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An Adaptive Nonlocal Regularized Shadow Removal
Method for Aerial Remote Sensing Images
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Abstract—Shadows are evident in most aerial images with high
resolutions, particularly in urban scenes, and their existence ob-
structs the image interpretation and the following application,
such as classification and target detection. Most current shadow
removal methods were proposed for natural images, whereas shad-
ows in remote sensing images show distinct characteristics. We
have therefore analyzed the characteristics of shadows in aerial
images, and in this paper, we propose a new shadow removal
method for aerial images, using nonlocal (NL) operators. In the
proposed method, the soft shadow is introduced to replace the
traditional binary hard shadow. NL operators are used to reg-
ularize the shadow scale and the updated shadow-free image.
Furthermore, a spatially adaptive NL regularization is introduced
to handle compound shadows. The combination of the soft shadow
and NL operators yields satisfying shadow-free results, preserving
textures and holding regular color. Different types of shadowed
aerial images are employed to verify the proposed method, and
the results are compared with two other methods. The experimen-
tal results confirm the validity of the proposed method and the
advantage of the soft-shadow approach.

Index Terms—Aerial images, nonlocal (NL) operators, shadow
removal, soft shadow, spatially adaptive.

I. INTRODUCTION

HADOWS exist in most aerial remote sensing images with

high resolutions. The properties of a shadow, such as the
size, the shape, and the direction, are important factors when
reconstructing a 3-D model of the corresponding object, e.g.,
a building. However, the reduction or even loss of radiance
in the shadow regions causes problems in mapping, target
detection, and some other applications. Therefore, shadow re-
moval is an essential preprocessing step in the interpretation
of remote sensing images. There have been many studies of
shadow removal for natural images but few for remote sensing
images. We intend to analyze the characteristics of shadows in
aerial remote sensing images and propose a feasible method to
remove shadows from these images.
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Generally, shadow removal involves two procedures, i.e.,
detection and compensation. The latter aspect is the core of
our paper, although a detection result with high accuracy is im-
portant to the final shadow compensation (SC). Current image-
based shadow detection (SD) methods can be divided into two
types, i.e., unsupervised detection and supervised detection. No
samples are needed for unsupervised detection, as the shadows
are extracted by some prior characteristics, such as low intensity
in a single-band image. Recently, a blackbody radiator model
[1] has been put forward to detect shadows, which is based
on the physical properties of a blackbody radiator, i.e., the
temperature of direct light differs from the temperature of
scattered light. For multiband images, invariant color spaces are
often used to stress shadows, for shadow regions hold higher
hue and lower intensity than nonshadow regions [2]-[4]. In
supervised SD methods, samples are trained to construct the
feature sets representing shadows and nonshadows. Shadows
are then distinguished from the nonshadows by measuring the
differences between each pixel and each feature set. Classifiers,
such as Support Vector Machine (SVM), assisted by various
mathematical morphological operators, are often taken as the
measurements [5], [6]. All these methods distinguish shadows
and nonshadows absolutely, resulting in a binary mask with a
hard edge. However, the hard shadow is not sufficient to depict
shadows in high-resolution images, due to the nonuniform
distribution and the existence of penumbras. Therefore, the soft
shadow, in contrast with the binary hard shadow, has been
proposed in some literatures, which define the shadow by the
degree to which each pixel belongs to it. Thus, the soft shadow
depicts shadows more distinctly than the hard shadow and has
advantages in solving nonuniform shadow problems. The de-
gree to which each pixel belongs to the shadow is measured by
different means, such as the distance between the pixel and the
feature set [7], the morphological shadow index (MBI) [8], and
segmenting the shadow pixels by subjective thresholding based
on a histogram of shadow pixels [9]. The distance measure is
applicable for a pure shadow, which only covers one kind of
land surface. The MBI is unsupervised and efficient but fails to
detect those shadow pixels surrounded by darker pixels. Levels
in the subjective thresholding method are discrete and are not
enough for the nonlocal (NL) operators. Here, we obtain the
soft shadow by image matting [10], and we further investigate
the effectiveness of this approach in this paper.

There are two kinds of SC methods according to the com-
puting domain, i.e., SCs in the intensity and gradient domains.
The SC methods in the intensity domain include two different
modes. One takes advantage of the spatial similarity, restoring
the shadow regions by their surrounding nonshadow regions.
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Paired regions with the same land surface are usually needed as
the prior through manual selection. The relationship between
the intensity of the paired shadows and nonshadows is then
constructed by a computation method such as linear regression
[11] or histogram statistic [2], [6], [12]. The other mode of
SC in the intensity domain is based on the definition of the
shadow image, i.e., the product of a shadow-free image and
a shadow scale. Therefore, estimating the shadow scale of
a shadow image is the essential step in removing shadows.
Based on the spatial smoothness of the shadow scale, a thin-
plate function has been used to obtain the final shadow scale
in some literature [5], [13], [14]. For textural images, anchor
points are selected to maintain the textures in the shadows [5].
However, the spatial smoothness assumption is false when the
shadows are compound, i.e., composed of land surfaces with
great differences. Thus, the thin-plate function cannot simulate
this kind of complex situation very well.

