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Clouds are obstructions for land-surface observation, which result in the regional information being
blurred or even lost. Thin clouds are transparent, and images of regions covered by thin clouds contain
information about both the atmosphere and the ground. Therefore, thin cloud removal is a challenging
task as the ground information is easily affected when the thin cloud removal is performed. An efficient
and effective thin cloud removal method is proposed for visible remote sensing images in this paper, with
the aim being to remove the thin clouds and also restore the ground information. Since thin cloud is
considered as low-frequency information, the proposed method is based on the classic homomorphic
filter and is executed in the frequency domain. The optimal cut-off frequency for each channel is deter-
mined semi-automatically. In order to preserve the clear pixels and ensure the high fidelity of the result,
cloudy pixels are detected and handled separately. As a particular kind of low-frequency information,
cloud-free water surfaces are specially treated and corrected. Since only cloudy pixels are involved in
the calculation, the method is highly efficient and is suited for large remote sensing scenes. Scenes
including different land-cover types were selected to validate the proposed method, and a comparison
analysis with other methods was also performed. The experimental results confirm that the proposed
method is effective in correcting thin cloud contaminated images while preserving the true spectral
information.
© 2014 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier
B.V. All rights reserved.
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1. Introduction Thin cloud removal is a challenging task since images of regions

covered by thin clouds not only contain the cloud information but

With the rapid development of earth observation technology,
remote sensing images with different spatial, temporal, and spec-
tral resolutions are now available. Most of these remotely observed
images are affected by atmospheric conditions and climatic factors,
such as clouds (Richter, 1996a,b; Richter et al., 2011). The channels
with short wavelengths, such as the visible channels, are more sen-
sitive to the atmospheric conditions than those channels with long
wavelengths, such as the infrared channels (Li et al., 2012). For the
study of the land surface, clouds are considered as a kind of con-
tamination, which result in the ground information being weak-
ened or even lost (Richter et al., 2011; Li et al., 2012). Therefore,
thin cloud removal is an important way to improve the quality of
remote sensing images.
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also the ground features, including the radiation and textures (Du
et al., 2002; Li et al., 2012). This results in the ground features
being directly influenced when the thin clouds are removed. The
model-based absolute atmospheric correction methods are capable
of eliminating the atmospheric attenuation if the knowledge of the
sensor profile and the atmospheric properties are available and
accurate (Jensen, 1996). However, the atmospheric properties are
difficult to acquire, even when planned (Jensen, 1996; Liang,
2001). Moreover, it has been found that the model-based methods
cannot handle the locally concentrated thin clouds effectively.
Thus, some image-based methods for thin cloud removal in remote
sensing images have been explored which are independent of the
model and correct the radiation of cloudy pixels. According to
the data source, the image-based methods can be divided into
two categories: multi-image based methods and single-image
based methods.
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The multi-image based methods correct the brightness of the
cloudy pixels by fusing complementary information from other
temporal or other sensor images (Du et al., 2002; Poggio et al.,
2012). Taking the cloud-free image as the reference data, a number
of fusion strategies have been used to correct the cloudy pixels. A
direct and simple fusion strategy is to replace the cloudy pixels
with the referenced clear pixels. However, there are some limita-
tions to the multi-image based methods. First, the cloudy image
should be positively related to the reference cloud-free images; if
not, the fusion will lead to breaks or errors in the results. Second,
the clouds in the multiple images should not cover the same
region; otherwise, no complementary information can be used to
restore the ground information. Third, geometric and radiometric
calibrations are necessary preprocessings, and the calibration accu-
racy is directly related to the final fusion result. Overall, the multi-
image based thin cloud removal methods have strict requirements
for data, which limits their application.

