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Inpainting for Remotely Sensed Images With a
Multichannel Nonlocal Total Variation Model

Qing Cheng, Huanfeng Shen, Member, IEEE, Liangpei Zhang, Senior Member, IEEE, and
Pingxiang Li, Member, IEEE

Abstract—Filling dead pixels or removing uninteresting objects
is often desired in the applications of remotely sensed images. In
this paper, an effective image inpainting technology is presented
to solve this task, based on multichannel nonlocal total variation.
The proposed approach takes advantage of a nonlocal method,
which has a superior performance in dealing with textured images
and reconstructing large-scale areas. Furthermore, it makes use
of the multichannel data of remotely sensed images to achieve
spectral coherence for the reconstruction result. To optimize the
proposed variation model, a Bregmanized-operator-splitting algo-
rithm is employed. The proposed inpainting algorithm was tested
on simulated and real images. The experimental results verify the
efficacy of this algorithm.

Index Terms—Inpainting, multichannel, nonlocal total varia-
tion (NLTV), remotely sensed image.

I. INTRODUCTION

R EMOTELY sensed images provide an unparalleled data
source for land-surface mapping and monitoring. How-

ever, in some situations, such as detector failure or image
damage, dead pixels will exist in the remotely sensed images.
Dead pixels are those pixels whose measurement does not have
any correlation with the true scene that is being measured [1].
The existence of dead pixels severely degrades the quality of
the imagery. There are also some situations in which we need
to remove or replace certain objects from the imagery for the
sake of improving its application value. For example, we can
remove pedestrians on a zebra crossing to reconstruct the zebra
crossing on an aerial image or remove the map lettering and
labels on a raster image map to obtain the original image data.
The recovery of dead pixels and the removal of selected objects
from remotely sensed images can be unified into one problem,
i.e., image inpainting, which has been intensively studied in the
field of digital image processing [2]–[4]. The purpose of image
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inpainting is to reconstitute the missing or damaged portions of
the image, in order to make it more legible and to restore its
unity.

To solve the inpainting problem of remotely sensed images,
quite a few methods have been proposed. The approaches can
be grouped into three categories. The first category comprises
multitemporal-complementation-based approaches. These ap-
proaches consist of selecting the best measurement among
a set of measurements acquired over a limited time period.
Examples of these approaches are described in the works in
[7]–[11]. In [7] and [8], in order to fill the Landsat-7 scan line
corrector-off (SLC-off) gaps, the authors use the data from mul-
tiple Enhanced Thematic Mapper Plus (ETM+) scenes to pro-
vide complete ground coverage. The work in [9]–[11] studies
the spectrotemporal relationships between a sequence of mul-
titemporal images for the reconstruction of areas obscured by
clouds or atmospheric disturbance, by statistics, training, or
classification approaches.

The second category comprises the multispectral-
complementation-based approaches. Most of these approaches
make use of another clear and complete band of data to recover
the contaminated band of data by modeling a relationship
between the contaminated band and the reference band.
Examples of this class of approaches can be found in [12]–[15].
The research in [12]–[14] describes how to restore the missing
data of Aqua Moderate Resolution Imaging Spectroradiometer
(MODIS) band 6 by the use of other correlated bands, such as
the commonly used Aqua MODIS band 7, or other image data.
The work in [15] presents a haze-optimized-transformation
method to detect the spatial distribution of haze and clouds
in images and describes how to radiometrically adjust the
visible-band imagery by the analysis of a visible-band space.

Both categories of approaches mentioned earlier need com-
plementary information from other acquired images or spec-
tral bands. However, in many cases, complementary images
or bands cannot be acquired. Therefore, a third category of
approaches is explored, which consists of filling in the missing
data regions using the remaining parts in the image. The goal
of the approaches in this category is to seamlessly synthesize
a complete, visually plausible, and coherent image. Examples
of these approaches are the recent works in [16]–[19]. The
research in [16]–[18] describes how to synthesize the missing
regions in remotely sensed images by propagating the geometri-
cal structure from the remaining parts around the missing zone.
In [19], the authors consider both destriping and inpainting as
ill-posed inverse problems and develop a maximum a posteriori
method based on a Huber–Markov model to solve these inverse

0196-2892 © 2013 IEEE



176 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 1, JANUARY 2014

problems. Furthermore, some typical examples of digital image
inpainting can be found in [2]–[6].