A representative SC method in the gradient domain is the
Poisson method, which reconstructs a shadow-free image based
on the corrected gradients through the Poisson equation [15]-
[17]. However, the results of this method are highly reliant
on the SD results. Inaccurate location of shadows will lead to
unexpected artifacts, i.e., the residual shadow edges. Moreover,
the whole input image is reconstructed, without maintaining the
original nonshadow regions. For that reason, a serious color cast
will appear in the result if the corrected gradient is significantly
wrong, e.g., when many pixels with zero intensity (0-pixels)
exist in the shadow.

Consequently, we conclude that there are four main problems
with removing shadows in aerial remote sensing images:

1) The O-pixels commonly exist in dark shadows, which
would cause a serious restoration error and color cast in
the result.

2) Large shadows are compound, i.e., multiple land surfaces
appear in the same shadow, so that textures and edges
would be blurred if the spatial characteristics are ignored.

3) Shadows are nonuniform, i.e., the closer the surface is
to the occlusion, the darker the corresponding shadow is.
Algorithms will fail if all the shadow pixels are equally
treated.

4) For the high-spatial-resolution shadowed image, if the
influence of penumbras is not considered, residual fake
edges will appear in the final results.

To solve the aforementioned four problems, this paper
presents a new adaptive NL regularized shadow removal
method for aerial images in the intensity domain, compensating
shadows while maintaining nonshadows, based on an analysis
of the characteristics of shadows. NL operators differ from the
traditional image processing methods using local computation
over a time—frequency or multiscale domain. They respect
edges and textures better by employing pixels arbitrarily far
from the central pixel [18]-[22]. This paper explores the ad-
vantages of NL operators. Following the traditional shadow
removal methods, two steps, i.e., SD and SC, are included
in the proposed method. Image matting is used for detecting
soft shadows, and a NL regularized energy function, including
one fidelity item and two NL regularized items, is proposed

to complete the SC. Penumbras and nonuniform shadows are
supposed to be well delineated by soft shadows.

The second section of this paper discusses image matting and
the effect of soft shadows. Details of the NL regularized SC
method, including the spatially adaptive strategy particularly
for compound shadows, are given in the third section. The
mechanism of the proposed NL method for solving the four
problems of shadow removal is also discussed in this section.
Three different types of aerial image are employed to verify the
validity of the proposed method, and the results are exhibited
in the fourth section. The influences of the initial markings and
parameter settings on the SD and the compensation are also
discussed in this section.

II. SOFT-SHADOW DETECTION

As mentioned before, most SD methods distinguish shadow
and nonshadow absolutely. Exceptionally, the shadow matting
method derives the concept of shadow probability, which is
defined by a weighted color distance in natural images [7]. The
shadow probability is pixelwise, and it defines the shadow rela-
tively. Each pixel is encoded by a probability value to measure
the degree to which it belongs to the shadow. The shadow is soft
rather than hard. This concept corresponds with the existence of
penumbras. The penumbra is the transition part from a shadow
region to a nonshadow region. According to the calculation
method introduced in [23], the width of the penumbra might be
more than two or three pixels in a high-resolution aerial image.
Therefore, the impact of the penumbra cannot be ignored in
aerial remote sensing images. In the shadow probability map,
one pixel should have a value of 1 if it belongs to the umbra,
a value of O if it belongs to the nonshadow, and a value
between 0 and 1 if it belongs to the penumbra. The soft-shadow
concept is used in the proposed method. However, shadows in
natural images are usually unitary, whereas shadows in aerial
images are usually compound, i.e., each shadow is composed
of numbers of different types of surfaces. Thus, the original
definition in [7] is inappropriate for aerial images. Therefore,
we have to define the shadow probability in another way. Here,
image matting is used for the detection of soft shadows.

Image matting aims to extract a foreground object from
an image, based on limited user input, as well as estimating
the foreground opacity (“alpha matte”) [10]. Following the
description in [10], the color of the ¢th pixel is assumed to
be a linear combination of the corresponding foreground and
background colors, i.e.,

I = o;G; + (1 — Oéi)Bi, o€ [O, 1] (1)
where G; and B; denote the foreground and the background,
respectively, and «; is the pixel’s alpha matte. A closed-form
solution to natural image matting is presented by optimizing
the cost function, i.e.,

a = argmina’ La + Ma® — b%)Ds(a — bs) )

where matrix L is defined as the matting Laplacian, X is some
large number and set 100 as introduced in [10], Dg is a diagonal
matrix whose diagonal elements are 1 for constrained pixels
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and O for all other pixels, and bg is the vector containing
the specified alpha values for the constrained pixels and 0
for all other pixels. High-quality mattes were obtained by
testing this method on many natural images. Moreover, when
the foreground contains two or more types of materials, this
method also works well. Here, for detecting the soft shadow, we
suppose that the shadow is the foreground and the nonshadow
is the background. Thus, the matte can locate the soft shadow
relatively, and the normalized entry of each pixel represents the
rough probability of it belonging to the absolute shadow, i.e.,
ps = a.. We will discuss the validity of image matting for SD in
the experimental part.