In contrast, the single-image based methods are independent of
the referenced data, so their applications are broad. Several image
enhancement methods have been used to restore the ground infor-
mation under thin clouds, of which histogram matching has been
the most widely used method (Stockham, 1972; Schreiber, 1978;
Fries and Modestino, 1979). A typical image-based atmospheric
correction method is the dark object subtraction (DOS) method,
which treats all pixels equally (Chavez, 1988; Zhang et al., 2002).
However, clouds are accumulations of liquid droplets or other par-
ticles suspended in the atmosphere, and are locally distributed
rather than globally. Thus, DOS is capable of eliminating the influ-
ence of the global path radiation but fails to remove local thin
clouds. Therefore, a level-based DOS method for thin cloud
removal has also been developed, which segments the haze/cloud
into several levels through haze optimized transformation (HOT)
before the correction (Zhang et al., 2002). HOT is designed for the
detection and characterization of haze/cloud distributions in Land-
sat scenes. It is a supervised procedure which requires cloudless
samples to construct the clear-sky line. Thus, the results of HOT
depend on the selection of cloudless samples from the cloudy
scenes. Advanced HOT has also been developed to overcome
land-cover confusion by introducing spatial constraints, but it still
depends on the sample selection (He et al., 2010). Researchers have
also tried to apply variational image processing methods to remote
sensing images, but these methods are too complicated to handle
the large scenes (Lan et al., 2013). All the above methods are oper-
ated in the spatial domain, but some methods that are operated in
the frequency domain (with high computational efficiency) have
also been developed. Thin clouds occupy the low-frequency parts
of the image in the frequency domain, and can be extracted by a
reasonable low-pass filter. Wavelet analysis (WA) (Du et al,
2002) and the homomorphic filter (HF) (Stockham, 1972;
Schreiber, 1978; Fries and Modestino, 1979; Liu and Hunt, 1984)
have both been utilized for thin cloud removal. WA involves the
choice of wavelet basis, which is complicated, whereas the HF pro-
cedure is direct and clear. Moreover, the basic assumption of the
HF can be used to model a cloudy image. However, the traditional
HF is a global operation, which means that the brightness of both
clear and cloudy pixels will be changed. This often leads to serious
radiometric distortion in the results.

The existing methods are either complicated or not effective
enough for the removal of locally aggregated thin clouds. In this
paper, a simple but highly efficient and effective method that is
based on the HF is proposed for the removal of thin clouds in vis-
ible remote sensing images. We intend to preserve the original
radiometric DN values outside of haze areas in the multispectral
image while removing the atmospheric scattering effects. This
paper is organized as follows: Section 2 describes the HF and its
use in thin cloud removal. The thin cloud removal method based

on the HF is developed and the details are presented in Section 3.
Several Landsat and high spatial resolution images are used in
the experiments in Section 4. Section 5 concludes the paper.

2. Use of the homomorphic filter for thin cloud removal

Generally, the observed remotely sensed image f(x, y) consists
of two radiation components, namely the reflected component
R(x,y) and scattered component S(x,y), in which the scattered
component is also named as the path radiance (Vermote et al.,
1997; Liang, 2001; Perkins et al., 2012). Thus, the observed image
can be expressed as f(x, y) = R(x, y) + S(x, y). It should be mentioned
that the path radiance is neglected in the presented method and
the effect of the thin cloud is attributed to the transmittance of
the atmosphere. Therefore, the observing model can be written
as follows, which is also the basic assumption of the HF.

fxy) =ixy) r(x.y) (1)

where i(x, y) represents the illumination component, which is dis-
tributed in the low frequency; and r(x, y) represents the reflection
component, which is distributed in the high frequency. Thus, the
illumination and reflection components can be estimated by low-
pass and high-pass filters in the frequency domain.

Thin clouds are mainly generated by the atmospheric scattering
of large particles, including dust, smoke, and water droplets (Du
et al., 2002). The spatial distributions of thin clouds are locally
aggregated and continuous over the land surface. Therefore, thin
clouds are usually assumed to locate in the low frequency of a
cloudy image (Liu and Hunt, 1984; Du et al., 2002). It is possible
to remove thin clouds by suppressing the low-frequency informa-
tion while enhancing the high-frequency information. The univer-
sal procedure of the HF for thin cloud removal is described in
Algorithm 1.

Algorithm 1. Thin cloud removal via the homomorphic filter

Input: observed image f(x, y).

Logarithm: z(x, y) = In f({x,y) = Ini(x, y) + In r(x, y).

Fourier transformation:

J{z(x,y)} = #{Ini(x,y)} + #{Inr(x,y)}, simplified as:

Z(u, v) = F(u, v) + F{(u, v),

where Fj(u, v) and F{u, v) represent the Fourier transformation
of Ini(x,y) and In r(x, y).

Filtering: use filter H(u, v) to suppress the low-frequency
information including the thin clouds, and meanwhile
enhance the high-frequency information including the land
cover:

S(u, v) = H(u, v)Z(u, v) = H(u, v)F{(u, v) + H(u, v)F(u, v).

Inverse Fourier transformation: s(x,y) = 7~ '{S(u, v)}.

Exponent: g(x, y) = exp [s(x, y)].

Alternative step: keep the dynamic range of the output
consistent with that of the input by linear stretching:

awy) =a+ 2 "Ly —a) @)

where [ao, bo] is the dynamic range of the input, and [a, b] is
the dynamic range of g(x,y).
Output: filtered image g;(x, y).

The HF is an unsupervised and efficient method for thin cloud
removal. The cut-off frequency, which is used to separate the high
and the low frequencies, is needed in the filter H(u, v). Because the
disturbance of clouds depends on the channel wavelength, the
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cut-off frequency should vary with the wavelengths of the different
channels. Thus, the cut-off frequency is a channel-dependent vari-
able and is difficult to determine. Moreover, it is directly related to
the thin cloud removal results.

