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A B S T R A C T   

The deep learning based super-resolution (SR) methods have recently achieved remarkable progress in the 
reconstruction of ideally simulated high-quality remote sensing image datasets. However, due to the large 
variation in image quality caused by the complex degradation factors, their performance decreases dramatically 
on real-world images acquired by different satellite sensors. To this end, we propose a cross-sensor SR framework 
that consists of a cross-sensor degradation modeling strategy for bridging the gap between the images obtained 
by the source and target sensors, and an edge-guided attention-based SR (EGASR) network to promote the 
learning of high-frequency feature representation. Specifically, we build a degradation pool on the low-resolution 
(LR) target sensor to produce a degraded training dataset simulated from the high-resolution (HR) images ob
tained by the source sensor. Furthermore, the EGASR network, which employs the edge-guided residual attention 
block (EGRAB) to introduce implicit edge prior to enhance edge-related information, is embedded in the cross- 
sensor SR framework for reconstructing HR results with sharp details. The proposed method is applied on images 
from the Chinese Gaofen (GF) satellite sensors and compared to several representative SR methods. An ideally 
simulated GF-2 LR/HR image set with only downsampling considered is first used to evaluate the effectiveness of 
the proposed EGASR network. Moreover, GF-2/GF-1 and GF-2/GF-6 cross-sensor SR datasets are constructed by 
synthesizing GF-2 degraded image pairs with the degradation pools estimated from the GF-1 and GF-6 images, 
respectively. The results show that: 1) the proposed EGASR model shows superiority in reconstructing textural 
details and edge features, and achieves the best results among the state-of-art SR methods involved in com
parison; 2) the cross-sensor SR framework significantly promotes the model’s ability to super-resolve real-world 
LR images acquired by the target satellite sensors, e.g., the NIQE values are improved by at least 30% and 34% on 
average with respect to other comparative methods for GF-2/GF-1 and GF-2/GF-6 datasets in the real experi
ments, respectively. Code is available at https://github.com/zhonghangqiu/EGASR.   

1. Introduction 

High-resolution (HR) remote sensing images contain finer textural 
details than low-resolution (LR) images. With the rapid development of 
remote sensing imaging techniques, the resolution of images has been 
boosted in the last decades. However, the extensive demand for fine- 
scale image parsing applications (e.g., change detection (Liu et al., 
2022b), fine-grained classification (Zhu et al., 2021), and semantic 
segmentation (Zheng et al., 2020)) still has a high requirement for the 
spatial resolution of the images. Moreover, the spatial details of remote 
sensing images are often degraded by multiple factors (e.g., optical 

diffraction, blur, and noise) through the acquisition process. Consid
ering the high cost and limitations in improving the imaging equipment, 
algorithmic-based image super-resolution (SR) technology has been a 
popular research topic. 

Image SR is an ill-posed inverse problem that involves recovering an 
HR image from one or multiple LR images, which has now been devel
oped for nearly-four decades. Overall, the SR algorithms can be roughly 
summarized into three main categories, i.e., interpolation-based (Wang 
et al., 2015; Zhang and Wu, 2006), reconstruction-based (Zhang et al., 
2012), and learning-based methods (Dong et al., 2011; Gao et al., 2012; 
Yang et al., 2010). Before the explosion of learning-based SR methods, 
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the effectiveness of single-image SR (SISR) methods was limited without 
the involvement of external information (Molini et al., 2019). In recent 
years, the deep learning based methods (Anwar and Barnes, 2022; Dong 
et al., 2015; Haris et al., 2021) have obtained remarkable performances 
on various public benchmark datasets, and have shown their superiority 
over the traditional SISR methods. State-of-the-art results have been 
obtained with the frequent improvements in network design, such as 
residual learning (He et al., 2016), recursive learning (Tai et al., 2017), 
attention mechanisms (Hu et al., 2020), dense connections (Zhang et al., 
2021), and the recent popular transformer model (Liang et al., 2021; Lu 
et al., 2022). Compared with multi-frame SR methods that require 
sequential input images, SISR is more practical and convenient, espe
cially for remote sensing data. Therefore, we mainly refer to SISR in this 
work. 

Overall, the progress of deep learning techniques has resulted in 
significant improvements in image SR (Lepcha et al., 2023). However, 
compared with natural images, satellite images have some distinctive 
characteristics.  

(1) The images acquired with spaceborne imaging systems are 
generally contaminated with complex degradation factors, such 
as atmospheric scattering and absorption, sensor distortion, and 
system noise. The degradation also differs with the different 
satellite sensors, as well as the acquisition conditions.  

(2) The ground objects with various scales and texture details within 
large-scale image scenes can make it difficult to super-resolve the 
high-frequency information from the LR imagery. Moreover, the 
blurring and noise in satellite images pose an extra challenge for 
the models distinguishing the crucial features with anomalies. 

A variety of deep learning based methods have been proposed to 
address the SISR issues for remote sensing images, and have achieved 
some success (Sdraka et al., 2022; Wang et al., 2022a). Nevertheless, 
these methods rarely pay attention to the variation in image quality 
associated with complex degradation factors (Kang et al., 2022; Lanaras 
et al., 2018; Yin et al., 2022). For example, most methods train the SR 
model on datasets composed of HR images and simulated LR image pairs 
collected by the source sensor, and then apply the trained model to real 
LR images acquired from the target sensor (Pouliot et al., 2018; Xiong 
et al., 2020). However, the LR images in the training set are often 
generated by applying a simple downsampling operator to the corre
sponding HR images. Without full consideration of the varied degrada
tion conditions for different satellite sensors, the effectiveness of the 
trained model can be reduced in practical applications, due to the poor 
generalization capability (Chen et al., 2022; Liu et al., 2022a). In recent 
years, some researchers have begun to explore methods considering 
complicated degradations to solve the real-world remote sensing image 
SR task. Zhang et al. (2022a) proposed an unsupervised SR framework 
aided by multi-degradation, which can handle complex degradation 
schemes existing in remote sensing images. However, the unsupervised 
framework is usually difficult to train and may produce artifacts in some 
cases which are harmful to real-world applications. Dong et al. (2022) 
proposed a degradation model to simulate blur and noise degradation 
for remote sensing images, which considered the domain gap between 
the simulated training data and real-world images. However, they only 
considered simple Gaussian noise and JPEG compression with regard to 
the noise factor in the degradation assumption, which still needs ex
tensions to be more comprehensive for real-world settings. In addition to 
the degradation modeling-based methods, another popular pipeline is to 
collect real-world LR/HR image pairs of the same scene for network 
training. For example, to train the SR model, Galar et al. (2020) con
structed a dataset by collecting Sentinel-2 images and reference Planet 
images with similar spectral characteristics at the same locations. More 
recently, Wang et al. (2021a) introduced a real-world multi-sensor 
dataset consisting of Landsat 8 Operational Land Imager (OLI) and 
Sentinel-2 Multispectral Instrument (MSI) image pairs to train the SR 

model, which can more effectively super-resolve Landsat 8 data than a 
model trained on simulated data. Nevertheless, collecting LR/HR image 
pairs from multiple sensors is laborious, due to the difference between 
cross-sensor images, i.e., cloud contamination, environmental changes, 
and atmospheric conditions. Therefore, it is of great significance to 
develop a generic SR approach for the task of cross-sensor image SR. 

