001 0.88870.0001 0.90670.0001 0.93570.0001
570.0019 4.61970.0017 4.39070.0013 3.99970.0017

670.0057 27.46070.0033 28.19370.0025 29.16670.0039
470.0002 0.77770.0002 0.81870.0001 0.83270.0001
370.0051 6.73870.0045 7.22370.0032 5.67670.0034

470.0025 31.81270.0033 30.77570.0028 34.22070.0018
670.0001 0.86570.0001 0.87970.0001 0.93170.0000
070.0025 5.62370.0026 5.68470.0016 4.61170.0017

170.0026 50.93270.0037 33.84670.003 51.02570.0037
470.0001 0.93570.001 0.93370.0001 0.95170.0001
070.004 4.94970.0045 4.73470.0031 4.42770.0057
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The Optimization Procedure
(1) Initialization and parameter estimation:
(a) By projecting the noisy image into the wavelet domain, the
diagonal detail coefficient matrix is used to compute an estimated
noise standard deviation σb for each band.

(b) The highly correlated and similar bands are grouped together.
For each group, the spectrally adaptive parameter λ is computed.

(c) Set U0 ¼ F and P¼ 0; Q ¼ 0

(2) While konIter and ‖Ukþ1�Uk‖F Ztolerance do

(a) Solve the Ukþ1 subproblem (20) by the Gauss–Seidel
iteration algorithm.

(b) Solve the Q kþ1 subproblem (21) and update the parameter

Pkþ1. The pixel Q kþ1
bi is obtained by applying the shrinkage

operator for the vector field at each point ðb; iÞ.
ig. 4. Denoising results in simulated experiment Case 1 with noise level σ ¼ 20:
) NLM; (e) SANLTV; (f) SSAHTV; and (g) the proposed method.
(c) Update the spectrally adaptive parameter λkþ1 using the
equation in (17).
End.

3. Experimental results and discussion

3.1. Hyperspectral image denoising

To demonstrate the performance of the proposed
method, both simulated and real data were tested, which
were provided by the Laboratory for Applications of
(a) original band 32; (b) noisy band 32; (c) locally adaptive Wiener filter;



Fig. 5. Denoising results in simulated experiment Case 2 with noise level σ ¼ randð25Þ: (a) original band 1; (b) noisy band 1; (c) locally adaptive Wiener
filter; (d) NLM; (e) SANLTV; (f) SSAHTV; and (g) the proposed method.
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Remote Sensing, Purdue University. For the experiments,
the denoising process involved a search window of 21�21
and a similarity square neighborhood of a size of 9�9
pixels from the noisy image. The denoising results were
assessed by the average of the peak signal-to-noise ratio
(PSNR) index and the average of the structural similarity
index (SSIM) [44], which are abbreviated as MPSNR and
MSSIM, respectively. To evaluate the spectral information
of the results, the average of the spectral angle (MSA) was
also introduced in the synthetic experiment. To obtain the
satisfactory denoising results, the filtering parameter hb
was fixed at σb. By changing manually the parameter τ and
μ, some experiments were used to analyze their variation
tendency in Fig. 3. It is observed that the empirical
parameter τ¼ 10 and μ¼ 1= 7σbð Þ can achieve the higher
MPSNR and the lower MSA in the proposed method.

For the simulated data experiment, a Hyperspectral Digital
Imagery Collection Experiment (HYDICE) airborne hyperspec-
tral dataset from the Washington DC Mall was used, compris-
ing 200 lines and 200 columns. A total of 191 bands of the DC
Mall image were utilized to verify the performance of the
proposed algorithm. Before the simulated process, the gray



Fig. 6. Denoising results in simulated experiment Case 2 with noise level σ ¼ randð25Þ: (a) original band 93; (b) noisy band 93; (c) locally adaptive Wiener
filter; (d) NLM; (e) SANLTV; (f) SSAHTV; and (g) the proposed method.
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values of the HSI were normalized between [0, 255] to
determine the range of the regularization parameter.