The radiation values of all the pixels, both cloudy and cloudless,
are modified after the operation of the HF. This whole-scene com-
putation not only increases the computational burden but also
destroys the spectral features of the cloudless pixels, no matter
whether they are distributed in the high or low frequency. Specif-
ically, if the cloudless land cover has a big spatial variation, its
brightness is enhanced in the HF result. Conversely, if the cloudless
land cover is spatially stable, its brightness is suppressed in the HF
result. Consequently, it is reasonable to investigate a local thin
cloud removal method which can retain the information of the
cloudless land cover in the low frequency while removing the thin
clouds.

3. Proposed methodology

To overcome the shortcomings of the traditional HF method, a
high-fidelity thin cloud removal method based on the HF is pro-
posed and described in this section. Three stages are included in
the proposed method, as shown in the flowchart in Fig. 1: the
cut-off frequency decision, the thin cloud removal, and the mosa-
icking of the cloudy and cloud-free sub-images. In the first stage,
the cut-off frequency D of each channel is determined semi-auto-
matically based on the relationship between the frequency and
the gradient G, i.e. the product of D and G is a constant C. In the sec-
ond stage, the thin clouds are first detected, and then the high-
fidelity thin cloud removal method is performed to eliminate the
disturbance of the thin clouds while retaining the cloudless pixels.
It should be noted that the cloudy image is usually partially cov-
ered by clouds. The above two stages, frequency decision and thin
cloud removal, are both operated on the cloudy subsets of the
whole scene, and the cloudless parts are reserved in the results.
Therefore, the mosaicking of the sub-images is performed in the

Cloudy sub-images
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final stage. In the result, the radiations of the cloudy land covers
are corrected and the cloud free ones are restored.

3.1. Cut-off frequency decision

The HF can be used for thin cloud removal as the thin cloud is
usually distributed in the low frequency. A cloud-free result can
be expected by enhancing the information in the high frequency
while suppressing the information in the low frequency. However,
some land cover can vary slowly, in the same way as the thin cloud
in the low frequency. If the cut-off frequency is too low, the high-
pass filter cannot filter out all the low-frequency components,
which means that part of the thin clouds will be left in the image.
Otherwise, if the cut-off frequency is too high, information about
some clear land cover will be filtered out. The cut-off frequency
therefore has a great influence on the result, and how to determine
an appropriate cut-off frequency is a difficult problem.

As mentioned before, the effect of thin clouds on the image is
channel dependent because the atmospheric interference varies
with the radiometric wavelength. The shorter the wavelength is,
the stronger the atmospheric scattering is, and the higher the
cut-off frequency should be. Thin clouds are more obvious in the
visible channels than in the infrared channels, so that only visible
channels are concerned and treated in this paper. A semi-auto-
matic cut-off frequency decision method is introduced in this sec-
tion by investigating the variation in the cut-off frequency between
the channels. Here, semi-automatic means that for multispectral
images, once the cut-off frequency for one channel is determined,
the others can be fixed by considering the correlations between the
channels. In the proposed method, the cut-off frequency for the
blue channel is chosen to be first determined.

In general, thin clouds cause two changes in visible images:
high brightness and a low gradient. On the one hand, the bright-
ness is directly related to the land cover and is variable. If the
underlying surface of the cloud has a high reflectance, the cloudy
pixels are bright; otherwise, the brightness of the cloudy pixels

e

Cloud free whole scene

Seam-line removal

Mosaicking

Fig. 1. Flowchart of the proposed thin cloud removal method.
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may be close to that of some of the bright and cloudless pixels. On
the other hand, the gradient is a relative concept which is more
stable than the brightness. The difference between the gradient
of a bright surface and a dark surface is not as evident as that of
the brightness, which means that a low gradient can be attributed
to thin clouds. Here, the gradient is represented by the average gra-
dient G of an image, which can be expressed as:

~ M*”*%F,-(x,y)—F,-<x+1,y))2+(ﬁ(x,y>—F,-(x,y+1)>2
Gli(M—l)(N—l);yg1 2
x(i=1,2,3) 3)

M and N are the width and height of the image, and F(x, y) repre-
sents the DN value of the pixel in the ith channel located at (x, y).