Another key issue is that the complicated edges in remote sensing 
images increase the difficulty of recovering accurate and detailed in
formation by the means of SR. The convolutional neural network (CNN)- 
based SR methods have recently been the subject of much attention, 
with special attention being paid to the network architectures (Dong 
et al., 2021; Lei et al., 2022; Lei et al., 2017; Pan et al., 2019). These 
CNN-based models optimized by pixel-wise loss keep obtaining state-of- 
the-art results, but often leave blurred impressions (Wang et al., 2022b). 
The generative adversarial networks (GAN) are popularly employed in 
many SR works (Jia et al., 2022; Li et al., 2022; Tu et al., 2022) to 
promoted the perceptual quality of the recovered remote sensing im
ages. However, the GAN-based methods usually tend to produce un
natural textures in the cases with complex data distributions, which are 
difficult to accurately model. Image priors, and especially edge priors, 
have been shown to be effective in recovering fine details (Fang et al., 
2020; Zhang et al., 2022b). For example, Jiang et al. (2019) proposed a 
robust GAN-based method that integrates an edge extraction operation 
into the network to mitigate the structural distortion caused by adver
sarial learning in the SR process. Li et al. (2021) developed a progressive 
split-merge SR framework with gradient guidance and achieved a sig
nificant improvement in both the numerical index results and visual 
quality. Most of these prior-guided methods explicitly extract edge or 
gradient information from the input LR images and incorporate it into 
the network (Shen et al., 2022). However, the extracted edge informa
tion can be sensitive to the quality of the images, resulting in possible 
artifacts and ambiguous textures in the reconstruction images (Huan 
et al., 2022). 

In general, the SR reconstruction of remote sensing images still ex
hibits a crucial challenge from two aspects, i.e., investigating robust 
real-world SR methods to handle complicated degradation for practical 
applications and reconstructing remote sensing images with sharp de
tails in the context of imaging degradation. To address the above issues, 
we proposed a cross-sensor SR framework by simultaneously consid
ering the two important perspectives, which consists of a data degra
dation modeling strategy to bridge the gaps between images obtained by 
the source and target sensors, and an edge-guided attention-based SR 
network, namely EGASR, for reconstructing sharp spatial details. Firstly, 
a degradation pool was built to construct to perform image degradation 
on HR images of the source sensor to generate LR images, which contain 
similar degradation characteristics to that of the target sensor images. In 
this way, the SR model trained on the degraded LR-HR paired dataset 
can be applied to super-resolve real-world images acquired by the target 
sensor. Secondly, EGASR was specially designed to capture spatially 
precise structural representations with the guidance of the edge prior to 
recover sharp boundary details in the images. In contrast to the existing 
methods that explicitly extract edge maps from the input LR images, 
edge information is implicitly extracted from the feature maps through 
the edge-guided residual attention block (EGRAB), thus suppressing the 
noise and artifacts in the images. The major contributions of this study 
are:  

(1) We propose a cross-sensor SR framework to deal with the real- 
world images acquired by the target satellite sensor, consid
ering the variations in image quality caused by the complex 
degradation factors.  

(2) A degradation pool is built with blind noise and blur-kernel 
estimation in the image set of the target sensor and incorpo
rated into the training phase. As a result, the model trained with 
synthesized LR/HR image pairs from the source sensor can be 
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adapted to the target sensor, which significantly improves the 
model’s performance in the task of cross-sensor SR.  

(3) We propose the EGASR network for remote sensing SISR, where 
the core component, the EGRAB, implicitly extracts edge features 
and guides the network to focus on structural feature represen
tation, resulting in robust recovery of sharp and clear contours of 
the ground objects. 

The rest of this paper is organized as follows. In Section 2, we 
introduce the details of the proposed method, including the cross-sensor 
SR framework and the structure of the EGASR network. The experi
mental results are given in Section 3, and a further detailed analysis and 
discussion of the effectiveness of the proposed method is provided in 
Section 4. Section 5 presents our conclusions. 

2. Methodology 

In this section, the idea and procedures of the cross-sensor SR 
framework are first introduced. The architectures of the proposed 
EGASR method and the specially designed internal modules are then 
described in detail. 

2.1. Cross-sensor image super-resolution framework 

Deep learning based SR methods performed in a supervised manner 
are restricted to training data. Therefore, the models trained on simu
lated datasets tend to perform poorly on real-world data. To this end, we 
developed a cross-sensor SR strategy which can apply the SR model 
trained on the HR image set from the source sensor to real LR data of the 
target sensor. The overall framework is shown in Fig. 1, which includes 
two main stages. Firstly, an image degradation model is built and a 
degradation pool is constructed by estimating the blur kernels and 
extracting noise patches from the real LR data of satellite sensor B. Based 
on the degradation pool, it is possible to generate synthetic degraded LR 
data from the HR images of sensor A, which contain degradation char
acteristics similar to that of the realistic data of target sensor B. Note that 
this strategy can avoid the requirement for an extensive collection of 
paired data with the same location and similar observation conditions 
from the two sensors, and the subsequent geometric registration. The SR 
model used in the proposed framework is the EGASR network, which is 
trained on the synthetically degraded SR data and finally applied to 
super-resolve the real LR data of sensor B. 

2.1.1. Degradation pool building 
Limited by the acquisition systems and environmental conditions in 

the imaging process, remote sensing image quality is often affected by 
varying degrees of degradation, including blurring, downsampling, and 
noise (Yue et al., 2016). Except for the resolution sampling, blurring and 

noise are mainly considered in this paper. Generally speaking, the 
degradation process to generate LR images is modeled as: 

ILR = (IHR ⊗ k)↓s + n (1)  

where IHR is the HR image, ILR denotes the obtained degraded LR image, 
↓s represents the downsampling operation with a scale factor of s, and ⊗
denotes the linear (2D) convolution operation. In addition, k and n 
denote the blur kernel and additive noise, respectively. 

To solve the cross-sensor remote sensing image SR task, a degrada
tion pool is built by the means of blind noise and blur-kernel estimation. 
Firstly, the KernelGAN process proposed by Bell-Kligler et al. (2019) is 
introduced to estimate the blur kernels from the realistic images of 
satellite sensor B. KernelGAN is an unsupervised image-specific internal- 
GAN, which learns the internal distribution of the input imagery and 
generates a downsampled version of it. KernelGAN needs to meet the 
following optimization objective during the training phase: 

argmin
G

min
D

{
Ex∼patches(IIn)[|D(x) − 1 | + |D(G(x) ) | ] +R

}
(2)  

where × denotes the patch extracted from the input image IIn, and G and 
D denote the generator and the discriminator, respectively. R is the 
regularization term on the kernel. Since the generator of KernelGAN is a 
deep linear network consisting of several linear layers with no activa
tions, the kernel that is an array can be obtained by convolving all the 
filters of the generator. Mathematically, estimating the kernels by the 
use of KernelGAN can be formulated as follows: 

k = FKernelGAN(ILR T) (3)  

where ILR T is the input realistic LR image of target sensor B, and k 
represents the estimated kernel. By estimating the kernels on a large 
amount of real LR images from target sensor B, it is possible to construct 
a blur-kernel pool {k1, k2⋯, km}. 

After building a kernel pool, the noise is also taken into consideration 
to generate more realistic degraded images. Noise patches are directly 
collected from the noise-dominant LR images from target sensor B, 
which can have a more similar noise distribution to the realistic images. 
It is assumed that the expectation of the noise distribution is zero, and a 
low-pass filter is applied to a noisy LR image to generate a smooth 
image. Subtracting the smooth image from the noisy LR image then 
yields an approximate noise patch. To reduce the influence of complex 
background information, a set of image blocks with heterogeneous 
textures (e.g., lakes and bare soil) are first extracted from the LR images. 
Furthermore, a standard is applied to collect noise patches from these 
eligible image blocks: 

|Mean(|p| ) − Mean(|q| ) | ≤ Mean(|q| )and|Var(p) − Var(q) | ≤ Var(q)
(4) 

Fig. 1. The framework of the proposed cross-sensor SR method.  
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where p is the local noise patch (i.e., size of 40 × 40 in our tests), q is the 
global image block (i.e., size of 2000 × 2000), and Mean(⋅) and Var(⋅)
denote the mean and variance calculations, respectively. It is then 
possible to utilize the collected series of noise patches {n1, n2⋯, nl}, 
together with the blur-kernel pool, to build a joint degradation pool. 