Since there is no need for auxiliary data, the third strategy
of approaches is more attractive. Most prior researchers in this
category have only made use of the local neighboring infor-
mation to reconstruct the missing regions in remotely sensed
images, which is far from sufficient. Moreover, few publica-
tions have considered the multiple bands of remotely sensed
images as an ensemble to do the reconstruction. To remedy
these weaknesses, this paper presents an efficient multichannel
nonlocal inpainting approach for missing data synthesis. The
proposed algorithm unites the advantages of nonlocal meth-
ods, which have a superior performance when dealing with
textured images and large areas, and local methods, which are
good at recovering geometric structures such as image edges.
Furthermore, it takes advantage of the multichannel data of
remotely sensed images to achieve spectral coherence for the
reconstruction result. That is to say, our proposed method can
achieve both the spatial and the spectral coherence. In order
to optimize the proposed multichannel nonlocal total variation
(NLTV) (MNLTV) inpainting model, a Bregmanized operator
splitting (BOS) algorithm is employed.

The rest of this paper is organized as follows. In Section II,
the basic image observation model and image inpainting model
are described. In Section III, the proposed MNLTV inpaint-
ing model is formulated. The BOS optimization method is
presented in Section IV. Section V contains the experimental
results, and Section VI is the conclusion.

II. BASIC INPAINTING MODEL

A. Image Observation Model

Assuming that we have a multispectral image with some
pixels missing, the degradation model can be written as

f = Au+ ε (1)

where u = [u1, u2, . . . , uB ] is the original true image, with
the size of M ×N ×B, in which M represents the samples
of the image, N stands for the lines of the image, and B
is the number of bands. f = [f1, f2, . . . , fB ] is the observed
degradation image, which is also of size M ×N ×B. A is a
diagonal matrix with diagonal elements consisting of 0 and 1,
with 0 representing the missing data. ε is additive noise with
the same size as u and f . Our objective is to find the unknown
target image u from the observed image f .

B. Image Inpainting Model

The multispectral image inpainting process is essentially an
ill-posed inverse problem, which is similar to many other image
processing problems, such as image denoising [20], destrip-
ing [19], superresolution reconstruction [21], [22], and others.
The work in [23] and [24] provided approaches that achieve
superresolution reconstruction and inpainting simultaneously.
It is standard to use a regularization technique to make these
inverse problems well posed. Regularization methods assume
some prior information about the unknown image u, such as

smoothness, sparsity [25], manifold [26], or small TV [31].
Based on a regularization technique, the inpainting problem
for a multispectral image can be represented by the following
model:

û = argmin
u

J(u) s.t. Au = f (2)

where J(u) is the regularization item giving a prior model of
the target image. The corresponding constrained problem for a
noisy case is then written as

û = argmin
u

J(u) s.t. ‖Au− f‖2 ≤ σ (3)

where σ is the standard deviation of the noise ε.

III. MNLTV METHOD

Almost all the regularization methods mentioned earlier such
as sparsity, manifold, and TV regularization belong to local
methods which recover a pixel using only the local neighboring
information; it is insufficient. In recent years, nonlocal methods
for image denoising and inpainting have gained considerable
attention. This is partly due to their superior performance in
dealing with textured images. Local methods, on the other hand,
have proved to be very effective for the recovery of geometric
structure such as image edges. The synthesis of both types of
methods is an important research area. Variation analysis is an
appropriate tool for the unification of local and nonlocal meth-
ods. In recent research, single-channel nonlocal regularization
has been developed for digital image processing [27], [28],
and it has proved to be very effective. In order to take advantage
of the multichannel data of remotely sensed images, an MNLTV
inpainting model is presented in this paper.

A. Nonlocal Filter

The nonlocal methods in image processing are generalized
from the Yaroslavsky filter and patch-based methods. The idea
is to restore an unknown pixel using other similar pixels. The
resemblance is regarded in terms of a patch centered at each
pixel, not just the intensity of the pixel itself. In order to restore
a pixel, the nonlocal methods average the other pixels with
structures (patches) similar to that of the current one. This idea
was generalized to a famous neighborhood denoising filter, the
nonlocal means (NL-means) by Buades et al. in [29]. More pre-
cisely, given a reference image f , Ω is its pixel domain. We de-
fine the NL-means solution NLMu of the image u at point x as