Considering a multispectral cloudy image, due to the variation
in the atmospheric effect among the channels, the average gradient
is positively related to the wavelength, and the cut-off frequency is
negatively related to the wavelength. This suggests that the cut-off
frequency is negatively related to the average gradient. Thus, we
intend to explore the relationship between the cut-off frequency
and the average gradient of the cloudy image in each channel. In
order to investigate the quantitative relationship between D and
G in a multispectral image, experiments were performed on a large
amount of cloudy Landsat data and some GaoFen-1 data (2 meters
spatial resolution). Taking Landsat data for example, the color
image of a cloudy scene and the three visible bands of the scene,
i.e. ETM 1 (central wavelength 0.48 um), ETM 2 (0.56 pm), and
ETM 3 (0.66 um), are shown in Fig. 2. It is clear that with the
increase in the wavelength, the influence of the thin clouds
decreases so that the details, including edges and textures,
increase. The gradient of each channel is related to the dynamic
range of the corresponding channel. To ensure the comparability
of the different gradients, the average gradient of each channel is
normalized by multiplying by a coefficient, which is equal to the
brightness ratio. Here, the brightness of each channel is repre-
sented by the average DN value in this channel. Specifically, for
the visible image composed of ETM1, ETM2, and ETM3, ETM1 is
taken as the reference image, and the brightness ratio is taken as
the normalizing factor. Suppose the brightness of the processed
image is B;, and the brightness of the reference image is B,. The
brightness ratio is defined as the ratio of B; to B,. Therefore, the nor-
malized average gradient can be expressed as:

B,
B;
The normalized gradients of each channel, calculated by

referencing with the first channel ETM1, are calculated and listed
in Table 1. The optimal cut-off frequency for each channel,

Gni=7 G (i=1,23) (4)

(b)

determined by manual tuning, is also listed in Table 1. The last col-
umn of Table 1 shows the products of the optimal cut-off fre-
quency D and the normalized average gradient Gy. It is found
that for a multispectral image, the products of D and Gy are
approximately constant for the three visible channels, i.e.

D1 . CNJ ~ Dz . CN,Z ~ D3 . CN'3 = C (5)

Once the constant C is determined, the optimal cut-off fre-
quency for each channel can be estimated. In practice, the first
channel is taken as the reference channel, whose optimal cut-off
frequency needs to be first determined by manual tuning. The con-
stant can be obtained by the product of D; and CN_J, and then the
cut-off frequencies of the other channels can be estimated by
dividing C by the average gradient Gy of the corresponding
channel. It is therefore a semi-automatic cut-off frequency decision
method, the effect of which will be further evaluated in the follow-
ing experiments.

3.2. High-fidelity thin cloud removal

To overcome the shortcomings of the traditional global HF, an
adaptive HF is proposed, and water surfaces with large areas are
isolated for special treatment. Specifically, to ensure the high fidel-
ity of the result, three steps are included in this stage: cloud iden-
tification, the adaptive HF, and water surface identification and
correction. It is noted that the proposed method is limited to treat
the scenes with thin clouds, as the ground information weakened
by thin clouds can be enhanced, but no information is under the
thick clouds.

3.2.1. Thin cloud identification

The traditional HF is a kind of global operation, which changes
the values of all the pixels, no matter they are cloudy or not. How-
ever, the values of cloudless pixels should be preserved for a high-
fidelity thin cloud removal method. Thus, a thin cloud identifica-
tion procedure is embodied in our proposed method. Several thin
cloud identification methods have been reported in the literature,
which can be divided into two categories: the threshold-based
methods (Ackerman et al., 1998; Le Hégarat-Mascle and André,
2009) and the transformation-based methods (Zhang et al., 2002;
Li et al., 2014). All of these methods involve several empirical
parameters, which are related to the processed data. Furthermore,
these methods are executed in the spatial domain, which is inde-
pendent of our proposed procedure in the frequency domain.
Therefore, in order to construct a uniform framework, a simple
cloud identification method utilizing the property of the HF is
introduced in our procedure.

Fig. 2. The color image of a cloudy scene and the three monochromatic images in the visible channels. (a) The color image. (b) The image in the blue channel. (c) The image
in the green channel. (d) The image in the red channel. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)
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Table 1
The optimal cut-off frequencies D and normalized average gradients Gy of the four
multispectral images.

D CN D- CN =C
Image 1 Band 1 13 2.669 34.697
Band 2 10 3.666 36.66
Band 3 6 5.812 34.872
Image 2 Band 1 20 1.688 33.76
Band 2 16 2.088 33.408
Band 3 11 3.307 36.377
Image 3 Band 1 15 1.475 22.125
Band 2 11 1.844 20.284
Band 3 7 3.124 21.868
Image 4 Band 1 8 1.704 13.632
Band 2 6 2.389 14.334
Band 3 3 4.132 12.396

Since the high-frequency information is enhanced and the low-
frequency information is weakened after the HF, the values of pix-
els distributed in the low frequency will be lower than before, and
the values of the other pixels will be higher than before. Thus, the
cloudy pixels will have lower values after being processed, while
the cloudless pixels will have higher values than before.