In the simulated process, we simulated the addition of
noise in the following three cases: (1) for different bands,
the noise-intensity is equal, and the same distribution of
zero-mean Gaussian noise is added to all the bands; (2) for
different bands, the noise-intensity is different, and differ-
ent variance zero-mean Gaussian noise is added to differ-
ent bands, with the standard deviation being randomly
selected from 0 to 25. In this case, the noise distribution
is represented as σ ¼ randð25Þ; (3) The noise variance σ2

b
added along the spectral axis like a Gaussian shape centers
a middle band B=2
� �

[45] as

σ2
b ¼ β2

exp � b�B=2
� �2

=2η2
n o

PB
b ¼ 1 exp � b�B=2

� �2
=2η2

n o ð26Þ

where the power of the noise is controlled by β and η
behaves like the standard deviation for the Gaussian curve.
In the simulated experiment, β¼ 150, η¼ 15 and noise is
defined as σspectra ¼ Gauðβ;ηÞ.

For each noise-intensity level, the experiments were
undertaken 10 times, and the mean and standard deviation
of the 10 runs are given in Table 1. To verify the performance



Fig. 7. Denoising results in simulated experiment Case 3: (a) original band 93; (b) noisy band 93; (c) locally adaptive Wiener filter; (d) NLM; (e) SANLTV;
(f) SSAHTV; and (g) the proposed method.
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of the proposed SAMNLTV model, it was compared with the
locally adaptive Wiener filter [46], the NLM filter [29], the
spectrally adaptive NLTV model (SANLTV) (in which we
added the spectrally adaptive regularization parameter
described in Section 2 for the NLTV model), and the SSAHTV
model [18].

The contrasting results of the two cases with various
noise levels are given in Table 1 by assessing the mean and
standard deviation of the MPSNR, MSSIM, and MSA values.
To give detailed contrasting results, σ ¼ 20, σ ¼ randð25Þ
and σspectra ¼ Gauð150;15Þ were selected to show the visual
effect. Because of the large number of bands in the HSI, only
a few bands are presented to give the visual results in each
case. Fig. 4 shows the denoising results of the different
methods in simulated Case 1, while Figs. 5 and 6 show the
denoising results by the different methods in simulated
Case 2. Fig. 7 shows the results for the simulated Case 2. In
Figs. 8 and 9, the values of PSNR and SSIM from the
different bands are presented to assess the denoising result
of each band. The partially detail is enlarged to delineate
more clearly the difference.

Compared with the other methods in Table 1, the denois-
ing results of SAMNLTV aremore robust, achieving the highest
values of MPSNR and MSSIM and the lowest values of MSA
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Fig. 9. PSNR and SSIM values of the different denoising approaches in each band of the simulated experiment Case 2 with noise level σ ¼ randð25Þ.

20 40 60 80 100 120 140 160 180 200
22

24

26

28

30

32

100 110 120 130 140 150

25

26

27

28

29

30

Band Number

 Noise
 Wiener
 NLM
 SANLTV
 SSAHTV
 SAMNLTV

PS
N

R

 Noise
 Wiener
 NLM
 SANLTV
 SSAHTV
 SAMNLTV

20 40 60 80 100 120 140 160 180 200
0.3

0.4

0.5

0.6

0.7

0.8

0.9

40 45 50 55 60 65 70 75 80 85 90 95

0.8

Band Number

SS
IM

 Noise
 Wiener
 NLM
 SANLTV
 SSAHTV
 SAMNLTV

 Noise
 Wiener
 NLM
 SANLTV
 SSAHTV
 SAMNLTV

Fig. 8. PSNR and SSIM values of the different denoising approaches in each band of the simulated experiment Case 1 with noise level σ ¼ 20.
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under all the different noise standard deviations. The lower
MSA values demonstrate that the proposed method can
reflect a better spectral fidelity. The low standard deviations
prove that the proposed method can produce more stable
results. In the visual comparison of the results with Case 1
from Fig. 4, it can be seen that the SAMNLTV-based method
can not only suppress the noise more thoroughly than the
other methods, but is also capable of preserving the edge
information and the detailed information. In contrast, the
result of the locally adaptive Wiener filter is oversmooth, and
detailed information is lost. In the NLM-based method, it
imports particles into the texture and produces obvious fake
artifacts in the smooth regions. Compared with the proposed
method, SANLTV generates some discrete error points and
loses some detailed information in the texture, although the
salient edges are preserved. The result using SSAHTV shows
disturbing saw teeth in the edges. The reason for this is that
the spatially adaptive based method retains both the spatial
information and the residual noise.