2.1.2. Cross-sensor realistic image super-resolution 
With the degradation pool constructed, the simulation process for 

cross-sensor training can be implemented as follows. The images from 
source sensor A are used as the HR images, and the degraded LR images 
can be synthesized as: 

ILR S = (IHR S ⊗ ki)↓s+ nj, i ∈ {1, 2⋯,m}andj ∈ {1, 2⋯, l} (5)  

where IHR S and ILR S represent the HR image and its degraded LR 
version, respectively; ki and nj are the i-th kernel and j-th noise patch 
randomly selected from the degradation pool, respectively; and ↓s de
notes the strided downsampling operation. 

Finally, a degraded LR-HR paired dataset simulated from the images 
of source sensor A can be obtained and used to train the EGASR model. 
The trained model can then be applied to super-resolve the realistic LR 
image ILR T of target sensor B. 

2.2. EGASR network architecture 

2.2.1. Overall pipeline 
The architecture of the proposed EGASR network is shown in Fig. 2. 

The degraded LR-HR paired dataset simulated from the images of source 
sensor is used to train the EGASR model. Given an LR image ILR S ∈

RH×W×N with N bands as input, a convolutional layer with kernel size of 
3 × 3 is first applied to obtain the initial shallow feature map: 

F0 = fConv3(ILR S) (6)  

where fConv3(⋅) represents the 3 × 3 convolution operation, and F0 ∈

RH×W×C is the extracted feature map. To make full use of the shallow 
layer information and capture long-range dependencies to improve the 
model performance, a source-shared skip connection (SSKC) structure is 
added in the EGASR network. The initial feature map F0 is fed into each 
of a stack of residual edge-enhanced groups (REGs), where the deep 
feature map of the n-th REG can be expressed as follows: 

FGn = fREGn(FGn− 1) +WSF0 (7)  

where fREGn(⋅) denotes the function of the n-th REG; FGn− 1 and FGn 
represent the input and output feature maps of the n-th REG, respec
tively; and WS is a learnable parameter. The final output deep feature of 
the REGs is obtained as: 

FD = FGN +WSF0 (8)  

where FGN is the output feature of the last REG, which is then passed into 
a convolutional layer followed by an upsampled module: 

FUP = fUP(fConv3(FDF) ) (9)  

where FUP and fUP(⋅) represent the upsampled features and upsampled 
module, respectively. In the proposed approach, the commonly used 
sub-pixel convolutional layer (Shi et al., 2016) is first used as the 
upsampling layer. FUP is then passed into a convolutional layer to obtain 
the reconstructed feature: 

FR = fConv3(FUP) (10) 

At the tail of the EGASR network, the final SR result can be obtained 
as follows: 

ISR = FR + fBL(ILR S) = FEGASR(ILR S) (11)  

where fBL(⋅) and FEGASR(⋅) are the upsampled operation of bilinear 
interpolation and the function of EGASR, respectively; and “+” is the 
element-wise addition operation. 

Finally, the EGASR network is optimized with a certain loss function. 
We chose to use the robust Charbonnier loss function (Lai et al., 2017), 
which can handle outliers and improve the performance. The difference 
between the ground-truth HR image and the SR reconstruction result is 
minimized with the: 

LSR =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

‖IHR S − ISR‖2
+ ε2

√

(12)  

where ε is an empirical constant, which was set to 1 × 10− 3 in the ex
periments conducted in this study; and ISR and IHR S are the SR result and 
the corresponding HR image, respectively. 

2.2.2. Edge-guided residual attention block 
As shown in Fig. 2, within each REG, several EGRABs and a 3 × 3 

convolutional layer are stacked with short skip connections. In other 
words, the EGRAB is the core component and basic unit of the proposed 
network. The structure of the EGRAB is displayed in Fig. 2, which is 
made up of two residual blocks (RBs), an edge-enhanced spatial atten
tion module (ESAM), and a multi-feature adaptive fusion module 
(MAFM).  

(A) Residual block 

In the EGRAB, given an initial feature FG ∈ RH×W×C as input, it is first 
processed by an RB that consists of two 3 × 3 convolutional layers and a 
parametric rectified linear unit (PReLU) activation function (He et al., 
2015). The obtained immediate feature is then fed into the two 
branches, respectively. The RB in one of the branches is aimed at facil
itating the feature representation and preserving the base performance 
of the network. The output feature of the RB can be written as: 

Fig. 2. Overview structure of the proposed EGASR network.  
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FX = fConv3(ρ(fConv3(FG) ) ) (13)  

FC = fConv3(ρ(fConv3(FX) ) ) (14)  

where ρ(⋅) denotes the PReLU activation function; and FX and FC 
represent the immediate feature and the obtained convolutional feature, 
respectively.  

(B) Edge-enhanced spatial attention module 

Spatial information determines the edges and textures of an image. 
In the proposed approach, an ESAM is constructed to capture and 
enhance the useful spatial information, to reconstruct images with more 
accurate and sharp details. Differing from some methods that build an 
additional branch of the network to explicitly extract edge maps using 
an edge operator, the edge extraction operation is implicitly incorpo
rated into the design of the core block. As shown in Fig. 3, a three-branch 
structure is adopted to perform edge feature extraction in the head of the 
ESAM. The first-order Sobel operator and the second-order Laplace 
operator that are easily implemented and convenient to compute are 
separately employed in the three branches. The filter templates of the 
Sobel and Laplacian operators can be formulated as follows: 

TSx =

⎡

⎢
⎢
⎣

− 1 0 1

− 2 0 2

− 1 0 1

⎤

⎥
⎥
⎦, TSy =

⎡

⎢
⎢
⎣

− 1 − 2 − 1

0 0 0

− 1 2 1

⎤

⎥
⎥
⎦ (15)  

TLp =

⎡

⎢
⎢
⎣

0 − 1 0

− 1 4 − 1

0 − 1 0

⎤

⎥
⎥
⎦ (16)  

where TSx and TSy denote the Sobel edge filter in the horizontal and 
vertical directions, respectively; and TLp represents the Laplacian edge 
filter. These edge operator templates are set as fixed kernels in the 
convolutional layers. In this way, the edge extraction operations are 
implicitly embedded in the ESAM. Specifically, in each branch, the input 
immediate feature FX is first passed through a 1 × 1 convolutional layer 
to obtain the processed feature. The edge feature is then extracted from 
the processed feature by utilizing the edge filters, followed with a 
channel-wise scaling operation. The edge information extraction process 
can be expressed as: 

FSx = fConv1(FX)⨂(TSx*SSx) + BSx
FSy = fConv1(FX)⨂

(
TSy*SSy

)
+ BSy

FLp = fConv1(FX)⨂
(
TLp*SLp

)
+ BLp

(17)  

where fConv1(⋅) denotes the 1 × 1 convolutional layer; ⨂ denotes the 
depth-wise convolution; * represents the channel-wise broadcasting 
multiplication; SSx, SSy, SLp, BSx, BSy, and BLp are the scaling parameters 
and bias in the edge convolutional layer, respectively; and FSx, FSy, and 
FLp are the extracted edge features of the Sobel operator in the horizontal 
and vertical directions and the Laplacian operator, respectively. The 
edge features are concatenated and then fused by applying a 1 × 1 
convolutional layer: 

Fedge = fConv1
( [
FSx,FSy,FLp

] )
(18)  

where [.,.] represents the concatenation operation. A spatial attention 
(SA) module is then utilized to enhance the edge information. In the SA 
module, the feature is first compressed in the channel dimension to 
obtain the maximum and average feature maps, which are concatenated 
and passed into a convolutional layer followed by a sigmoid activation 
function to generate an SA map. The enhanced features can be obtained 
by multiplying the edge features Fedge with the spatially refined map, 
which can be written as: 

MSA = σ
(
fConv7

( [
Pavg

(
Fedge

)
,Pmax

(
Fedge

) ] ) )
(19)  

FE = Fedge⨂MSA (20)  

where FE represents the enhanced edge feature; MSA ∈ RH×W represents 
the spatially refined map; Pavg(⋅) and Pmax(⋅) denote the average pooling 
operation and the maximum pooling operation, respectively; fConv7(⋅) is 
the function of a 7 × 7 convolutional layer; and σ(⋅) represents the 
sigmoid activation function.  