Suppose e(x, y) represents the difference between the original
pixel value f(x,y) and the calculated pixel value g;(x, y) of the HF
at location (x,y), i.e. e(x,y)=fx,y) — gi(x, y). Based on the above
analysis, if e(x, y) > 0, the pixel located at (x, y) is cloudy; otherwise,
it is cloudless. This cloud identification is a pixel by pixel operation
without considering the neighbors, which will result in some out-
liers. Hence, with regard to the continuity of the cloud, a window
template, as shown in Fig. 3, is used to optimize the cloud identi-
fication. If the difference is negative for the central pixel (xo, yo)
and positive for the eight pixels in the neighborhood, the central
pixel will be identified as cloudy. Hence, a spatially continuous
cloud map with cloudy and cloudless labels is obtained.

3.2.2. The adaptive homomorphic filter (HF)

Based on the identified cloud map, the cloudless pixels are
assigned the original values f and the cloudy pixels are assigned
the results g, as calculated by the HF. The overall procedure can
be expressed as:

{f(X,y)7 if (X:Y) € choudless
g(X»Y)-, if (va) S choudy

where F represents the final value, and Qcoudiess and Qcjouay repre-
sent the clear and cloudy pixel sets, respectively. It is an adaptive
operation, varying according to the property of the pixel. In this
way, the precision of the thin cloud removal result is ensured by
preserving the radiation values of the cloudless pixels distributed
in the high frequency.

In the traditional HF procedure, there is an alternative step, lin-
ear stretching, which aims to keep the dynamic range of the output
consistent with that of the input. Commonly, the dynamic range of

Fix.y) = (6)

4 5
Cloudy
6 7 8 D
Cloudless

Fig. 3. The template used to ensure the continuity of the cloud.

the input is based on the statistics of all the cloudy and cloudless
pixels in an image. However, with the interference of thin clouds,
the maximum of the input is probably the value of some of the
cloudy pixels. Therefore, after the cloud map is obtained, the statis-
tics, including maximum and minimum, should be calculated
based on the cloudless pixels. Moreover, pixels with the top 2%
maximum and minimum values are excluded from the statistics
to avoid the effect of outliers. In this way, the new target dynamic
range is close to the cloudless land-surface truth. The linear
stretching, using the new target dynamic range, is performed on
the cloudy pixels, and the new output is gj(x,y). Hence, the final
thin cloud removal result can be written as:

F(x,y) = {f(x,y), if (x,y) € Qe

. 7
g/L(X’Y)v lf (va) € -chnudy ( )

3.2.3. Water surface identification and correction

There can be cloudless and homogeneous regions with large
areas in a scene, whose values will also be decreased by the HF,
as well as the cloudy pixels. The pixels in this kind of region can
be wrongly sorted into the cloudy category. A typical homoge-
neous region is a water surface such as a lake or a river. According
to the physical property of water, if the water is clean with few
suspended substances, the radiation is low; otherwise, if the water
is turbid and full of suspended substances, the radiation is high.
The radiation decrease caused by the HF has only a slight influence
on clean water. This is because clean water usually has the lowest
radiation in a scene, and the final brightness can be kept consistent
with that of the input by linear stretching. However, the radiation
decrease has a large impact for turbid water, because it changes
the distribution of the turbid water in the radiation dynamic range.
This will cause serious radiometric distortion of the water surface
in the scene. Therefore, a step is introduced to detect the surface of
turbid water, and then the radiation values of cloudy pixels on the
water surface are specially treated.

(a) Water surface identification

A supervised classification is proposed to separate the turbid
water and the other surfaces. Since the direction of the spectral
vector is not sensitive to the clouds, the spectral angle is taken as
the distance measure for the classification (Maselli et al., 2009).
The types of classes vary according to the situation of the land
cover. The turbid water class must be included, and the other clas-
ses should be determined with regard to the scene. The spectral
angles between the unknown pixels and the class centers are cal-
culated, and the unknown pixels belong to the class between
which the spectral angle is the smallest. Hence, the surface of the
turbid water is marked in the cloudy scene. Moreover, it is noted
that cloudy and clear pixels coexist on the water surface. In order
to preserve the radiation values of clear pixels to the greatest
degree, the clear and cloudy pixels are distinguished before the
treatment of the water surface is performed. For a smooth water
surface, the high brightness is an evident characteristic for the

The cloudless region

The seam-line ——

The cloudy region treated by the HF

Fig. 4. An example of a horizontal seam-line.
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Fig. 5. Thin cloud removal results of the three images. The first row shows the original three images covered by thin clouds. The second row shows the results of HOT. The
third row shows the results of the traditional HF. The fourth row shows the results of the adaptive HF.

cloudy pixels. Suppose that in the ith channel, the mean brightness
of the clear water samples is DNy ; and the value of an unknown
pixel is DN;. If DN; > DNy; in all the channels, the pixel is labeled
as cloudy; if DN; < DNy, in all the channels, the pixel is labeled
as clear; otherwise, the pixel is labeled as uncertain. Different
treatments will be executed on these water pixels belonging to
the three different classes.