In the simulated experiment Cases 2 and 3, different
noise levels were added to different bands. In this case, we
grouped the data by wavelength range and estimated the
noise standard deviation. For example, noisy band 1 with
σ ¼ 25, as shown in Fig. 5, was divided into a group from
band 1 to 33. The bands gathered in a group were regarded
to be similar and could offered similar patches. In the
group, the band with the lowest noise-intensity was
regarded as the “indicative band”.

For the high-noise band in the Case 2, Fig. 5 reflects
SSAHTV can preserve the edges well but produces some
residual noise near the edges. Conversely, the proposed
method can thoroughly reduce the noise, and the edges in
the SAMNLTV result are not only sharper but are also tidier
than SSAHTV, and more detailed information is preserved
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Fig. 10. Difference between the noise-free spectrum and the restoration results of (a) pixel (176, 75), which belongs to the grass class; and (b) pixel
(99, 111), which belongs to the road class.

Fig. 11. Denoising results in the real data experiment: (a) noisy band 3; (b) locally adaptive Wiener filter; (c) NLM; (d) SANLTV; (e) SSAHTV; and (f) the
proposed method.
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than with SANLTV. From Fig. 6 with the low-noise level
σ93 ¼ 13, it can be seen that SSAHTV makes the edges
oversmooth, while the discrete detail is retained.

For the Case 3, the visual effects in Fig. 7 demonstrate that
the proposed method preserves the edges better than the
SANLTV and SSAHTV which still leave some residual noises.
As shown in Table 1, the proposed method also obtains the
best performance for the quantitative evaluation. Although
the SANLTV also can gain high values for the spatial
information, the MSA is lower than SSAHTV and the pro-
posed method because the SANLTV ignores the spectral
information.



Fig. 12. Denoising results in the real data experiment: (a) noisy band 110; (b) locally adaptive Wiener filter; (c) NLM; (d) SANLTV; (e) SSAHTV; and (f) the
proposed method.
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The quantitative assessment results are presented in
Figs. 8 and 9. Here, it is clear that the proposed method
achieves higher PSNR and SSIM values than the other four
methods in most of the bands, although there are a few
failures in Case 2. The reason for this can be explained as
follows. In the same group, the spatial information between
bands is similar because of the high band correlation. How-
ever, the spectral noise differences can make the weight
inaccurate when the weight is computed with patches from
different bands. To decrease the error of the weight, the
“indicative band” is introduced to choose the appropriate
patch. In spite of these failures, the proposed method is still
more effective than the other methods, and the advantage is
more obvious than with SSAHTV for the low-noise band.
From the point of view of the spectral analysis, we compared
the spectral difference between the noise-free spectrum and
the restoration results of the pixel to assess the hyperspectral
denoising algorithm. The differences in the spectral signa-
tures of pixel (176, 75) from the grass class and pixel (99, 111)
from the road class are presented in Fig. 10(a) and (b),
respectively. In Fig. 10, the vertical axis of the figures repre-
sents the digital number (DN) values, and the horizontal axis
shows the spectral band number. Here, it is clear that the
curve of the proposed method is smoother than for the other
methods, indicating a lower spectral difference and reduced
loss of spectral information.