(C) Multi-feature adaptive fusion module 

The ESAM in one branch captures and enhances the edge informa
tion, which is important for SR, while the RB in the other branch facil
itates the base feature representation. The commonly used approaches 
for fusing different features include concatenation followed by a con
volutional layer or direct summation. However, these simple feature 
aggregation approaches limit the expressive power of the features. 
Inspired by the excellent work of SKNet (Li et al., 2019), in the MAFM, 
soft attention is introduced to adaptively fuse the features coming from 
the two branches. The architecture of the MAFM is displayed in Fig. 4. 

The features of the two branches are first aggregated by element-wise 
summation. A global average pooling operation is then performed for 
the added feature map in the spatial dimension to generate a channel- 
wise vector. The vector is squeezed and expanded by a fully connected 
layer and then activated by a sigmoid function to obtain the selective 
weights: 

Fig. 3. The detailed structure of the edge-enhanced spatial attention module (ESAM), which consists of an edge feature extraction part and a spatial attention 
enhanced block. 
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z = Lfc
(
Pga(FE + FC)

)
(21)  

d = max(C/r,L) (22)  

where z ∈ Rd×1 is a compact feature for adaptive selection; r is the ratio 
of dimension reduction for computing d, which was set to 2 in the ex
periments; L is the minimum length of d, which was set to 32 in the 
experiments; and Pga(⋅) and Lfc(⋅) denote the global average pooling 
function and fully connected layer, respectively. 

Two attention weights are obtained by applying the softmax function 
on the channel-wise digits, which are utilized to adaptively recalibrate 
the two input features of the two branches. The process of the adaptive 
selection operation to obtain the final fused feature can be expressed as: 

WCk =
eCkz

eCkz + eEkz
,WEk =

eEkz

eCkz + eEkz
(23)  

Ff = WC*FC +WE*FE (24)  

where WC and WE are the weights for the features of the two branches, 
respectively; C,E ∈ RC×d are the learnable parameters; Ck ∈ R1×d is the 
k-th row of C and WCk is the k-th element of WC, likewise Ek and WE; and 
Ff ∈ RH×W×C is the final fused feature. 

3. Experiments 

3.1. Data preparation 

In this study, we conducted experiments on datasets from three 
Gaofen (GF) series satellite sensors: Gaofen-1 (GF-1), Gaofen-2 (GF-2), 
and Gaofen-6 (GF-6), for which the spatial resolution and swath width 
properties are complementary (Table 1). To fully utilize the spatial and 
spectral information among the data, the images were processed with 

rational polynomial coefficient (RPC) correction, panchromatic/multi
spectral (PAN/MS) image registration, and pansharpening (Meng et al., 
2019). Generally, the high-quality images can serve as the reference of 
the SR output in the training process for the SR tasks, as in (Wang et al., 
2021a), and we prescribed a basic assumption to the proposed cross- 
sensor SR framework, i.e., the images acquired by the source sensor 
have higher quality than those of the target sensor. Therefore, among 
the different images, the GF-2 images with the highest spatial resolution 
of 1 m were used to construct the training dataset. The performance of 
the proposed SR method was verified from two aspects. Firstly, the 
ideally simulated GF-2 LR/HR image set with only downsampling 
considered was used to evaluate the superiority of the proposed EGASR 
network. To demonstrate the effectiveness of the proposed cross-sensor 
SR framework, we further adopted the model trained on the LR/HR GF-2 
image set simulated with the estimated degradation pool to improve the 
spatial resolution of the GF-1 and GF-6 images, as shown in Fig. 1. To 
this end, two cross-sensor datasets were constructed for GF-2/GF-1 and 
GF-2/GF-6 in the experiments. The detailed information about the 
multi-sensor images and datasets is given in Table 1. 

3.1.1. GF-2 simulated dataset 
This dataset included the training and test sets, which were both 

obtained from GF-2. Taking the Wuhan urban agglomeration as the 
study region, we collected images of various scenes and different seasons 
in 2020. Specially, we conducted strict screening to ensure that the 
images were not perceptually contaminated with clouds and obvious 
artifacts in the process of collecting images. Finally, 950 images with the 
size of 1000 × 1000 were obtained. The HR images were downsampled 
to obtain LR images with the size of 500 × 500 × 4 (resp., 250 × 250 ×
4) when the scale factor was 2 (resp., 4), which were the input for the 
network. These images are split into the training set and test set, while 
there are no overlaps existing between them. Note that part of the 
training set constructed the validation set, which is used to calculate the 

Fig. 4. The architecture of the multi-feature adaptive fusion module (MAFM).  

Table 1 
The technical specifications and image set information for the GF series of sensors.   

Satellite Sensors  GF-2 GF-1 GF-6 

Technical specifications Spectral range (μm) Panchromatic 0.45 to 0.90 0.45 to 0.90 0.45 to 0.90  
Multispectral 0.45 to 0.52 0.45 to 0.52 0.45 to 0.52  

0.52 to 0.59 0.52 to 0.59 0.52 to 0.59  
0.63 to 0.69 0.63 to 0.69 0.63 to 0.69  
0.77 to 0.89 0.77 to 0.89 0.77 to 0.90 

Spatial resolution (m) Panchromatic 1 2 2  
Multispectral 4 8 8 

Revisit interval (day) 5 2 (GF-1/GF-6 joint revisit period) 
Scale range (km) 45 60 90 

Image set 
information 

Data domain Source Target Target 
Number of collected images 850 (train), 100 (test) 100 (test) 100 (test) 
Size of collected images 1000 × 1000 500 × 500 500 × 500 
Resolution (pansharpening fusion) (m) 1 2 2  
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PSNR and loss value per epoch during the training phase. In this study, 
the GF-2 training dataset contained 850 LR/HR image pairs, 800 of 
which are used for training while another 50 for validation. The 
remaining 100 images formed the test set for assessing the performance 
of the trained model, covering four representative scenes of urban, rural, 
field, and mountain areas, each with 25 images. The test LR images were 
downsampled from the HR images with the same spatial size as the 
training data, where the spatial resolution was 2 m and 4 m with a scale 
factor of 2 and 4, respectively. The original HR images were used as the 
reference to calculate the quantitative metrics in the simulated tests. 

3.1.2. GF-2/GF-1 cross-sensor dataset 
The cross-sensor dataset used the images obtained from the different 

satellite sensors to make up the training and test data. In the experi
ments, the images in the cross-sensor training set were the same as those 
in the GF-2 simulated dataset. However, the LR images input to the 
network were degraded from the corresponding HR images, considering 
blur and noise (Sdraka et al., 2022; Yue et al., 2022). As mentioned in 
Section 2.1.1, we collected a random set of GF-1 images which also 
covered various scenes and estimated the blur kernels and noise features 
from these images to build a degradation pool for the target sensor. The 
cross-sensor training data were then constructed with the LR images 
simulated as described in Equation (1). The independent test set was 
composed of 100 real GF-1 images, each with a spatial resolution of 2 m 
and a size of 500 × 500 × 4. These images were collected from urban, 
rural, field, and mountain areas, each with 25 images. 

3.1.3. GF-2/GF-6 cross-sensor dataset 
The other cross-sensor dataset was constructed in the same way as 

the GF-2/GF-1 dataset, while the target sensor was GF-6. The results 
included the training set composed of 850 HR GF-2 images along with 
corresponding LR image pairs simulated with the degradation pool for 
GF-6, and the test set composed of 100 GF-6 images covering urban, 
rural, field, and mountain areas, each with 25 images. The details can be 
found in Table 1. 

3.2. Implementation details 

In the training phase, we augmented the training data by randomly 
employing 90◦, 180◦, and 270◦ rotation and horizontal and vertical 
flipping (Wang et al., 2021b). In each mini-batch, 16 LR images with a 
patch size of 48 × 48 were provided as inputs for the model, and the 
corresponding HR image served as the ground truth for calculating the 
loss. The LR-HR paired data and the output of the network were all four- 
band images. 