NLMu(x) :=
1

C(x)

∑
y∈Ω

wf (x, y)f(y) (4)

where

wf (x, y) = exp

⎧⎨
⎩−

(
G∗

a |f(x+ ·)− f(y + ·)|2
)
(0)

h2

⎫⎬
⎭ (5)

C(x) =
∑
y∈Ω

wf (x, y) (6)
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where Ga is the Gaussian kernel with standard deviation a,
C(x) is the normalizing factor, h is a filtering parameter, and
f(x+ ·) can be known as a patch centered at a point x. The
patch f(x+ ·) of size m×m (m is chosen as an odd number)
is given as (7), and the size of the patch is according to the
noise intensity

f(x+ ·) = f(x+ t), t =

[
−m− 1

2
, . . . ,

m+ 1

2

]2
. (7)

We recall that(
G∗

a |f(x+ ·)− f(y + ·)|2
)
(0)

=
∑

Ga(t) |f(x+ t)− f(y + t)|2 . (8)

Following (5), we can compute a weight function wf (x, y)
between two points x and y by using the difference of patches
around each point. This choice of weight is very efficient in
reducing noise while preserving the textures and contrast of
natural images. It is to be noted that the missing points are not
needed to be excluded from the convolution summation since
this operation does not affect the final solution of the proposed
variation model.

B. Nonlocal Operators

In order to formulate the NL-means filter in a varia-
tional framework, Gilboa and Osher [27] defined variational
framework-based nonlocal operators. In the following, we give
the definitions of the nonlocal functions introduced in [27].
Let Ω ⊂ R2, x, y ∈ Ω, u(x) be a real function u : Ω → R, and
w(x, y) be a weight function. Furthermore, w(x, y) is assumed
to be nonnegative and symmetric.

Nonlocal gradient ∇wu(x) : Ω → Ω× Ω is defined as the
vector of all partial derivatives ∇wu(x, ·) at x such that

(∇wu)(x, y) := (u(y)− u(x))
√

w(x, y), ∀y ∈ Ω. (9)

We denote vectors as
⇀

p = p(x, y) ∈ Ω× Ω, and the nonlocal
divergence (divw

⇀

p)(x) : Ω× Ω → Ω is defined as the adjoint
of the nonlocal gradient

(divw
⇀

p)(x) :=
∑
y∈Ω

(p(x, y)− p(y, x))
√
w(x, y). (10)

The nonlocal H1 norm and the NLTV are defined as follows:

Jw
NLH1(u) :=

∑
x∈Ω

|∇wu(x)|2 =
∑
x∈Ω

∑
y∈Ω

× (u(x)− u(y))2 w(x, y) (11)

Jw
NLTV (u) :=

∑
x∈Ω

|∇wu(x)| =
∑
x∈Ω

×
√∑

y∈Ω
(u(x)− u(y))2 w(x, y). (12)

In this paper, we are interested in NLTV because, analogous
to classical TV, the L1 norm is generally more efficient than the
L2 norm for sparse reconstruction.

C. MNLTV

For multichannel images, Blomgren and Chan [30] presented
a multichannel TV (MTV) regularization by coupling the
channels

JMTV(u) :=
∑

x∈M×N

√√√√ B∑
j=1

|∇uj(x)|2 (13)

∇uj(x)=

√
(uj(x)−uj(rx))

2+(uj(x)−uj(bx))
2 (14)

where rx and bx represent the nearest neighbor to the right
and below the pixel, respectively. The work of Yuan et al. [31]
demonstrated that this MTV model has a powerful spectrally
adaptive ability in remotely sensed image processing.

Inspired by the previously mentioned work, we extend NLTV
to MNLTV and propose an MNLTV regularization for multi-
spectral images

Jw
MNLTV(u)

:=
∑

x∈M×N

√√√√ B∑
j=1

|∇wuj(x)|2

=
∑

x∈M×N

√√√√ B∑
j=1

∑
y∈M×N

(uj(x)− uj(y))
2 w(x, y). (15)

D. MNLTV Inpainting Models

According to the inpainting models mentioned in Section II,
the corresponding MNLTV inpainting model is

û = argmin
u

Jw
MNLTV(u), s.t. Au = f. (16)

In a noisy case, the model is then written as

û = argmin
u

Jw
MNLTV(u), s.t. ‖Au− f‖2 ≤ σ. (17)

IV. OPTIMIZATION

The Bregman methods for image processing introduced in
[32] have been demonstrated to be efficient optimization meth-
ods for solving sparse reconstruction, such as the l1 norm and
TV. Recently, based on a Bregman method, a well-performing
optimization algorithm called BOS [33] was developed to pro-
vide a general algorithm framework for equality-constrained
convex optimization. In this paper, the BOS algorithm is ex-
tended and used to optimize the MNLTV inpainting model in
(16) and (17). The basic idea of this optimization algorithm can
be stated as follows.