In the real data experiment, the Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) Indian Pines test dataset was
used to demonstrate the performance of the proposed
method. The data size is 145�145 pixels, with 220 bands.
Before the denoising processing, the atmospheric and water
absorption bands from bands 150 to 163 were removed from
the original HSI. Therefore, there were only 206 bands used in
this real data experiment. The visual results of bands 3 and
110 are presented in Figs. 11 and 12, respectively, to allow a
comparison, and the combination of bands 3, 110, and 196 is
shown in Fig. 13. From Figs. 11 and 12, it can be clearly seen
that the proposed SAMNLTV algorithm can give better
denoising results than the other four methods. The locally
adaptive Wiener filter fails to suppress the noise and disturbs
the texture of the original image. NLM generates some fake
artifacts and fails to remove the striping noise in band 3.
Although SANLTV can obtain better denoising results than
NLM, the edges appear oversmoothed and a lot of informa-
tion is lost. With the process of the SSAHTV algorithm, the
noise in the smooth areas is suppressed and the edges are
sharp; however, considerable and important detailed infor-
mation is lost. With the proposed SAMNLTV algorithm, it is
apparent that the noise can be effectively removed while the
edges and small textural features are well maintained.
3.2. Hyperspectral image inpainting

To further verify the effectiveness of the proposed
approach, a real Hyperion image was also used. The data
size is 200�200 pixels, with 155 bands. The peculiarity of
this data is that it not only includes random noise, but also



Fig. 13. Denoising results in the real data experiment: (a) noisy bands (196, 110, 3); (b) locally adaptive Wiener filter; (c) NLM; (d) SANLTV; (e) SSAHTV; and
(f) the proposed method.
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contain some deadlines (Figs. 14(a) and 15(a)), Therefore,
we should deal with the denoising and inpainting problem
simultaneously.

For this problem, the degradation model (1) can be
changed to f b ¼ Abubþvb. AbAℝM1M2�M1M2 is the set of
the diagonal matrix with diagonal elements consisting of
0 and 1, in which 0 represents the missing pixels. To verify
that the proposed method can effectively work on both
denoising and inpainting problems, we compared the
results to the ones obtained by the morphological compo-
nent analysis (MCA) method [47], the NLTV inpainting
algorithm [27], and the multichannel NLTV algorithm [41].
As shown in Figs. 14 and 15, the result using the MCA
algorithm has a strong ripple effect. For NLTV and the
multichannel NLTV algorithm, the recovery of stripe noise
and dead pixels is spatially discontinuous. The result of the
NLTV algorithm is not as sharp as the result of the
proposed algorithm. By extracting information from the
other bands, the proposed method can effectively preserve
the edge structures and suppress the irregular particles.
The recovery of the spatial information is also continuous,
with a more convincing visual result. Fig. 16 shows the
spectral signatures of pixel (67, 100). The elliptic region
represents a horizontal dead line. Here, it can be observed
that the proposed method remedies the loss of spectral
information and produces better spectral signatures than
the other restoration methods, when compared with the
original spectrum.
3.3. Discussion

3.3.1. The effectiveness of the spectrally adaptive idea
To verify the effectiveness of the spectrally adaptive

idea in (17), we compared it with the spectrally adaptive
idea in reference [18]. The proposed strategy is denoted as
mode-1, and the idea in [18] is denoted as mode-2, which
has the following expression:

λb� mod e 2 ¼
τ ∇ub

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPB
b ¼ 1 ∇ub

�� ��2q ð27Þ

where ∇ub

�� �� is the norm of the gradient corresponding to
the horizontal and vertical first-order differences.

In the simulation, different noise-intensities were added
in different bands. The performance of the λ values from the
two different regularization problems is described in Fig. 17(a)
and (b). The PSNR values of the three different combinations
(mode-1þMNLTV, mode-2þMNLTV, and SSAHTV) are listed
in Fig. 17(c).