The models were optimized using the ADAM optimizer (Kingma and 
Ba, 2014) with β1 = 0.9, β2 = 0.999, and ε = 10− 8. The initial learning 
rate was set to 10− 4 and then decreased by half every 250 epochs. A total 
of 1000 epochs were used for training the models since more epochs did 
not bring further improvements. The proposed EGASR network was 
implemented using Python 3.8 and the PyTorch 1.8 framework on an 
Nvidia GeForce RTX 3090 GPU. 

3.3. Evaluation metrics 

In this paper, we use the commonly used full-reference image eval
uation metrics to evaluate the quality of the SR reconstruction results, i. 
e., the peak signal-to-noise ratio (PSNR), the structural similarity index 
(SSIM) (Wang et al., 2004), the spectral angle mapper (SAM) (Vivone 
et al., 2015), the relative dimensionless global error in synthesis 
(ERGAS) (Wald, 2002), and the spatial correlation coefficient (SCC) 
(Zhou et al., 1998). Among them, PSNR and ERGAS are two metrics in 
terms of comprehensive spatial-spectral image quality, SSIM and SCC 
are used to quantify the spatial quality, and SAM is utilized to quantify 
the spectral distortion. We calculated the mean values of these metrics 

across all the recovered spectral bands in the SR images. Specially, larger 
values of PSNR, SSIM, and SCC, and smaller values of SAM and ERGAS 
indicate better SR results. 

In addition, we introduce no-reference image evaluation metrics, i.e., 
the natural image quality evaluator (NIQE) (Mittal et al., 2013), average 
gradient (AG) (Chen et al., 2018), the spatial frequency (SF) (Eskicioglu 
and Fisher, 1995), and the entropy (Li et al., 1999) to evaluate the real- 
world SR results, without an HR image for reference. Smaller values of 
NIQE and larger values of AG, SF, and entropy indicate better SR results. 

3.4. Comparison with other CNN-based methods on the simulated 
datasets 

In this section, we describe the simulated experiments conducted on 
the GF-2 dataset to validate the SR reconstruction performance of the 
proposed EGASR network. The comparison methods included several 
state-of-the-art CNN-based methods, i.e., the enhanced deep residual SR 
network (EDSR) (Lim et al., 2017), the residual channel attention 
network (RCAN) (Zhang et al., 2018), the second-order attention 
network (SAN) (Dai et al., 2019), the holistic attention network (HAN) 
(Niu et al., 2020), and the soft-edge assisted network (SeaNet) (Fang 
et al., 2020). Among them, EDSR wins the champion in NTIRE 2017 
Challenge on Single Image Super-Resolution, RCAN, SAN, and HAN are 
representative SISR methods that use attention mechanism, and SeaNet 
is a well-performed edge-assisted SR method that introduces edge prior 
into CNN. For a fair comparison, all the models were trained on the 
simulated GF-2 training dataset, as introduced in Section 3.1.1. The 
trained models were then evaluated with the independent test set. 

The quantitative results in terms of PSNR, SSIM, SCC, ERGAS, and 
SAM are reported in Table 2, where the bold font represents the best 
performance for each index. It can be seen that EGASR achieves the 
highest PSNR, SSIM, and SCC values and the lowest ERGAS and SAM 
values, on average, for the four scenes on both the × 2 and × 4 SR. 
Compared with the CNN-based methods, the proposed EGASR method 
obtains better results for all four test scenes. Especially on the urban 
scene with rich texture information, EGASR surpasses most of the 
comparison methods by a large margin in terms of PSNR. Even when 
compared with SAN with the second-best score, EGASR still shows a 
PSNR value gain of 0.17 dB and 0.15 dB, on average, for the four scenes 
in the × 2 and × 4 SR results, respectively. 

Fig. 5 and Fig. 6 show visual comparisons for the test images in the 
GF-2 test set with × 2 and × 4 SR, respectively. The zoomed-in views 
within the red box are provided for facilitating the visual comparison. It 
can be seen that the EGASR method can reconstruct images with more 
clean details and sharper edges than the other CNN-based SR methods. 
For example, in “Img_07” of the urban scene in Fig. 5, the textures of the 
steps within the SR images of the other CNN-based methods suffer from 
different degrees of blurring, while EGASR gives clear details. Similarly, 
the CNN-based methods loss the internal texture of the field in “Img_05”, 
and only EGASR can recover more details in the field which are more 
faithful to the ground truth. For the × 4 SR, as shown in “Img_03” of the 
urban area in Fig. 6, the other methods generate images with fuzzy ar
tifacts, while EGASR can reconstruct the main structure of the building 
site. In particular, in “Img_11” of the rural scene, all the compared 
methods over-smooth the small white objects above the roof and on the 
side of the street. In contrast, the white objects in the SR results of 
EGASR contain clearer contours and can be distinguished well. In gen
eral, compared with the other SR methods, the proposed EGASR method 
shows superiority in reconstructing finer details and sharper edges of the 
ground objects in remote sensing images. 

To further study the reconstruction accuracy of the SR results, box
plots of the root-mean-square error (RMSE) between the SR results and 
the HR references in each band are displayed in Fig. 7. It can be seen 
from the indicators (e.g., median and mean, box region from the 25th to 
the 75th, 1st, and the 99th percentile value) in Fig. 7 that the CNN-based 
methods are clearly superior to bicubic interpolation, and the proposed 
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EGASR method obtains the highest accuracy in all four bands, which 
indicates that the SR result of EGASR is closest to the HR reference. 

3.5. Cross-sensor SR with real datasets 

Cross-sensor SR with real datasets was conducted to evaluate the 
performance of the SR methods on real-world images. Note that the 
CNN-based SR models, including the proposed EGASR method, were all 
trained on the GF-2 training set with bicubic degradation. In the real- 
data experiments, the proposed cross-sensor SR framework was 
applied to improve the generalization of the EGASR method to real- 
world images and obtain a robust SR model, namely EGASR-CS. We 
tested all the SR models on the GF-1 and GF-6 realistic test sets with a 
scale factor of 2. 

The quantitative results in terms of AG, SF, entropy, and NIQE for the 
GF-1 and GF-6 test sets are reported in Tables 3 and 4, respectively. It 
can be seen that the CNN-based methods trained with bicubic degra
dation obtain close results, among which the proposed EGASR method 
obtains superior results. It is worth noting that EGASR-CS far surpasses 

all the methods by a large margin in terms of all no-reference evaluation 
metrics, which indicates that the images reconstructed by EGASR-CS 
possess better visual fidelity and richer details. 

We also qualitatively compared the performance of the different 
methods in super-resolving realistic images. The visual results for the 
GF-1 and GF-6 test sets are displayed in Fig. 8 and Fig. 9, respectively. As 
shown in Fig. 8, all the CNN-based methods obtain similar blurred im
ages, which are only slightly better than the bicubic method. In contrast, 
EGASR-CS can obtain visually pleasing results with sharper edges and 
details. Fig. 9 gives similar trends. Taking “Img_09” from the urban area 
as an example, only EGASR-CS is capable of recovering the outlines on 
the roof and reconstructing the small white objects with clear contours. 
The results obtained on the realistic test sets confirm that the proposed 
cross-sensor framework is plausible and competitive in practical use, 
compared to the supervised methods trained with an ideal dataset. 

Furthermore, to explore the applicability of the SR result of the 
proposed method in further applications, we conducted ground feature 
extraction experiments on the SR results of the bicubic, EGASR, and 
EGASR-CS methods in super-resolving GF-1 and GF-6 real-world images. 

Table 2 
Quantitative comparison on the GF-2 test set for 2 × and 4 × SR, where the bold font indicates the best performance.  