III. IMAGING MODEL FOR SHADOWED AERIAL IMAGES

For an aerial shadow image, intensity I(z) can be assumed
to be composed of three components, i.e., albedo R(z), illu-
mination L(x), and the shadow scale S(x). Albedo R(z) is
an invariant, which is only related to the physical property
of the surface. Illumination L(z) is usually assumed to be
spatially smooth, without intensity leaps [24]-[26]. Intensity
leaps in a shadow image are only attributed to the shadow scale
component. Therefore, the formation for a shadow image can
be simplified as

I(x) = F(x) - S(x) 3)

where F'(z) = R(x) - L(xz) denotes the shadow-free image
with the influence of the illumination. In the log domain, (3)
is reformulated as

i(z) = f(z) + s() @)

where i, f, and s are the logarithms of I, F', and S, respectively.
The distribution of the shadow scale is consistent with the soft
shadow, while the entry of the shadow scale is close to the
complement of the shadow probability in the [0, 1] range. This
suggests that a shadow pixel with high shadow probability has
a low shadow scale factor. We intend to take advantage of the
consistency of the distribution of these two variables and put
NL operators on the shadow scale.

IV. NL REGULARIZED SHADOW COMPENSATION METHOD

An energy function, including three items for SC, is con-
structed. The first item ensures the approximation of the result
to the predicted shadow-free image. The second and third
items are NL operators, used to constrain both the shadow
scale and the updated shadow-free image. The regularization
parameter of the third item is pixelwise adaptive, which solves
the problem of nonuniform shadows. Furthermore, clustering
is performed in the compound shadow region to treat different
surfaces differently, which retains the edges and the textures in
the shadow region.

A. Fidelity Item

The proposed NLSC method follows the rule of maintain-
ing the nonshadow regions while compensating for the lost
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Fig. 1. Gaussian distribution of shadows and nonshadows.

intensity in the shadow regions. Therefore, the data fidelity
item, making the result approximate the predicted shadow-free
image f , is included in the energy function. In the nonshadow
regions, the original intensities are maintained; in the shadow
regions, the predicted shadow-free image is estimated by the
color transfer, as introduced in [7] and [27]-[29]. The color
transfer synthesizes a region by transferring some aspects of
the distribution of the data points in color space from a source
region to a target region. In our method, the source region
is the shadow, and the target region is the nonshadow region
selected by the user, which belongs to a similar surface type
as the shadow region. Let T'(i(z)) be the transformed intensity,
which should be nonnegative, and ¢ and < denote the shadow
and nonshadow regions, respectively. Let y. and o be the mean
and the standard deviation of ¢, i.e., ¢ ~ N(uc,0?2); similarly,
let piz and o¢ be the mean and the standard deviation of G, i.e.,
<~ N(uz,02). Then

T (i(z)) = pc + 3 (i) — o) )

For all shadow pixels, no matter if they have low or zero
intensities, the transformed intensities based on (5) can be
assured to be nonnegative. This transformation is a monotone
increasing function, and i(x) is nonnegative. Thus, if only
T(0) = pz = (05/0¢) - phs 2 0, ie., (pz/pc) = (0g/0¢), the
T'(-) function is nonnegative. Supposing an extreme condition,
the minimum values of the shadow and nonshadow regions are
both zero. In Fig. 1, the blue curve represents the distribution
of shadow pixels, and the red one represents the distribution
of nonshadow pixels, where pz > pc. W, and We are the
approximate half-widths of these two Gaussian peaks, and it
can be then seen that uc = W = 20 and pc = We = 30c =
(nz/1ie) = (30¢/20¢) > (0¢/0¢). In most cases, the minimum
of the nonshadow regions is larger than zero, i.e., Wz > 30¢;
thus, this inequality is a necessary condition for 7T'(-) > 0.
Therefore, this intensity transformation is not limited to the
nonzero pixels, and it also works when some O-pixels exist in
the shadow regions.
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Integrating the shadow probability, the original intensity, and
the transformed intensity, the predicted shadow-free image f
can be expressed as

f(x) =i(z) (1 = ps(2) + T (i(2)) ps(2). (6)

The data fidelity item is constructed by the L2-norm, i.e.,

R(f) =D If = flze ©)
Q

B. NL Operators in Shadow Compensation

NL operators take advantage of pixels arbitrarily far away
from the central pixel. Different weights based on the structural
similarity between patches are arranged for the involved pixels.
The structural similarity is usually measured by the distances in
the gray and spatial domains. Let Q C R", z, y € , and v(z)
be a real function. The weight between x and y is defined by
the following formula:

(Galo@+) = v(y+IP) ()

w(z,y) =exp | — % (8)

where (G, is a Gaussian kernel with the standard deviation
a, and h is a filtering parameter, which corresponds to the
noise level. The weights are nonnegative and symmetric, i.e.,
w(x,y) > 0and w(x,y) = w(y, z). Fig. 2 shows the structural
elements and the weights between the central and surrounding
pixels. Pixels close to the central pixel and having a similar
structure to it are assigned high weights. In contrast, low
weights are assigned to those pixels far away from and different
from the central pixel.