(b) Water surface correction

Smooth water surfaces are specially treated, as the HF always
decreases the brightness of the regions with low contrast. Since
the water surfaces are grouped into three classes, clear, cloudy,
and uncertain, in the final step, treatments are made according
to the pixel type.
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Table 2
Factor R of the different results.
HOT HF Adaptive HF
Image 1 Band 1 1.0701 0.6511 0.6476
Band 2 0.8415 0.9531 0.7116
Band 3 0.6031 1.4849 0.4763
Image 2 Band 1 2.1786 2.3623 0.3107
Band 2 2.2071 1.6114 0.3978
Band 3 2.9156 1.7205 0.9646
Image 3 Band 1 3.7673 6.0502 0.4953
Band 2 2.8004 5.2707 0.6793
Band 3 2.8957 7.3697 0.6854

Fig. 6. Clear samples selected from the three images.

For the clear pixels, the original brightness is preserved to
ensure the quality of the final result.

For the cloudy pixels, we use moment matching (Gadallah et al.,
2000; Daniel et al., 2004) to correct the brightness. The moment
matching method is suitable for regions with uniformly distributed
radiation. By making use of the statistical information, the distri-
bution of the cloudy pixels can be adjusted to that of the reference
clear pixels by the following expression:

/ o} /
DNy, = ;: (DNw i — ;) + 1 8)

where DNy, ; is the corrected DN of the target pixel in the ith chan-
nel, 4; and o; are the mean and standard deviation of the cloudy pix-
els, and y; and o} are the mean and standard deviation of the clear
water samples.

(d)

[—ICloudy BClear [JUncertain
(e)

S

Fig. 7. The first image, including a large area of water surface, and the corresponding thin cloud removal results of the different methods. (a) The original image. (b) HOT. (c)
Traditional HF. (d) Adaptive HF. (e) Class map of the water surface composed of the three classes. (f) The proposed method with water surface preservation.
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[ICloudy I Clear C]Uncertain

(d)

®

Fig. 8. The second image, including a large area of water surface, and the corresponding thin cloud removal results of the different methods. (a) The original image. (b) HOT.
(c) Traditional HF. (d) Adaptive HF. (e) Class map of the water surface composed of the three classes. (f) The proposed method with water surface preservation.

For the uncertain pixels, the output brightness is the weighted
sum of the original brightness DNy,; and the corrected brightness
DN{,\,‘I-, which can be written as:

Fwi=t-DNw;+ (1 —t) DNy, 9)

where t is used to balance DNy,; and DN;,, ;. Suppose the multispec-
tral image has N channels. If the condition DN; < DNy ; is satisfied in
n (n < N) channels, t=n/N. It can be seen that the operations on
clear and cloudy pixels are special situations of Eq. (9). When the
pixel is clear, t = 1; when the pixel is cloudy, t = 0.

Hence, the brightness decrease caused by the HF is avoided and
the brightness of the pixels on turbid water surfaces is preserved.

3.3. Mosaicking of the cloudy and cloud-free sub-images

In practice, thin clouds are usually concentrated in a local area,
instead of covering the whole scene. Relative to the whole scene,
parts of the scene are defined as sub-images. To improve the calcu-
lation efficiency and to reduce the information loss, the correction
is only performed on the sub-images with thin clouds, and the
other cloud-free sub-images are retained. The corrected sub-
images replace the cloudy sub-images by mosaicking back to the
whole image. Because the processing only involves some of the
pixels of the whole scene, it is highly efficient and is capable of
handling large cloudy scenes. However, it is inevitable that obvious
seam-lines appear near the boundaries of the sub-images because
the brightness of the cloudy image is changed. These seam-lines
should be removed to ensure a smooth transition from the cloudy
sub-images to the cloud-free sub-images.

In general, the brightness of pixels near the boundaries of the
cloudy sub-images is adjusted to remove the seam-lines. Specifi-
cally, for one cloudy sub-image, there are four seam-lines, two
vertical lines, and two horizontal lines. If the seam-line is vertical,

the adjustment direction is horizontal; otherwise, the adjustment
direction should be vertical. Fig. 4 shows an example of a horizon-
tal seam-line.