Scale Test set Metric Bicubic EDSR RCAN SAN HAN SeaNet Proposed 

×2 Urban PSNR  40.0131  43.9863  44.2242  44.4884  44.4044  44.3710  44.6538 
SSIM  0.9612  0.9833  0.9840  0.9848  0.9846  0.9845  0.9854 
SCC  0.7113  0.8562  0.8641  0.8721  0.8693  0.8684  0.8768 
ERGAS  2.6663  1.6877  1.6422  1.5927  1.6086  1.6145  1.5631 
SAM  0.4557  0.3199  0.3196  0.3053  0.3028  0.3042  0.2933 

Rural PSNR  44.3498  48.4423  48.7077  48.8414  48.8177  48.7905  49.0562 
SSIM  0.9791  0.9914  0.9918  0.9920  0.9920  0.9920  0.9924 
SCC  0.7545  0.8742  0.8815  0.8849  0.8840  0.8834  0.8902 
ERGAS  2.4814  1.5486  1.5040  1.4795  1.4856  1.4889  1.4461 
SAM  0.6760  0.4410  0.4342  0.4243  0.4245  0.4246  0.4124 

Field PSNR  47.4634  49.8121  49.9032  49.9347  49.9991  49.9501  50.0620 
SSIM  0.9784  0.9875  0.9879  0.9880  0.9881  0.9880  0.9883 
SCC  0.7315  0.8070  0.8114  0.8126  0.8151  0.8134  0.8179 
ERGAS  1.6331  1.2469  1.2311  1.2267  1.2192  1.2251  1.2081 
SAM  0.6083  0.4859  0.4764  0.4695  0.4707  0.4714  0.4602 

Mountain PSNR  45.7107  49.6216  49.9193  50.1594  50.0897  50.0538  50.3344 
SSIM  0.9837  0.9930  0.9933  0.9936  0.9935  0.9935  0.9938 
SCC  0.7715  0.8820  0.8898  0.8957  0.8938  0.8931  0.8997 
ERGAS  1.6120  1.0277  0.9939  0.9667  0.9742  0.9779  0.9478 
SAM  0.4159  0.2793  0.2735  0.2683  0.2668  0.2679  0.2612 

Average PSNR  44.3843  47.9656  48.1886  48.3560  48.3277  48.2913  48.5266 
SSIM  0.9756  0.9888  0.9892  0.9896  0.9896  0.9895  0.9899 
SCC  0.7422  0.8548  0.8617  0.8663  0.8655  0.8646  0.8711 
ERGAS  2.0982  1.3777  1.3428  1.3164  1.3219  1.3266  1.2913 
SAM  0.5390  0.3815  0.3759  0.3669  0.3662  0.3670  0.3568 

×4 Urban PSNR  34.2845  35.5513  35.6013  35.7466  35.7067  35.6648  35.9496 
SSIM  0.8501  0.8850  0.8860  0.8895  0.8888  0.8875  0.8942 
SCC  0.2868  0.4080  0.4127  0.4309  0.4254  0.4219  0.4555 
ERGAS  2.5777  2.2281  2.2153  2.1786  2.1885  2.1992  2.1285 
SAM  0.8983  0.7811  0.7968  0.7760  0.7702  0.7671  0.7466 

Rural PSNR  37.6319  39.1304  39.1182  39.2571  39.2347  39.2075  39.3956 
SSIM  0.9038  0.9294  0.9292  0.9312  0.9310  0.9305  0.9332 
SCC  0.3462  0.4757  0.4723  0.4889  0.4846  0.4838  0.5029 
ERGAS  2.6890  2.2651  2.2679  2.2320  2.2375  2.2453  2.1964 
SAM  1.4778  1.2160  1.2313  1.2055  1.2042  1.2039  1.1831 

Field PSNR  41.6935  42.3938  42.4123  42.4623  42.4387  42.4390  42.5337 
SSIM  0.9197  0.9301  0.9307  0.9312  0.9307  0.9308  0.9322 
SCC  0.4044  0.4389  0.4387  0.4418  0.4415  0.4426  0.4517 
ERGAS  1.5886  1.4684  1.4639  1.4558  1.4608  1.4613  1.4441 
SAM  1.1865  1.1115  1.1216  1.1047  1.1084  1.1061  1.0968 

Mountain PSNR  39.2030  40.8179  40.8380  40.9601  40.9616  40.9313  41.0953 
SSIM  0.9298  0.9521  0.9522  0.9536  0.9537  0.9532  0.9550 
SCC  0.4204  0.5419  0.5421  0.5553  0.5552  0.5518  0.5683 
ERGAS  1.7054  1.4091  1.4049  1.3840  1.3842  1.3908  1.3634 
SAM  0.8770  0.6609  0.6769  0.6573  0.6549  0.6513  0.6419 

Average PSNR  38.2032  39.4733  39.4924  39.6065  39.5854  39.5606  39.7436 
SSIM  0.9009  0.9241  0.9245  0.9264  0.9261  0.9255  0.9286 
SCC  0.3644  0.4661  0.4665  0.4793  0.4767  0.4750  0.4946 
ERGAS  2.1402  1.8427  1.8380  1.8126  1.8178  1.8241  1.7831 
SAM  1.1099  0.9424  0.9567  0.9359  0.9344  0.9321  0.9171  
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Specifically, the built-in edge-based segmentation algorithm in ENVI 
was first utilized to segment the image at multiple scales, followed by 
the full lambda-schedule algorithm (Robinson et al., 2002) to fuse 
adjacent small patches with spatial and spectral feature information. We 
utilized the segment-only feature extraction workflow in ENVI 5.3 to 
implement the complete extraction process, and set the parameters to 
the same values in each step for the different SR reconstruction results 
used in the experiments. The ground object extraction results are dis
played in Fig. 10. Taking “Img_005” from the urban area as example, by 
comparing the extracted ground objects of the SR images generated by 
each method, the number of extracted ground objects in the SR results of 
EGASR-CS are much more than those in the SR results of the bicubic and 
EGASR methods. In particular, the very small white objects next to the 
buildings can be extracted in the SR results of EGASR-CS, while almost 
no extraction results can be seen in the results of the other two methods. 
Overall, the extraction results of EGASR-CS are better than those of 
EGASR in object boundaries and separability, which demonstrates the 
effectiveness of the proposed cross-sensor SR framework in improving 
the model’s ability to super-resolve HR images with more high- 

frequency details in practical applications. 

4. Discussion 

4.1. Ablation studies 

In Section 3.4, we demonstrated the superiority of the proposed 
EGASR network over the other compared SISR networks. In this sub
section, we describe how we further conducted a set of ablation exper
iments to analyze the effects of some of the important components in 
EGASR, including the ESAM and MAFM in the EGRAB, and the SSKC 
structure. The quantitative results of the ablation studies conducted on 
the GF-2 simulated test set for × 4 SR are given in Table 5. 

The baseline model was obtained by removing all three components 
in the standard EGASR network. From Table 5, it can be observed that 
Model1 can bring a 0.05 dB improvement in terms of PSNR over the 
baseline model, which is largely due to the fact that the SSKC structure 
can transfer rich low-level information to the deep layers, to improve the 
SR performance. 

Fig. 5. Qualitative results obtained on the GF-2 simulated test sets with bicubic degradation for 2 × SR. The different SR results within the red box are zoomed in on 
for better visualization. The best quantitative results are marked in bold. 

Fig. 6. Qualitative results obtained on the GF-2 simulated test sets with bicubic degradation for 4 × SR. The different SR results within the red box are zoomed in on 
for better visualization. The best quantitative results are marked in bold. 
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The quantitative comparison between the models with and without 
using the ESAM are reported in Table 5, where it can be found that 
Model2 using the ESAM outperforms Model1 without using the ESAM by 
a large margin in terms of PSNR. Fig. 11 displays the visualization results 
of Model1 and Model2. Model1 without using the ESAM generates im
ages with distorted textures and fuzzy artifacts, while Model2 using the 
ESAM can recover sharper images with clearer edges and textures. The 
quantitative and qualitative results demonstrate that introducing the 
edge prior into the network using the ESAM contributes to the preser
vation of the structural information. 