Two types of regularizing NL functions were proposed in
[21]. One type is based on the NL gradient, which is isotropic;
the other is based on differences, which is anisotropic. Here,
we use the first type. The NL gradient V,v(z) : © — Q x Qs
defined as the vector of all the partial derivatives, i.e.,

Vyo(z) = (v(y) — v(x)) Vw(z,y). ©)

The gradient-based NL function is

J(v) = /qs(\vva) dx
Q

= /QS / (v(y) —v(x))? w(z,y)dy | dz  (10)
Q Q
where ¢(-) is a positive function. Here, we use the quadratic NL

Laplacian prior, setting ¢(s) = s, and then, the discretization of
(10) can be written as

JW)=Y_IVoulP=" Y (o(y)—v(@) w(z,y) A1)

e yeajNL

where 2N denotes the NL neighbors around z.

1) NL Regularization for the Shadow Scale: Intensity leaps
in a shadow image are attributed to the shadow scale, which
is regionally smooth. The inner and outer parts of the shadow
scale are both smooth, whereas the transition parts from the
shadow to the nonshadow, i.e., the penumbra regions, depict
the shadow edges. In order to remove shadow edges without
residues, the soft edges should be maintained in the shadow
scale. The NL operator is used to regularize the shadow scale
to ensure the regional smoothness and preserve the soft edges.
Considering the consistency of the shadow scale and the soft
shadow, the NL weights in the shadow scale are calculated
based on the soft shadow, as (12) shows. The NL regularization
for the shadow scale is expressed as (13). Thus, the spatial
smoothness of the homogeneous regions is ensured while re-
taining the textures and the edges, i.e.,

(Galps +) = psly+)2) (0)

ws(z,y) = exp % (12)
J(s) = Z |vw55 2
Q
=3 D (s(y) = s(x)? wy(z,y),
e ycgNL
s=i—f (13)

where s represents the shadow scale in the logarithm domain,
ws is the NL weight calculated based on the soft shadow,
) denotes the total image region, and 2N denotes the NL
neighbors around x.

2) NL Regularization for the Updated Shadow-Free Image:
Abundant textures and some noise exist in the shadow regions.
Thus, it is reasonable to regularize the shadow-free image by
the NL Laplacian prior. Since the shadow-free image f is
unknown, the weights are calculated based on the predicted
shadow-free image f as follows:

(Ga[fet - Fwe o[ ) 0
2

wy(z,y)=exp | — (14)
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Then, the NL item for the shadow-free image is expressed as

T =D IV, fP=0" " (Fy) = f(2)* wy(z,y).
Q

z€Q ycaNL
15)
Consequently, the NLSC model is constructed as
E(f) = r(f)+As- J(s) + A - J(f) (16)

where \; and \; are the regularization parameters used for
balancing the contribution of each item. Through minimizing
the energy function, we can obtain the shadow-free image by
the following formula:

Y (s(2) = s(y))”

f= argm;nz If = Fli3e+As -
Q

xws(@,y) + A Y (f@) = f@) we(z,y)| . A7)

yexNL

The energy function is quadratic; thus, its derivative
(OE/0f) =0 is linear. We implement the simple iterative
Gauss—Seidel algorithm to solve the linear problem [7].

3) Parameter Selection: As mentioned before, in the soft-
shadow image, a small entry represents a low shadow proba-
bility, and in contrast, a large entry represents a high shadow
probability. Correspondingly, in the spatial domain, pixels with
nonzero and low entries locate in the penumbra, pixels with
high entries locate in the umbra, and pixels with zero entries
represent the nonshadow. In order to get rid of the residual
fake edges in the resulting shadow-free image, the second NL
item should contribute more than the first NL item around the
penumbra. This indicates the negative correlation between the
regularization parameter \; and the entry of the soft shadow
ps. Thus, parameter A\; can be adaptively set according to
the shadow probability. Here, we take the negative exponent
function to simulate the negative correlation, i.e.,

At = c¢1 - exp(—ca - ps) (18)
where ¢; and ¢, are nonnegative, ¢; denotes the biggest \;, and
¢ describes the curvature of the exponent curve. The variation
tendency of A; is shown in Fig. 3. When ¢z > 1, the degree
of smoothing in the shadow-free image has a larger difference
between the umbra and the penumbra than in the situation
where co < 1. Hence, the shadow-free image can be smoothed
in a spatially adaptive manner.