First, the constraint problems in (16) and (17) are enforced
with the Bregman iteration process{

uk+1 = argminu

(
μJw

MNLTV(u) +
1
2‖Au− fk‖2

)
fk+1 = fk + f −Auk+1.

(18)



178 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 1, JANUARY 2014

where μ is a positive parameter μ > 0; it is the regularization
term scale. The first subproblem can sometimes be difficult
and slow to solve directly since it involves the inverse of the
operator A and the convex function Jw

MNLTV in (16). The
forward–backward operator splitting technique is used to solve
the unconstrained subproblem in (18) as follows: For i ≥ 0,
uk+1,0 = uk

⎧⎪⎨
⎪⎩

vk+1,i+1 = uk,i − δA(uk+1,i − fk)
uk+1,i+1 = argminu

×
(
μJw

MNLTV(u) +
1
2δ‖u− vk+1,i+1‖2

) (19)

where δ is a positive parameter such that 0 < δ < (2/‖A‖).
We can see that the efficiency of the BOS algorithm depends
on solvers for the u subproblem in (19). Here, we extend the
split Bregman method proposed by Goldstein and Osher in [34]
to the multichannel nonlocal case. It has proved to be a fast
and efficient algorithm to minimize the MNLTV function in the
subproblem

û = argmin
u

(
μδJw

MNLTV(u) +
1

2
‖u− v‖2

)
. (20)

The idea is to reformulate the problem as

û = min
u

⎛
⎝μδ

∑
x∈M×N

√√√√ B∑
j=1

dj(x)2 +
1

2
‖u− v‖2

⎞
⎠

s.t. dj = ∇wuj . (21)

By enforcing the constraint problem with a Bregman iter-
ation process, the extended MNLTV split Bregman algorithm
using the MNLTV norm is given by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(uk+1, dk+1)=minu

(
μδ

∑
x∈M×N

√∑B
j=1 dj(x)

2

+ 1
2‖u−v‖2+ λ

2 ‖d−∇wu−bk‖2
)

bk+1=bk+∇wu
k+1−dk+1

(22)

where λ is the scale of penalty term ‖d−∇wu− bk‖2; it is
usually inversely proportional to the value of μ · δ. The solution
of (22) is obtained by performing alternately with the following
two subproblems:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uk+1 = minu
(
1
2‖u− v‖2 + λ

2 ‖dk −∇wu‖ − bk
)

dk+1 = mind

(
μδ

∑
x∈M×N

√∑B
j=1 dj(x)

2

+ λ
2 ‖d−∇wu

k+1 − bk‖2
)
.

(23)

The subproblem for uk+1 consists of solving the linear
system

(uk+1 − v)− λdivw(∇wu
k+1 + bk − dk) = 0. (24)

As the linear function in (24) is strictly diagonal, we can
solve uk+1 by a Gauss–Seidel algorithm.

The dk+1 subproblem equation in (23) can be solved using a
shrinkage operator as follows:

dk+1 = shrink

⎛
⎝
√√√√ B∑

j=1

(
∇wu

k+1
j + bk

)2
,
μδ

λ

⎞
⎠ (25)

where

shrink(x, τ) =
x

|x| max (|x| − τ, 0) . (26)

The weights computed from the initial image are not gen-
erally sufficient to give a good estimation. Therefore, it is
necessary to adapt the weight used in nonlocal regularization,
according to (5), during the iteration.

The optimization procedure of the MNLTV inpainting model
is described in Algorithm 1.

Algorithm 1. MNLTV Inpainting Algorithm.