The adjustment width L is set to determine which pixels need
adjustment, which is tuned manually in our experiments. All the
pixels with distances to the seam-lines less than L are adjusted
and the others are kept constant. Taking Fig. 4 as an example,
the distance of the pixel located at (x,y) to the seam-line is d,
and d < L. Because no seam-line exists in the original whole image,
the adjustment integrates both the original and the corrected val-
ues of the pixels. Specifically, the further the pixel is from the
seam-line, the closer the value of the pixel should be to the cor-
rected value; otherwise, it should be closer to the original vale.
The values of the pixels located within the adjustment width can
be calculated as follows:

Fu=/f+(1-AF (10)

where 4 = d/L is used to weight the contribution of the corrected
value in the final result. Processing the four seam-lines in the same
way, the cloudy sub-images are mosaicked to the large whole scene
without artifacts. Cloud-free large images with a high fidelity can
then be obtained.

4. Experiments

Since thin clouds are sensitive to the wavelength, five thin
cloudy visible images obtained by Landsat ETM+ and two by Gao-
Fen-1 were employed to test the proposed thin cloud removal
method. Three of the Landsat data and GaoFen-1 data are without
turbid water surfaces, and the other two cover large areas of turbid
water surfaces, which need special treatment. Before the thin cloud
removal, the cut-off frequency for each channel of the images was
first determined by the use of the semi-automatic method intro-
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Fig. 9. An example of a large scene by mosaicking the cloudy sub-scenes. (a) The original large scene. (b) The direct mosaicking result. (c) The mosaicking result after
removing the seam-lines. (d) and (e) The enlarged region circled by the red rectangle in (b) and (c). (f) and (g) The enlarged region circled by the blue rectangle in (b) and (c).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

duced in the methodology section. The results of the proposed
method are compared with those of HOT and the traditional HF.
Both qualitative and quantitative assessments are performed to
evaluate the results.

Fig. 5 shows the three cloudy images without water surfaces
and the corresponding thin cloud removal results of HOT, the
traditional HF, and the proposed method. To evaluate the thin

cloud removal results, two measurements are used: (1) the correc-
tion of the cloudy pixels; and (2) the fidelity of the clear pixels.
Visually, all of the three methods can remove the thin clouds to a
certain degree by correcting the values of the cloudy pixels. How-
ever, the color cast is serious in the results of HOT, and the spectra
of the clear pixels are changed as well as the cloudy pixels, as the
second row of Fig. 5 shows. Since the traditional HF is a global
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Fig. 10. A further example of a large scene by mosaicking the cloudy sub-scenes. (a) The original large scene. (b) The direct mosaicking result. (c) The mosaicking result after
removing the seam-lines. (d) and (e) The enlarged region circled by the red rectangle in (b) and (c). (f) and (g) The enlarged region circled by the blue rectangle in (b) and (c).
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Results of 2 m spatial resolution data. The first column shows the original thin-cloudy images. The second column shows the corresponding thin cloud removal

results of the proposed method.

operation, the values of cloudless pixels in the results of the tradi-
tional HF are also changed, as with the HOT results, as shown in the
third row of Fig. 5. The general brightness of the results of the tra-
ditional HF is darker than those of the original images. Comparing
the above results, the results of the proposed method show the
natural color by preserving the values of the cloudless pixels, as
the last row of Fig. 5 shows.

In order to assess the fidelity of these results quantitatively, we
introduce a factor R, which measures the dissimilarity of the cloud-
less pixels in the results and the original images. R is defined as:

R= w, (x,y) € Qctoudless (11)

where f(x, y) and F(x, y) represent the original and resulting images,
Qcloudiess 1S the set of clear pixels, and M is the number of pixels in
Qoudiesss The smaller the factor R is, the higher the fidelity of the
result is. For these three cloudy images, we manually select cloud-
less samples to compose the cloudless pixel set, as shown in the
red' polygons in Fig. 6. The values of factor R for the three images
and their thin cloud removal results are calculated and listed in
Table 2. It can be seen that for all three images, the proposed method
results in the smallest value of R in all three of the visible channels.
This can be attributed to the cloud identification and the adaptive
HF. As the clear and hazy pixels are not treated discriminately in

1 For interpretation of color in Fig. 6, the reader is referred to the web version of
this article.

both HOT and the traditional HF, the color cast often appears in
the results. Overall, the quantitative evaluation result is consistent
with the visual assessment. The conclusion can be made that the
proposed locally adaptive thin cloud removal method outperforms
the global operations in preserving the fidelity.