Finally, it can be found that the PSNR value increases from 39.69 to 
39.74 dB when comparing the evaluation metrics of Model2 and EGASR. 
These results prove that the MAFM is an important component for fusing 

the different features of the two branches, instead of simply combining 
the features. 

4.2. Discussion on the edge extraction operators 

The Sobel operator is a combination of Gaussian smoothing and a 
differential operation, which has a strong anti-noise ability, while the 
Laplacian operator is isotropic and can extract edges in any direction. To 
explore the function of extracting edge features using these operators to 
guide the SR process, we designed several models with different edge 
operator combinations in the ESAM and conducted a set of experiments. 
The quantitative results of these models are given in Table 6. In EGASR- 
woE, we removed the edge feature extraction operation via the edge 

Fig. 7. Boxplots of the RMSEs between the SR results and HR images of the different methods in each band.  

Table 3 
Quantitative comparison with the GF-1 real-data test sets for 2 × SR, where the bold font indicates the best performance.  

Test set Metric Bicubic EDSR RCAN SAN HAN SeaNet EGASR EGASR-CS 

Urban AG  18.3541  19.1799  19.2451  19.2705  19.2408  19.2481  19.2917  33.5140 
SF  4.3141  4.6946  4.6974  4.7022  4.7004  4.7096  4.6834  8.4237 
entropy  5.7399  5.7450  5.7458  5.7458  5.7452  5.7454  5.7457  5.9074 
NIQE  9.4480  7.8692  7.9080  7.9116  7.8408  7.8825  7.9236  5.1154 

Rural AG  13.1004  13.6893  13.7449  13.7567  13.7293  13.7459  13.7675  23.4204 
SF  3.5134  3.7727  3.7862  3.7865  3.7850  3.7921  3.7682  6.6228 
entropy  5.4782  5.4827  5.4839  5.4837  5.4833  5.4835  5.4838  5.6537 
NIQE  9.5677  7.8232  7.8540  7.8387  7.8075  7.8462  7.8153  5.0728 

Mountain AG  10.6581  11.3480  11.3774  11.3973  11.3729  11.4091  11.4048  23.0941 
SF  2.4754  2.6539  2.6592  2.6655  2.6622  2.6663  2.6632  5.4339 
entropy  4.1365  4.1517  4.1553  4.1581  4.1535  4.1586  4.1573  4.5751 
NIQE  12.5012  10.9077  10.8204  10.8373  10.6980  10.8457  10.7458  8.6518 

Field AG  7.2079  7.7298  7.7650  7.7698  7.7587  7.7598  7.7799  11.3526 
SF  2.2527  2.4464  2.4542  2.4575  2.4571  2.4590  2.4526  3.5956 
entropy  4.7968  4.7991  4.8001  4.7998  4.7992  4.7995  4.8004  4.8807 
NIQE  10.3366  8.0894  8.0317  8.1000  8.0241  8.1096  8.1148  5.3356 

Average AG  12.3301  12.9868  13.0331  13.0486  13.0254  13.0407  13.0610  22.8453 
SF  3.1389  3.3919  3.3993  3.4030  3.4012  3.4067  3.3919  6.0190 
entropy  5.0379  5.0446  5.0463  5.0469  5.0453  5.0467  5.0468  5.2542 
NIQE  10.4634  8.6724  8.6535  8.6719  8.5926  8.6710  8.6499  6.0439  
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Table 4 
Quantitative comparison on the GF-6 real-data test sets for 2 × SR, where the bold font indicates the best performance.  

Test set Metric Bicubic EDSR RCAN SAN HAN SeaNet EGASR EGASR-CS 

Urban AG  18.9287  19.4793  19.5203  19.5987  19.5495  19.5201  19.5302  37.5616 
SF  4.8825  5.1851  5.2067  5.2360  5.2196  5.2168  5.1893  11.3187 
entropy  6.6828  6.6820  6.6831  6.6820  6.6832  6.6845  6.6838  6.7873 
NIQE  9.3844  7.7936  7.8316  7.8436  7.8595  7.8237  7.7448  5.0934 

Rural AG  7.1191  7.1728  7.1762  7.2104  7.1765  7.1743  7.1802  13.7465 
SF  1.9594  1.9923  2.0066  2.0235  2.0044  2.0028  1.9920  4.1548 
entropy  6.2389  6.2369  6.2375  6.2385  6.2360  6.2369  6.2374  6.3662 
NIQE  11.5513  9.5748  9.4587  9.4238  9.4384  9.5798  9.4494  4.8235 

Mountain AG  7.6730  8.1199  8.2095  8.2326  8.2334  8.1436  8.1427  14.7428 
SF  1.8650  1.9857  2.0201  2.0373  2.0271  2.0040  1.9904  3.5222 
entropy  5.0265  5.0274  5.0370  5.0316  5.0335  5.0338  5.0345  5.2676 
NIQE  11.2700  8.9784  8.9666  8.5280  8.6301  8.5936  8.7090  6.5728 

Field AG  8.8020  9.1609  9.1846  9.2616  9.2178  9.1798  9.1700  15.6220 
SF  2.5808  2.7376  2.7710  2.8027  2.7742  2.7627  2.7336  4.8067 
entropy  5.5218  5.5231  5.5241  5.5259  5.5255  5.5253  5.5250  5.6408 
NIQE  8.1308  6.4915  6.0226  6.3303  6.3574  6.3206  6.3375  4.6054 

Average AG  10.6307  10.9832  11.0226  11.0758  11.0443  11.0045  11.0058  20.4182 
SF  2.8219  2.9752  3.0011  3.0249  3.0064  2.9966  2.9763  5.9506 
entropy  5.8675  5.8674  5.8704  5.8695  5.8696  5.8701  5.8701  6.0155 
NIQE  10.0841  8.2096  8.0699  8.0314  8.0714  8.0794  8.0602  5.2738  

Fig. 8. SR results for the GF-1 real LR remote sensing images at scale × 2. (a) Bicubic. (b) EDSR. (c) RCAN. (d) SAN. (e) HAN. (f) SeaNet. (g) EGASR. (h) EGASR-CS.  

Fig. 9. SR results for the GF-6 real LR remote sensing images at scale × 2. (a) Bicubic. (b) EDSR. (c) RCAN. (d) SAN. (e) HAN. (f) SeaNet. (g) EGASR. (h) EGASR-CS.  
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operators but preserved the remaining convolutional layers and SA 
module in the ESAM. The first column represents the results of EGASR- 
woE, where it can be found that all the combinations that utilize edge 
operators surpass the performance of EGASR-woE, which does not 
employ the edge extraction operation. Moreover, EGASR-Sxy, which 

employs Sobel operators in both the horizontal and vertical directions, 
can obtain better results than EGASR-Sx and EGASR-Sy, which use only 
one direction. EGASR-Sxy can also surpass EGASR-Lap in terms of PSNR. 
The best performance is found when both the Sobel and Laplacian op
erators are combined. 

In addition, we also display the visual results of these models in 
Fig. 12. The results reveal that EGASR-woE fails to recover the textures 
on the roof, while all the other models that utilize an edge prior can 
generate more details. EGASR can reconstruct clearer results than the 
other models. Both the quantitative and qualitative results demonstrate 
the effectiveness of edge guidance for recovering more high-frequency 
textures and details, so we use both the first-order and second-order 
differential edge operators in the ESAM. 

4.3. Discussion on the effect of degradation factors 

As mentioned in Section 2.1.1, noise and blur are considered in the 
image degradation process and in building the degradation pool, which 

Fig. 10. Visual comparison of the ground features extracted from the SR results of the different methods: (a) real LR image, (b) bicubic, (c) EGASR, and (d) 
EGASR-CS. 

Table 5 
Ablation study on the GF-2 simulated test sets when the scale factor is 4.  