C. Improved NL Model: SA-NLSC

Shadows cast by tall manmade or natural objects are usually
compound, particularly when the solar altitude is low. More
than two types of land surfaces are usually contained in such
a shadow, where the intensity attenuation varies according to
the different physical properties of the different land surfaces.
Thus, assuming the shadow scale to be spatially smooth in the
whole shadow region is inappropriate, particularly when totally
different land surfaces coexist in the same shadow. Therefore,
we propose a spatially adaptive NL (SA-NL) regularization

c,=1
—e— <t
—a— 51 ||

05F

' ' s L L L L
1] 01 02 03 04 05 06 07 08 09 1
Py

Fig. 3. Variation tendency of A;.

item for the shadow scale. SA-NL first clusters pixels in the
shadow into m classes and then appends this clustered result
to the NL operator on the shadow scale. The NL weights are
calculated based on the clustered soft shadow, i.e.,

P =ps-C (19)
where C' denotes the clustered image, and
2
i (GalpE @+ )—pS +I) (©)
w (z,y) =exp | - )

h2

The inclusion of a clustered image increases the separability
of the pixels. Moreover, it also makes sure that the weights are
adaptively arranged, in accordance with the spatial properties.
Pixels with similar structures but belonging to different classes
are assigned with low weights. Only pixels belonging to
the same class and with similar structures are assigned with
high weights. This spatially adaptive behavior regionally
smooths the shadow scale. It also avoids blurring the common
boundaries of the adjacent classes and maintains the edges.
Hence, the spatially adaptive NLSC (SA-NLSC) model can be
expressed as

Y (s(2) = s(y))”

yexNL

f= argm}nz If = Fli3e+As -
Q

xwS (z,y) + M- Y (f(@) = F©)* wp(z,y)

yexNL

21

Summarizing the main procedure of the proposed NL
method, the algorithm flowchart is shown in Fig. 4. A syn-
thesized image including two types of land surfaces is used. It
should be noted that the dashed circle in the soft shadow marks
the entire region of the shadow, including the umbra and the
penumbra. The two curved surfaces beside the shadow scale
are the 3-D representations of the results of NL and SA-NL.
The NL result is entirely smooth, whereas the SA-NL result is
regionally smooth, preserving the boundary that divides the two
types of land surfaces.
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V. EXPERIMENTAL RESULTS

In this section, different aerial images, containing nonuni-
form, compound, and 0-pixel existing shadows, are employed
to verify the ability of the proposed method. The halfway
results and the shadow-free results of the five images are both
presented. To evaluate the effect of this NL method, the results
are compared with two other shadow removal methods.

A. Procedure and Results of the Proposed NL Method

Fig. 5 shows an aerial remote sensing image containing
several buildings and trees. The cast shadows are almost all
attributed to manmade buildings. For the detection of shadows

Clustered

(®

Shadow removal results of the first aerial image. (a) Original image. (b) Marked (white) shadow and (black) nonshadow for soft SD. (c) Soft shadow.
(d) Hard shadow. (e) Morphological filtered hard shadow. (f) Shadow-free result.

by image matting, samples are first marked by scribbles in
the original image, as shown in Fig. 5(b). White scribbles
represent shadow regions, and black ones indicate absolute
nonshadow regions. The matting result, as shown in Fig. 5(c),
locates the shadows in a soft manner. Large entries indicate
that the corresponding pixels have a high probability of be-
longing to the umbra; in contrast, small entries represent a low
probability. Thus, the soft shadow is also named the shadow
probability in this paper. From Fig. 5(c), it is shown that almost
all the shadows have been extracted. Thresholding the soft
shadow, we obtain the common hard shadow, i.e., a binary
mask [see Fig. 5(d)]. Eliminating fragments and interstices
by mathematical morphological open and close operators, the
final hard shadow is shown in Fig. 5(e). As mentioned before,
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Fig. 6. Profiles of four selected penumbra parts. (a) Locations of the four parts in the original image. (b) Profile 1: 16th-20th pixel (the penumbra is located
between the 16th and the 20th pixel). (c) Profile 2: 10th—17th pixel. (d) Profile 3: 8th—15th pixel. (e) Profile 4: 12th—16th pixel.