Initialization: u0 = v0 = 0, f0 = f, nOuter, nInner.
While k < nOuter and ‖Auk − f‖ > tolerance do

for i = 0 to nInner do
uk+1,0 = uk;
update vk+1,i+1 = uk+1,i − δA(uk+1,i − fk);
solve uk+1,i+1 by the split Bregman algorithm:

uk+1,i+1 = argmin
u

(
μδJw

MNLTV(u) +
1

2
‖u− vk+1,i+1‖2

)

end
update the nonlocal weight according to uk+1 : wk =
w(uk+1) by (5);
update fk+1 = fk + f −Auk+1;

End

The convergence of the BOS optimization algorithm has
been proved theoretically in [33]. Moreover, we experimentally
verified that it has a very fast convergence rate. Then, the com-
putational complexity of the proposed algorithm is provided.
We assume that the number of the bands of the input image
is L, and the total number of the pixels in each single band
is N . Then, in Algorithm 1, the computational complexity for
updating v is O(NL). In the step of solving u by the split
Bregman algorithm, it is resolved into two subproblems as
in (23), and the u subproblem is just a fast Gauss–Seidel
algorithm, with a linear computational complexity of O(N2L),
while the d subproblem is an efficient soft threshold/shrinkage
operator, with a linear computational complexity of O(N2L2),
and then, in the update of nonlocal weight w, the computational
complexity is O(N2L). Finally, the computational complex-
ity for updating f is O(NL). Taking all the aforementioned
parts into account, the total computational complexity for
Algorithm 1 is O(N2L2).
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Fig. 1. Experimental results for the recovery of noise and vertical dead lines. (a) Original image. (b) Simulated image contaminated by noise and dead lines.
Recovered images using the following: (c) Proposed algorithm, (d) NLTV inpainting algorithm, (e) MTV inpainting model, (f) NL-means inpainting method,
(g) MCA algorithm, and (h) Criminisi method.

V. EXPERIMENTS

A. Experiments on Simulated Data

In the simulation experiments, we conduct three experiments
to test and verify the efficacy of our proposed MNLTV inpaint-
ing algorithm. Results of the three experiments are shown in
Figs. 1–4. The peak signal-to-noise ratio (PSNR) index is used
to give a quantitative assessment of the results of the simulated
experiments from the gray-level fidelity aspect. The structural
similarity (SSIM) index [35] is used to give a quantitative
assessment of the results from the structure-level fidelity aspect.
Recently, some image quality assessment indices based on
human vision system have been proposed, such as metric Q
[36] and the multiscale geometric analysis-based indices [37],
which provide a quantitative measure of image content (i.e.,
sharpness and contrast in visually salient geometric features
such as edges). In this paper, we use the metric Q index to give
a quantitative assessment of the inpainting result from a human
vision aspect

PSNR =10 log10

(
2552 ∗MN

‖û− u‖2
)

(27)

SSIM =
(2μuμû + C1)(2σuû + C2)

(μ2
u + μ2

û + C1) (σ2
u + σ2

û + C2)
(28)

Q = s1
s1 − s2
s1 + s2

(29)

where MN is the total number of pixels in the multichannel
image, û and u represent the recovered image and the original
clear image, and μu and μû represent the average gray values
of the original clear image and the recovered image, respec-
tively. σu and σû represent the variances of the original clear
image and the recovered image, respectively. σuû represents the
covariance between the original clear image and the recovered
image. C1 and C2 are two constants. s1 and s2 are two singular
values of the gradient matrix of the recovered image.

The first simulated data test of the proposed algorithm is
for the recovery of vertical dead lines in a QuickBird image
with the resolution of 0.6 m. We use three bands of the red,
green, and blue to undertake this test. Fig. 1(a) shows the
original subimage. In this experiment, the simulated image
is contaminated by dead lines of 7-pixel widths. Moreover,
we simulate the additive noise by adding different variance
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Fig. 2. (a)–(h) Detailed regions cropped from Fig. 1(a)–(h).

Fig. 3. Inpainting experiment for the recovery of random dead pixels. (a) Original image. (b) Simulated image contaminated by 50% dead pixels. Recovered
images using the following: (c) Proposed algorithm, (d) NLTV inpainting algorithm, (e) MTV inpainting model, and (f) MCA algorithm.

zero-mean Gaussian noise in different bands. This is shown
in Fig. 1(b). To make a comparative analysis, the proposed
MNLTV inpainting algorithm is compared with the NLTV in-
painting algorithm [27], the MTV inpainting algorithm [31], the
NL-means inpainting method [29], the morphological compo-
nent analysis (MCA) method [5], and the Criminisi method [6].
The recovery results of each method are shown in Fig. 1(c)–(h).