Two cloudy images with turbid water surfaces were collected to
further evaluate the proposed method. The thin cloud removal
results of HOT, the traditional HF, adaptive HF, and the proposed
method are shown in Figs. 7 and 8. Parts of the river in Fig. 7 are
covered by thin clouds, and the values of the corresponding cloudy
pixels are greater than those of the surrounding pixels. It can be
observed that the thin clouds are removed in Fig. 7(b), (c), (d),
and (e). The tone of Fig. 7(b) is totally different to the original
image shown in Fig. 7(a). The values of the cloudy pixels located
on the water surface are not properly corrected and they are still
higher than the surrounding clear pixels. The HF method maintains
the general tone of the original image, as Fig. 7(c) shows, but the
values of the cloudless pixels are clearly modified, especially the
smooth surfaces of the lakes and the river. The values of the cloud-
less pixels, such as the lakes located in the bottom-right corner, are
preserved by the cloud identification, so that Fig. 7(d) shows a
more natural tone than Fig. 7(c). However, the brightness of the
river is still very dark in Fig. 7(d), no matter whether the pixels
are cloudy or cloudless. In order to improve the result, the water
surface preservation step introduced in Section 3 is performed
for the river surface in Fig. 7(a). The river surface is first separated
from the land surfaces, and it is clustered to three classes: cloudy,
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clear, and uncertain, as shown in Fig. 7(e). The values of the cloudy
pixels on the river surface are adjusted by Eq. (9) and the result is
shown in Fig. 7(f). The average brightness of the river is clearly
raised and is close to that of the original cloudless river pixels.
Therefore, among the four thin cloud removal results, Fig. 7(f)
has the highest fidelity by visual assessment because the values
of the cloudless pixels are preserved and the brightness of the tur-
bid water surface is maintained.

Another cloudy image with turbid water surfaces and the corre-
sponding thin cloud removal results are shown in Fig. 8. Among the
four thin cloud removal results, Fig. 8(f) shows the most natural
color and has the highest fidelity. The same conclusion can be
made as for Fig. 7.

The cloudy images (Figs. 7 and 5(a)) are subtracted from the
large scenes partially covered by the thin clouds, and are shown
in Figs. 9 and 10. The cloudy sub-images are circled by the red rect-
angles in Figs. 9(a) and 10(a). In practice, in order to obtain the
clear large scenes, we need to mosaic the corrected cloud-free
sub-images to the original large scenes. The direct mosaicking
replaces the cloudy sub-images with the corrected cloud-free
sub-images, and the results are shown in Figs. 9(b) and 10(b). Visu-
ally, the tones of the direct replacement results are in harmony,
without obvious visual disruption. This verifies that the proposed
method can yield clear images with high fidelity even though tur-
bid water surfaces are included. However, seam-lines still exist in
the boundaries of the cloudy sub-images, as shown in the orange
and blue rectangles marked in Figs. 9(b) and 10(b) and the
enlarged images shown in Figs. 9(d) and 10(d). Using the strategies
described in Section 3, the seam-lines are removed in Figs. 9(c) and
10(c) and the enlarged images shown in Figs. 9(e) and 10(e). It can
be seen that clear large scenes without seam-lines are obtained
and can be used in the following applications. The seamless mosa-
icking ensures the applicability of the proposed thin cloud removal
method in a large scene.

The above experiments were operated on the medium spatial
resolution data. In order to further investigate the application
range of the proposed method, two images with 2 meters spatial
resolution were employed, which were obtained by China’s high
definition Earth Observation satellite GaoFen-1, as shown in
Fig. 11 (a) and (c). It can be seen that parts of the scenes are con-
taminated by the thin clouds. Fig. 11(b) and (d) shows the experi-
mental results of the proposed method, in which the radiation of
those thin cloudy pixels has been corrected. As the spectral fea-
tures of the land surfaces are well reserved, the color with high
fidelity is exhibited in the thin cloud removal results.

5. Conclusion

An effective and locally adaptive thin cloud removal method is
proposed to visible remote sensing data in this paper. The method
is limited to remove thin clouds and can result in cloud-free images
with high color fidelity. Three stages are included in the proposed
method. First, the cut-off frequency for one channel (blue, green
or red) is required to be known, which is tuned manually; then
the relationship between the gradient and the optimal cut-off fre-
quency is used to determine the cut-off frequencies for other chan-
nels semi-automatically. It should be noted that the cut-off
frequency varies with the sub-images. Second, the high-fidelity thin
cloud removal is achieved by three strategies: (1) thin cloud identi-
fication; (2) adaptive HF; and (3) water surface identification and
correction. The spectral information of the cloudless pixels is pre-
served and the brightness of the turbid water surfaces is correctly
adjusted. Mosaicking the cloudy sub-images to the original large
scene is the final stage of the proposed method, and the seam-lines
caused by the direct mosaicking are eliminated in the final

cloud-free large scene. In this process, the adjustment length is
tuned manually. Experiments on several remote sensing data with
medium and high spatial resolutions, including Landsat ETM+ and
GaoFen-1 images, validate the effectiveness of the proposed
method in efficiently removing thin clouds. Furthermore, the pro-
posed method outperforms HOT and the traditional HF, by both
visual and quantitative assessments. All the above results confirm
that the proposed method is a simple, effective, and practical thin
cloud removal method with significant application potential.
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