the existence of the penumbra implies that the intensity changes
from the shadow to the nonshadow are gradual rather than
abrupt. The soft shadow can depict the gradual intensity change
in the penumbra properly, whereas the hard shadow is com-
posed of two values, i.e., 0 and 1. To further investigate the va-
lidity of the soft shadow, we select four parts of the penumbras
from the original image and display their profiles in the original
image and the soft shadow (see Fig. 6). The four selected
parts marked in the original image are presented in Fig. 6(a).
Fig. 6(b)—(e) shows the corresponding profiles, respectively, in
which entries in the original image and the soft shadow are
normalized to the range of [0, 1]. By a visual measurement,
the widths of the four penumbra are about 5, 8, 8, and 5
pixels, respectively. Correspondingly, the width of the soft-
shadow edge contains the same number of pixels. The intensity

changes in the first, third, and fourth penumbras are almost
linear, as the adjacent shadow and nonshadow have identical
land surfaces. Obviously, the tendency of the profile in the soft
shadow complements the intensity change in the penumbra.
When the intensity increases, the shadow probability declines.
Even when compound land surfaces occur in the penumbra,
as shown in the second penumbra profile in Fig. 6(c), the
soft shadow also reflects the shadow probability. The shadow
probability is valuable for processing nonuniform shadows in
high-resolution aerial images. Fig. 5(f) shows the SC result
of NLSC, as in (17), where A\; = 9, \; is adaptively selected,
c1 =8, and co = 2. The result is visually pleasing, in which
shadows are removed and the intensities of shadow pixels are
enhanced to be consistent with the surrounding nonshadow
pixels.
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(b)

(© (@

Fig. 7. First image from the UCF database: Building 1. (a) Original image. (b) Labeled 0-pixels. (c) Referenced hand-labeled shadow. (d) Detected hard shadow.
(e) Shadow removal result.

(©) (d

Fig. 8. First image from the UCF database: Building 1. (a) Original image. (b) Labeled 0-pixels. (c) Referenced hand-labeled shadow. (d) Detected hard shadow.
(e) Shadow removal result.

As the intensities of pixels in the umbra mainly comes red light contributes little. Thus, O-pixels almost all appear in
from the scattered environmental light, among the three visible the red channel. Figs. 7(a) and 8(a) are two shadowed aerial
channels, the blue light makes the biggest contribution, and the images from the database of the University of Central Florida,
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TABLE 1
SHADOW DETECTION ACCURACY MEASUREMENTS

Recall ratio (%) Precision ratio (%)

Building1 86.94 96.22

Building2 90.80 90.44

with referenced hand-labeled shadows. Figs. 7(b) and 8(b)
label the O-pixels in black and the other pixels in white. The
proportions of 0-pixels are about 18.28% and 22.25% in these
two images. In order to evaluate the detection accuracy, the
hard shadows are obtained by thresholding the soft shadows
resulting from the image matting. For a comparative analysis,
the referenced shadows and the detected hard shadows are
shown in Figs. 7(c) and (d) and 8(c) and (d). It can be observed
that no shadow region is missed and that the shadow shapes
are almost consistent with the referenced ones. To assess the
detection result objectively, the recall ratios and the precision
ratios of the two images are counted and listed in Table I. The
statistics suggest that binary shadows with a high accuracy can
be obtained by setting the appropriate thresholds on the soft
shadows. Figs. 7(e) and 8(e) show the SC results of NLSC. It is
shown that the shadows have been removed and no artifacts are
generated. Both pixels with low intensities and zero intensities
are enhanced using the NL neighbor pixels with high structural
similarity. The impacts of the penumbra are counteracted by the
NL operator based on the soft shadow. Meanwhile, the second
NL operator constrains the general distribution of the shadow-
free image. Thus, in the result, spatial smoothness is not only
restored in the transitional part located between shadows and
nonshadows but is also preserved inside the shadows.

The aforementioned experiments and analysis verify the
following: 1) Image matting is applicable for detecting soft
shadows, and the soft shadows can describe the distribution
of shadows better than hard shadows. 2) The NL operator
weighted by the soft shadows is useful for removing the penum-
bra of unitary shadows. 3) The adaptive parameter selection
strategy solves the nonuniform shadow problem. It ensures that
the second NL operator differently contributes among pixels
and ensures the smoothness of the results. 4) The NLSC method
performs well on the 0-pixels.

To investigate the effect of SA-NLSC, another two aerial
images with both compound and nonuniform shadows are used
in the following experiments (see Figs. 9—12). Two or more
land surfaces are included in the compound shadows. Taking
Fig. 9, for instance, the number 1 shadow labeled in Fig. 9(b)
covers two types of land surfaces, i.e., lawn and bare soil.
The intensity attenuation caused by the same shadow varies
between different types of pixels. Soft shadows of the two aerial
images, as shown in Figs. 9(b) and 11(b), depict the nonuniform
property of each shadow. Results of the NLSC method using
(17) are presented in Figs. 9(c) and 11(c). It can be seen that
the shadows are almost removed, but some unexpected artifacts
in the penumbra are generated, as the enlarged clipped regions
shown in Figs. 10(a) and (b) and 12(a) and (b). Moreover, some
color cast and blur appear in the restored shadow-free image

[see Figs. 10(c) and 12(c)]. If a larger \; value is assigned, the
restored shadow-free image will be more seriously blurred and
color cast, and intrinsic edges in the shadow will be blurred, as
Fig. 12(a) shows. These defects can be attributed to the lack
of knowledge about the land surfaces. The shadow scale of
the compound shadow should be regionally smooth, according
to the different land surfaces, rather than generally smooth.
Otherwise, even the soft shadow and the adaptive regularization
parameter cannot yield a pleasing result. Therefore, the SA-NL
method is derived to treat compound shadows, as interpreted in
Section IV.