From Fig. 1 and its zoomed detailed regions in Fig. 2, it
can be seen that the proposed MNLTV algorithm gives better
denoising and inpainting results, compared to the results of the

other methods. In the MNLTV result, on the one hand, the
noise is suppressed more thoroughly, and on the other hand,
the recovery of dead lines is spatially continuous, with more
convincing visual quality. The result of the NLTV algorithm is
not as sharp as the result of our proposed algorithm, and some
noise still remains in the smooth regions because the noise in-
tensity difference between different bands is not taken into con-
sideration and an equal denoising strength is used in all bands.
For the MTV algorithm, the result suffers from a “staircasing”
effect; moreover, it is incapable of performing narrow and long
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Fig. 4. Experimental results for the removal of map lettering. (a) Original image. (b) Simulated photographic map. Recovered images using the fol-
lowing: (c) Proposed algorithm, (d) NLTV inpainting algorithm, (e) MTV inpainting model, (f) NL-means inpainting method, (g) MCA algorithm, and
(h) Criminisi method.

region connection. In the result of the NL-means inpainting
method, the narrow and long regions also cannot be connected
completely, and the denoising result is oversmoothed. The
result using the MCA algorithm has a strong ripple effect and
spectral distortion, and the recovery of the dead lines shows
severe artifacts, particularly in the homogeneous region. From
the result of the Criminisi method, we can see that it is incapable
of denoising at all: The noise in the resulting image has the
same intensity as the contaminated image, and a lot of spurious
detailed information appears in the recovery result of the dead
region due to its block filling process.

It is to be noted that all the test image data in our paper
are red, green, and blue true color composite of the original
acquired data.

Next, the proposed algorithm is tested with another type
of inpainting problem, in which dead pixels are randomly
distributed. Fig. 3(a) shows an original GeoEye-1 image with
the resolution of 1.65 m. In this experiment, the simulated
image is contaminated by 50% random dead pixels in all bands,
as shown in Fig. 3(b). The proposed MNLTV algorithm is
compared with the NLTV algorithm, MTV model, and MCA
algorithm. The other two comparative methods used in the first
experiment, the NL-means inpainting method and the Criminisi
method, fail to work in this experiment because the missing data
are distributed in almost every patch of the image and occupy a
large-scale area. The ideas of patch matching and patch filling,
which the other two methods are based on, cannot work in this
situation. The recovery result of each method is shown in Fig. 3.

From Fig. 3, it can be seen that our proposed algorithm
achieves a nice inpainting result. The image quality is very
good, with most of the detailed information recovered well,
and the ground objects can be clearly distinguished. Although

the result of the NLTV algorithm is quite similar to that of
the proposed MNLTV algorithm from a visual perspective, the
quantitative measure of our proposed algorithm is improved, as
shown in Table I. In the result of the MTV algorithm, we can see
that it shows some blurring, and some edge information is not
recovered completely. For the MCA algorithm, the ripple effect
still exists.

The third simulation experiment involves the removal of
unwanted map lettering on remotely sensed images. Remote
sensing mapping, as a branch of cartography, provides a signif-
icant application for remotely sensed images and makes maps
more intuitive and richer in content. This kind of map, which is
known as a photographic map or image map, is made up of the
appropriate remotely sensed image and several auxiliary feature
notes on the image. Once the map is printed out or rasterized,
the feature notes cannot be separated from the image, i.e., we
cannot regain the original image. However, we sometimes need
to get the original remotely sensed image from a map for other
uses, particularly when the image data are rare or valuable.
In such a case, the map lettering needs to be removed, and
the original image needs to be reconstructed. The proposed
MNLTV method can be used to efficiently undertake this task.
In this experiment, figure notes were manually created on an
aerial image in order to simulate a photographic map, as shown
in Fig. 4(b). The original aerial image with a 0.2-m resolution
is shown in Fig. 4(a). Fig. 4(c) shows the result of our proposed
method. The results of the other comparative methods are
shown in Fig. 4(d)–(h).