Model Baseline Model1 Model2 EGASR 

SSKC × ✓ ✓ ✓ 
ESAM × × ✓ ✓ 
MAFM × × × ✓ 
PSNR 39.4944 39.5453 39.6913 39.7436 
SSIM 0.9209 0.9247 0.9277 0.9286 
SCC 0.4671 0.4727 0.4889 0.4946 
ERGAS 1.8367 1.8271 1.7928 1.7831 
SAM 0.9408 0.9339 0.9229 0.9171  

Fig. 11. Visual comparison between the networks using the ESAM and without the ESAM for 4 × SR on the GF-2 test set. (a) 13th image from the urban area. (b) 19th 
image from the urban area. 

Table 6 
Ablation study for the edge extraction operators in the ESAM when the scale factor is 4.  

Model EGASR-woE EGASR-Sx EGASR-Sy EGASR-Sxy EGASR-Lap EGASR 

Sobel-x × ✓ × ✓ × ✓ 
Sobel-y × × ✓ ✓ × ✓ 
Laplacian × × × × ✓ ✓ 
PSNR 39.6711 39.6989 39.7105 39.7195 39.7037 39.7436 
SSIM 0.9260 0.9279 0.9280 0.9285 0.9282 0.9286 
SCC 0.4863 0.4903 0.4921 0.4929 0.4914 0.4946 
ERGAS 1.7958 1.7916 1.7889 1.7881 1.7901 1.7831 
SAM 0.9310 0.9209 0.9210 0.9171 0.9187 0.9171  

Z. Qiu et al.                                                                                                                                                                                                                                      



ISPRS Journal of Photogrammetry and Remote Sensing 199 (2023) 226–241

238

consists of a blur-kernel pool and a noise pool. The EGASR-CS model that 
was trained with realistic degradation achieved an excellent perfor
mance in the real-data experiments. To investigate the effect of the 
degradation factors, we tested two independent cases with only noise or 
blur considered in the process of simulating the degraded images for 
training, which are denoted as EGASR-N and EGASR-B, respectively. We 
also took the EGASR model trained with bicubic degradation into 
consideration. The quantitative results are listed in Table 7. As shown in 
Table 7, the performance of EGASR-N is close to that of EGASR, and 
EGASR-CS and EGASR-B outperform them by a large margin on both the 
GF-1 and GF-6 real test sets in terms of all the no-reference metrics. 

From the visual results in Fig. 13, it can also be found that both 
EGASR and EGASR-N obtain blurred results, while EGASR-B and 
EGASR-CS can generate sharper edges and clearer textures in the im
ages. However, the SR image of EGASR-B is sharp but suffers from ar
tifacts, while EGASR-CS gives a clear result. Overall, only considering 
noise in the degradation process cannot bring significant quantitative 
and qualitative improvements, and only considering blur fails to obtain 
visually pleasing results when encountering noise in real-world images. 
Only EGASR-CS that takes both noise and blur into consideration can 
obtain a promising performance in coping with a realistic scene. 

4.4. Impacts and limitations of the cross-sensor SR framework 

In this section, we further discuss the generalization performance 
and limitations of the proposed cross-sensor SR framework. Specifically, 
the EDSR and SAN methods with the relative lowest and highest accu
racy among the compared deep learning based SR methods were 
selected and embedded in the cross-sensor SR framework to train two 
new models, namely EDSR-CS and SAN-CS models. The original and 
retrained EDSR and SAN models were tested on real-world GF-6 images, 
and the qualitative results are displayed in Fig. 14. It is clear that the 

performances of EDSR-CS and SAN-CS models are significantly 
improved with the proposed cross-sensor SR framework applied in the 
training process, reflecting on clearer edges and contours in the SR re
sults (see Fig. 14(c) and (e)) than those of the original models (see 
Fig. 14(b) and (d)). The EGASR-CS method that introduced edge prior to 
promote the learning of edge information can still obtain sharper details 
in the SR results (see Fig. 14(f)), compared to the EDSR-CS and SAN-CS 
models trained in the same manner. 

The experimental results demonstrate that the well-designed cross- 
sensor SR framework has good generalization performance and can 
effectively improve the performance of deep learning-based SR methods 
adopted in real-world scenarios. In contrast to the image-pair-based SR 
methods (Joze et al., 2020; Wang et al., 2021a), which collected LR-HR 
image pairs acquired from different sensors for the same scene, we 
synthesized degraded training datasets via the cross-sensor degradation 
modeling. In this way, the trained model can bridge the gap between the 
images obtained by the source and target sensors, with no special need 
for cross-sensor accurate image registration and laborious processing 
operations. Another category of unsupervised domain-based methods 
(Maeda, 2020; Wei et al., 2021) show their advantages in directly 
capturing the underlying degradation process through learning with 
unpaired dataset. These methods implicitly modeled the complex real- 
world degradation and usually employed the GAN-based framework to 
learn the domain translation process (Chen et al., 2022). However, GAN- 
based frameworks can be difficult to train and often result in severe 
artifacts in the SR results (Liu et al., 2022a; Ma et al., 2022), which may 
hinder the use of reconstructed RS images in further applications. 
Furthermore, in contrast to such a one-stage unsupervised learning 
manner, we exploited the SR model in the framework to learn from 
dataset in a supervised manner, which results in a more stable training 
process and can achieve visually pleasing results. 

While the proposed framework demonstrates promising results, 
there are potential limitations that need to be addressed. The degrada
tion pool used in this study varies for different satellite sensors, which 
requires the training dataset needs to be reconstructed to achieve 
optimal results, and the model needs to be fine-tuned to adapt to dealing 
with different target sensors. Therefore, further study is needed to 
develop an adaptive strategy for the SR of real-world cross-sensor 
remote sensing images. 

5. Conclusions 

In this paper, we have proposed a cross-sensor SR framework for 
tackling the real-world remote sensing image SR task. The main con
tributions include a novel cross-sensor training strategy and an edge- 

Fig. 12. Visual comparison between the networks using different combinations of edge operators for 4 × SR on the GF-2 test set.  

Table 7 
Quantitative comparison of models trained with different degradation factors on 
the GF-1 and GF-6 real test sets.  

Test set Index\model EGASR EGASR-N EGASR-B EGASR-CS 

GF-1 AG  13.0610  13.0573  22.7181  22.8453 
SF  3.3919  3.4061  6.0065  6.0190 
entropy  5.0468  5.0486  5.2506  5.2542 
NIQE  8.6499  8.6333  6.3116  6.0439 

GF-6 AG  11.0058  11.2610  19.9765  20.4182 
SF  2.9763  3.0374  5.6844  5.9506 
entropy  5.8701  5.8861  5.9913  6.0155 
NIQE  8.0602  8.0331  5.3701  5.2738  
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guided attention-based deep network. Firstly, to alleviate the domain 
shift between the images of the source sensor and target sensor, a 
degradation pool is first built by estimating the degradation factors, 
including blur and noise, from the LR images of the target sensor. The 
degraded LR images and the paired HR images constructed from the 
source domain are then used to train the deep learning model. Secondly, 
the EGASR network was proposed for super-resolving remote sensing 
images with complex edge details, which introduces an edge prior to 
orient the SR process in an implicit manner. 

Both the simulated and real-data experiments on GF remote sensing 
images showed that the proposed method can achieve better evaluation 
metrics and visual results with higher fidelity and richer high-frequency 
information than the representative CNN-based SR methods used in the 
comparison. In the real cross-sensor experiments on GF-1/GF-2 and GF- 
6/GF-2 datasets, the proposed cross-sensor SR framework trained with 
the training datasets simulated from the source-sensor HR images 
significantly promoted the model’s ability to super-resolve real-world 
LR images acquired by the target satellite sensor. The ablation analysis 
also validated the effectiveness of the edge prior in assisting the model to 
reconstruct sharper details in the SR images. In general, with the well- 
designed cross-sensor SR framework and open-source code package, 
the proposed method could potentially promote the extensive use of 
deep learning SR techniques in the processing of remote sensing imagery 
and related applications. 
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