We divide shadows by area into large shadows and small
shadows. Small shadows can be considered unitary, such as
the number 2 shadow in Fig. 9, while large shadows, which
are usually composed of more than 10000 pixels, are region-
ally treated, according to the spatial properties. Considering
the high spatial resolution of aerial images and the height of
the buildings in our experimental data, two or three types of
land surfaces are clustered in the large shadows. Usually, we
determine the cluster number by visual interpretation. Taking
Fig. 9, for instance, two classes are clustered by k-means in
the large shadows, and the class map C' is shown in Fig. 9(e).
Different classes in each shadow are marked by different colors.
Considering the nonuniform nature of the cast shadows, the
shadow probability represented by the soft shadow is combined
with the class map to construct the clustered soft shadow,
as shown in Fig. 9(f). A new NL weight is calculated based
on p¢ and applied in the NL regularization term for the
shadow scale. The result of this SA-NL method is presented
in Fig. 9(d), and the three images in Fig. 10(d)—(f) are the
enlarged partial regions clipped from Fig. 9(d). Compared with
the result of the original NLSC method shown in Figs. 9(c)
and Fig. 10(a)—(c), the unexpected artifacts (fake edges) are
eliminated, and the true color is restored in the SA-NLSC result.
The same operations are performed in Fig. 11(a). Three classes
are clustered in the large shadows, and the results are shown
in Fig. 11(d)—(f) and Fig. 12(d)—(f). From the enlarged regions
shown in Fig. 12(d)—(f), we can see that, aside from eliminating
artifacts and regulating cast color, the spatially adaptive method
also maintains the intrinsic edges well.

The experiments on these two aerial images validate the
effect of the SA-NL method. The regional smoothness of the
shadow scale is an effective way to process the compound
shadows. Meanwhile, with the assistance of the adaptive reg-
ularization parameter, the nonuniform nature of each shadow is
given sufficient consideration, which eliminates the fake edges.
Therefore, the combination of the three items in the energy
function (the fidelity item and the two NL regularized items)
can yield satisfactory shadow-free results.

B. Comparative Analysis

To further verify the effect of the proposed NL method for
shadow removal, we compare the shadow removal results with
the results of two other methods, i.e., Tsai’s method [2] and
the Poisson method [16]. Using the same SD method, the
shadow removal results of these three methods are presented
in Fig. 13. Three obvious defects exist in the results of Tsai’s
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(e)

Fig. 9. Results of the first image with compound shadows. (a) Original image. (b) Detected soft shadow. (c) Shadow-free result of NLSC. (d) Shadow-free result
of SA-NLSC. (e) Clustered map of shadows. (f) Clustered soft shadow.

s
@
Fig. 10. Enlarged regions clipped from Fig. 9(c) and (d). (a)—(c) Three regions clipped from Fig. 9(c). (d)—(f) Three regions clipped from Fig. 9(d).
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(e

Fig. 11. Results of the second image with compound shadows. (a) Original image. (b) Soft shadow. (c) Shadow-free result of NLSC. (d) Shadow-free result of
SA-NLSC. (e) Clustered map of shadows. (f) Clustered soft shadow.

(b)

(d (e)
Fig. 12.  Enlarged regions clipped from Fig. 11(c) and (d). (a)-(c) Three regions clipped from Fig. 11(c). (d)—(f) Three clipped regions from Fig. 11(d).
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Fig. 13. Results of the three shadow removal methods. Results of (left column) the proposed method, (middle column) Tsai’s method, and (right column) the
Poisson method.
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Fig. 14. Results of different initial markings. (a) Image with the least markings. (b) Image with an average number of markings. (c¢) Image with the most
markings. (d)—(f) Detected soft shadows for (a)—(c). (2)—(i) Shadow compensation results based on the SD results in (d)—(f).

method: 1) artifacts appear in the original penumbra region, as
the images in the middle column of Fig. 13 show; 2) shadow
pixels are overexposed, causing an amount of noise in the
results, particularly in the bright shadow pixels; and (3) shadow
pixels with very low or even zero intensities are inaccurately
reconstructed. Most O-pixels are rendered red, as shown in
Fig. 13(e) and (h), and dark-shadow pixels are rendered green,
as Fig. 13(b) shows. In contrast, in the proposed method,
substituting the soft shadow for the hard shadow avoids the
emergence of artifacts, controlling the spatial smoothness of the
result preserves the total exposure, and the fidelity item ensures
the approximation of restored 0-pixels to the true values. The
results of the proposed method are shown in the left column of
Fig. 13.