In Fig. 17(a), the lower wave trough shows that for the
low-noise bands, the proposed method can dramatically
decrease the value of λb from the result in [18], so that the
detailed information is also well preserved. In Fig. 17(b),
the enlarged rectangular region shows that for the max-
imum noise level bands, λb in the proposed method is
larger than in [18]. From Fig. 17(c), it can be observed that
the mode-1þMNLTV gives a higher PSNR value for the



Fig. 14. Inpainting results in the real data experiment: (a) original band 2; (b) the MCA algorithm; (c) NLTV; (d) multichannel NLTV; and (e) the proposed
method.
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optimum value of the tuning parameters. Therefore, the
spectrally adaptive λb in the proposed method can satis-
factorily reflect the variation of the noise-intensity in the
denoising process, and it performs better than the adap-
tive regularization parameter in [18].
3.3.2. Sensitivity analysis for “NS” (the number of utilized
bands)

In order to capture more effective information, the struc-
turally similar bands are selected to extract patches which can
provide more similar textures. To analyze the impact of “NS”,
different values of “NS” were defined in the simulated
experiment. From Fig. 18, it is demonstrated that the results
of denoising from the multiple bands achieve higher MPSNR
and MSSIM values than the results from one band. However,
when the number of utilized bands exceeds a certain level, the
result of the accuracy assessment gradually declines, and the
curve is close to a straight line when the number finally
reaches a certain value. The experimental results show that a
band number from three to five bands is enough to achieve
a satisfactory performance.

3.3.3. Sensitivity analysis for the “indicative band”
As described in Fig. 2, to accurately extract the similar

patches from the other bands, and to cut down the time of
the weight calculation, we use the low-noise band as the
“indicative band”. To show its effect on the denoising
performance, we used the simulated experiment as an
example. In the experiment, band 31 from the Washington
DC Mall dataset was used to research the relationship
between the acquired PSNR and SSIM values and the
“indicative band”. In Fig. 19, the “indicative band” with
different noise standard deviations is provided to show the
variation in the results. With band 31 as an explanation of
the experimental operation, the similar bands 30 and 32
were used to offer the redundant information, while band
32 was chosen as the “indicative band”. The noise standard
deviation of band 32 was then changed from 1 to 35. It
can be seen that the PSNR and SSIM values using the



Fig. 15. Inpainting results in the real data experiment: (a) original band 63; (b) the MCA algorithm; (c) NLTV; (d) multichannel NLTV; and (e) the proposed
method.
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“indicative band” decrease gradually with the increase in
the noise-intensity in the “indicative band”. This phenom-
enon can be explained as follows: There is a high correla-
tion between the selected bands. When the “indicative
band” has a lower noise-intensity, the difference between
the recorded position and the ideal position of the original
band is less, so that the result may be closer to the original
image; otherwise, using the “indicative band” with a higher
noise-intensity, the search for similar patches will encoun-
ter a greater deviation as a result of the loss of denoising
precision.
4. Conclusion

In this paper, we have established a multidimensional
nonlocal image restoration scheme, which can simultaneously
consider the similarity from the spatial and spectral dimen-
sions and can adaptively control the denoising strengths for
different bands. Meanwhile, a band selection strategy is pro-
posed to improve the value of the weight, in which the highly
correlated bands are clustered into a group, and we select the
lowest noise-intensity band as the indicative band to obtain
an index for the order of the similar patches. Several
simulated and real data sets were employed in experiments
presented in Section 3 to illustrate that the proposed algo-
rithm can obtain satisfactory results. The proposed method
produces denoising results with the noise effectively sup-
pressed and the edges preserved. The adaptive selection of the
denoising parameter also satisfactorily balances the denoising
strengths of different hyperspectral bands. Furthermore, the
proposed method also works well on the mixed-problem
with both noise and dead pixels.

Although the proposed model works well in the HSI
recovery problem, there are still several research direc-
tions that could improve this work. Because of the com-
plexity of noise, the first issue to be considered is to
construct a more reliable algorithm to estimate the noise
strength for each band. Additionally, the weight between
patches will be computed inaccurately when the two
compared patches are extracted from different bands with
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different noise intensities. To improve the results, we
believe that it will be possible to use an adaptive Gaussian
kernel to compute a precise weight between patches.
Finally, the patch-based methods need more memory
space and computational time. The acceleration of the
algorithm of the proposed model will therefore be one of
the important subjects in the future.
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