Fig. 4(c) shows that our proposed method is capable of
removing the map lettering and recovering a clear image that is
much closer to the actual image. Although it may not be exactly
precise, the visual quality is convincing enough. In the results
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TABLE I
PSNR, SSIM, AND METRIC Q VALUES OF THE THREE SETS OF SIMULATED EXPERIMENTAL RESULTS

Fig. 5. (a)–(h) Detailed regions cropped from Fig. 4(a)–(h).

of the NLTV inpainting algorithm and the NL-means inpainting
algorithm, it appears that there is spectral distortion in some
inpainted regions. The results of the other approaches all show
the same flaws as the results of the foregoing experiments. For
the convenience of visual judgment, a series of detailed regions
cropped from Fig. 4(a)–(h) is shown in Fig. 5(a)–(h).

The effectiveness of the proposed MNLTV inpainting
method can also be illustrated by the quantitative assessment.
The PSNR, SSIM, and metric Q values of Figs. 1, 3, and 4
are shown in Table I to give an overall quantitative assessment
of the results. It can be seen from Table I that, for the results
in every simulation experiment, the PSNR values using the
MNLTV model are higher than those of the other methods. All
three groups of simulated data experimental results indicate that

the proposed MNLTV method can provide a better and more
robust inpainting result.

In nonlocal methods, the filtering parameter h in (5) can
exert considerable influence on the inpainted image. Here, we
test the sensitivity of this parameter. For each of the three sets
of simulated experimental data, we select a series of different
h’s to implement the inpainting methods of NLTV and the
proposed MNLTV. The relationship of the acquired PSNR value
and h is shown in Fig. 6. From Fig. 6(a)–(c), it can be seen
that the PSNR values using the MNLTV method fluctuate less
than those using the NLTV method with the change in h.
On two sides of the peak point, the PSNR values using the
MNLTV method descend much more slowly, while the PSNR
values using the NLTV method show a dramatic decline. This
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Fig. 6. PSNR values corresponding to different values of h for each of the three simulated experimental results: (a) First simulated experiment, (b) second
simulated experiment, and (c) third simulated experiment. The x-axis represents the value of h, and the y-axis represents the PSNR values of the resulting images.

Fig. 7. Experimental results for filling the gaps in a Landsat-7 ETM+ SLC-off image. (a) Original ETM+ SLC-off image. Recovered images using the following:
(b) Proposed algorithm, (c) MTV inpainting model, (d) NL-means inpainting method, (e) MCA algorithm, and (f) Criminisi method.

phenomenon can be explained as follows. From (5), we can
see that h indicates the exponential decay rate that is also the
decay rate of weight W . The decay of W has a significant effect
on the nonlocal gradient ∇wuj(x) from (9) within each band.
However, from (15), we can deduce the multichannel nonlocal
gradient magnitude at point x

|∇mwu(x)| =

√√√√ B∑
j=1

|∇wuj(x)|2. (30)

It can be seen that, for the MNLTV model, the nonlocal
gradient magnitude of every point is determined by the combi-
nation of multichannel data, so it will be more steady and robust
than just using a single band of data, as in the NLTV model.

B. Real Data Experiments

The SLC of the Landsat-7 ETM+ sensor failed in 2003, re-
sulting in about 22% of the pixels per scene not being scanned.

The SLC failure has seriously limited the scientific application
of ETM+ data. Our first real data experiment involves filling
the gaps in a Landsat-7 ETM+ SLC-off image. The test image
is shown in Fig. 7(a), with a size of 200 ∗ 200 pixels and a
4–5-pixel width of dead lines, and the resolution is 30 m. The
result of our proposed MNLTV method is shown in Fig. 7(b).
The other comparative results are shown in Fig. 7(c)–(f).

From Fig. 7 we can see that the image using our proposed
method has a better filling result than that of the other existing
methods: It appears more spatially continuous, without stripes,
and the edge information and the detailed information are well
filled. However, in the results of the MTV and NL-means
inpainting method, the narrow and long regions cannot be
connected. The result using the MCA algorithm shows some
artifacts in the homogeneous vegetation region. There are still
visible stripes left in the result of the exemplar-based method.
For the convenience of visual judgment, a series of detailed
regions cropped from Fig. 7(a)–(h) are shown in Fig. 8(a)–(h).

In the second real data experiment, the proposed MNLTV
algorithm is tested with the reconstruction of a zebra crossing
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Fig. 8. (a)–(f) Detailed regions cropped from Fig. 7(a)–(f).