Examining the results in the right column in Fig. 13, it can be
seen that the Poisson method handles penumbras well, avoiding
artifacts. One defect, as with Tsai’s method, is the failure to
handle 0O-pixels. Serious errors appear in Fig. 13(f) and (i).
Another shortcoming of the Poisson method is that it adjusts
the whole scene without maintaining nonshadows. Thus, a

color cast often happens in the whole image, particularly when
shadows are very dark, such as in Fig. 13(c), (f), and (i). When
the shadows are light, the results of the Poisson method are
acceptable, such as in Fig. 13(1) and (o). The problem is that
the contrast of the restored shadow regions is lower than that
of nonshadow regions. This can be attributed to the lack of
knowledge about the physical properties of the different land
surfaces. Results of the SA-NLSR method exhibit clearer edges
and a more natural color.

Summarizing the experimental results and the aforemen-
tioned discussion, the nonlocal regularized shadow removal
(NLSR) method outperforms the other two methods and solves
the four main problems encountered with shadow removal in
aerial images. Even when the shadow is compound, nonuni-
form, includes O-pixels, and is affected by the penumbra, NLSR
yields a shadow-free result with clear textures and regularized
color. However, it should still be noted that selecting the appro-
priate regularization parameters A; and ¢ is essential for the
performance of the proposed method, particularly in avoiding
unexpected artifacts and noise.



LI et al.: ADAPTIVE NL REGULARIZED SHADOW REMOVAL METHOD FOR AERIAL REMOTE SENSING IMAGES 119

C. Discussion on Initial Markings and Model Parameters

Two factors, the initial markings and the model parameters,
have a significant effect on the SD and the SC.

Here, we investigate the influence of the initial markings on
the SD by undertaking experiments on a subsection of the first
image with compound shadows, as shown in Fig. 14. There are
some rules that should be obeyed when marking scribbles. For
the shadows, first, place the white scribbles as close as possible
to the obstacle because those regions contain the most likely
shadow pixels in the nonuniform shadow, as Fig. 14(a) shows.
Second, try to cover all the different kinds of land surfaces
[see the white scribbles in Fig. 14(b) emphasized by the red
dashed ellipse]. For the nonshadows, mark all the regions that
you do not want to mix with the shadows. In this paper, we are
only concerned about the shadows cast on the ground; thus, any
self-shadows located on buildings and roofs should be excluded
from the detection result. With an increase in black marks, as
the green dashed ellipses shown in Fig. 14(b) and (c), less self
shadows are mixed in the soft SD result [see Fig. 14(d)—(f)].
Moreover, the white scribbles located near the right margin
in Fig. 14(c) increase the entries of the corresponding pixels
in Fig. 14(f). The shadow-removed images based on these
three different soft shadows are presented in Fig. 14(g)—(i).
The results suggest that accurate SD results yield satisfactory
shadow removal results. Therefore, in order to obtain an ideal
detection result, we usually take the soft SD as an iterative
process. First, mark the black and white scribbles following the
aforementioned rules, and evaluate the detected soft shadow by
visual assessment. Then, add or remove the marks to increase
the precision of the detection result until most pixels are as-
signed the correct shadow probabilities.

In the NL regularized SC model, three parameters affect
the result from the following different aspects: s controls the
smoothness of the shadow scale, i.e., a larger A¢ results in
a smoother shadow scale and a sharper result; c; is directly
positively related to the smoothness of the shadow removal
result; and co controls the variation of \; between pixels with
different shadow probabilities, i.e., a larger ¢, leads to a larger
discrepancy. As there is no ground truth available, it is hard to
assess the shadow removal results quantitatively. Visual assess-
ment plays the significant role in parameter determination. It
is concluded, based on our experiments, that shadow removal
results become stable when \g and co are large enough, where
co should usually be greater than 1; and the method is highly
sensitive to cj, i.e., a too large c¢; will cause serious blur
in the final result, and it usually should be less than 1 for
8-bit data.

VI. CONCLUSION

A novel adaptive shadow removal method using NL op-
erators has been developed for aerial images. Image matting
has been used for effectively detecting soft shadows, and the
NL regularized SC yields satisfactory shadow-free results. Soft
shadows are demonstrated as being fit for depicting penum-
bras and nonuniform shadows. The fidelity item ensures the
approximation of restored shadow pixels to the ground truth.

The first NL operator, regularizing the shadow scale, preserves
the edges and the textures in the shadow regions. Using k-
means clustering to distinguish different land surfaces restores
clear boundaries in compound shadows. Combining the first NL
operator with the second NL operator (weighted by an adaptive
regularization parameter) avoids oversmoothing in the umbra
and undersmoothing in the penumbra.

Results of the proposed NL regularized method have been
compared with Tsai’s method and the Poisson method. Con-
sidering four different aspects (edges, textures, color, and ar-
tifacts), our method outperforms the other two methods. In
our future research, we would like to extend the isotropic
NL operator to an advanced anisotropic operator for better
restoration results.
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