Fig. 9. Experimental results for the reconstruction of a zebra crossing. (a) Original image. (b) Zebra crossing contaminated with pedestrians. (c) Mask of the
area to be reconstructed. Reconstructed zebra crossings using the following: (d) Proposed algorithm, (e) MTV inpainting model, (f) NL-means inpainting method,
(g) MCA algorithm, (h) Criminisi method, and (i) Reconstructed image.
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Fig. 10. Experimental results for the removal of map lettering. (a) Original photographic map. Recovered images using the following: (b) Proposed algorithm,
(c) MTV inpainting model, (d) NL-means inpainting method, (e) MCA algorithm, and (f) Criminisi method.

on an aerial image. With high-resolution images providing an
important data source for terrain observation, how to extract the
required geoinformation rapidly and accurately has become an
important research field. Traffic signs are important land objects
in high-resolution images, such as the zebra crossing, which
marks a safe area for people to pass across roads. However,
in many cases, zebra crossings in high-resolution images are
contaminated with other features, such as pedestrians, as shown
in Fig. 9(a), which seriously interfere with the recognition and
extraction of the zebra crossing. Therefore, it is valuable and
necessary to reconstruct zebra crossings in images, not only
for enriching the information of a map but also for prompting
warnings in vehicle navigation, which helps to reduce the
occurrence of traffic accidents.

This experiment is performed on an aerial image with a
resolution of 0.1 m, as shown in Fig. 9(a). Our goal is to
remove the pedestrians on the zebra crossing and reconstruct
a complete zebra crossing. Fig. 9(c) shows the portion of the
pedestrian-contaminated region that should be reconstructed
(the black region). The region to be reconstructed is manually
segmented by the user, for the moment. A further investigation
of the pedestrian-contaminated area segmentation could help to
automate the entire reconstruction process. The reconstructed
results are shown in Fig. 9(d)–(h). It can be seen that we
finally get an image with a complete zebra crossing in it, as
shown in Fig. 9(i). The zebra crossing recovery results shown
in Fig. 9 indicate that the proposed MNLTV algorithm is able
to perform repetitive texture reconstruction well. The missing
regions reconstructed using our proposed method achieve both

the spatial and the spectral consistency with the surrounding
texture.

In the third real data experiment, the proposed inpainting
method is tested on an image map. The aim is to reconstruct
image data without map lettering. The map that we used as the
test data is an area of Washington, DC. Fig. 10(a) shows a part
of this map, with a size of 350 ∗ 300 pixels. The reconstructed
result of our proposed MNLTV method is shown in Fig. 10(b).
The other four comparative results are shown in Fig. 10(c)–(f).
A series of detailed regions cropped from Fig. 10(a)–(f) is
shown in Fig. 11(a)–(f). From the results, it can be seen that our
proposed MNLTV method is able to remove the map lettering
and reconstruct different ground objects well; however, it still
produces blurring to a certain extent in the regions where the
ground features are complex. Another competitive result for
this image is that of the Criminisi method.

The metric Q values of Figs. 7, 9, and 10 are shown in
Table II to give an overall quantitative assessment of the three
sets of real data experimental results.

VI. CONCLUSION

In this paper, we present an MNLTV inpainting model to deal
with the remotely sensed image reconstruction problem. The
proposed algorithm was applied to Landsat-7 ETM+ SLC-off
image gap filling, zebra crossing reconstruction from an aerial
image, and map lettering removal from a photographic map.
All the simulated data experiments and real data experiments
indicate that the reconstruction results using our proposed
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Fig. 11. (a)–(f) Detailed regions cropped from Fig. 10(a)–(f).

TABLE II
METRIC Q VALUES OF THE THREE SETS OF

REAL DATA EXPERIMENTAL RESULTS

algorithm are very effective, no matter whether the image is
noisy or not, how the missing data are distributed, or whether
the reconstructed region is homogeneous, edge or texture. Fur-
thermore, through an analysis of the filtering parameter, it was
demonstrated that the proposed MNLTV model is more robust
than the NLTV model. Nevertheless, there may still be room for
improvement of our proposed method. In the proposed MNLTV
model, the nonlocal weighting function calculation [see (5)]
is restricted to within a single band, and our future work will
focus on extending the weight calculation from a single band to
multiple bands. Moreover, some regularization parameters such
as μ in (18) and λ in (22) are set fixedly by manual selection,
and we will try to make them to be automatic and self-adapting
in the future work.
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