
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 50, NO. 8, AUGUST 2012 3053

A Perceptually Inspired Variational Method for the
Uneven Intensity Correction of Remote

Sensing Images
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Abstract—Perceptually inspired color correction methods are
characterized by human visual system properties. In this paper,
we propose a perceptually inspired variational method for un-
even intensity correction of remote sensing images. The proposed
method shares the same intrinsic scheme as the Retinex theory,
but the reflectance in this method is solved directly within the
limited dynamic range and is supposed to comply with the gray
world assumption. Considering the smoothness of illumination
and the complexity of reflectance, the proposed method integrates
L2 norm and total variation prior to inflict varying constraints
to different components and regions. The minimum of this vari-
ational model is calculated using the steepest descent approach.
Experimental results are presented to validate the effectiveness of
the proposed method.

Index Terms—Intensity correction, perception, remote sensing
images, variational techniques.

I. INTRODUCTION

IN REMOTE sensing image acquisition processes, radiomet-
ric errors brought about by internal and external factors are

common. Considering the many factors, including the imaging
system, the atmosphere status, and other variables in nature,
such as terrain elevation, slope, and aspect, we can only ever
obtain degraded images of the landscape with uneven intensity
distribution, color cast, or other problems. The traditional cor-
rection techniques for these degraded images include absolute
and relative radiometric correction. Most forms of absolute ra-
diometric correction use a radiative transfer model to correct the
imagery; the web-based ACT for Thematic Mapper (TM) and
Enhanced Thematic Mapper Plus (ETM+) thermal data adopts
MODTRAN-4 code for instance [1]. The application of these
models to a satellite scene often requires measurements of the
atmosphere and sensor on the acquisition date. For the majority
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of archived satellite images, these measurement data are not
available [2]. When corrected results are not applied in accurate
quantitative retrieval, relative radiometric correction, which
normalizes an image to a standard one or another referenced
one, is often adopted. However, a few studies have attempted to
accommodate the uneven illumination and intensity distribution
for a single-scene remote sensing image. Several traditional
single-scene image enhancement methods can be applied to de-
graded remote sensing images, such as histogram equalization
(HE) and homomorphic filtering. HE is a simple and popular
method for image contrast enhancement [3]–[6]. It is, however,
simply based on statistical information and independent of
location and neighborhoods, and furthermore a unique solution
does not exist for multiband HE [7]. By using homomorphic
filtering, it is possible to adjust illumination and reflectance
separately [8]. However, color distortion usually appears after
homomorphic filtering in RGB space [9], [10], and the form
of the filter is not unified. These methods are applicable to
some specific close-shot images, but do not take enough of the
characteristics of remote sensing images into account. A simple
intensity correction method, named Mask filtering [11], refers
to the uneven illumination as additional noise in an image and
subtracts it directly, which is not complying with the imaging
system; therefore, the final result usually shows partial blurring
and color distortion. This paper focuses on the correction of
uneven intensity distribution for a single-scene remote sensing
image through perception-inspired variational techniques.

As a kind of visual information, images provide direct stim-
ulus to the human visual system (HVS). The HVS transfers
the perceived intensity of the stimuli to the human cortex by
nerves; the process of cognition to images is isolated from
the environmental illumination. In digital image processing,
this characteristic of the HVS has been introduced to some
algorithms, namely, perceptually inspired image processing
methods. The Retinex theory proposed by Land and McCann in
1971 is the first theory applied to image processing that is based
on visual perception [12]. In 1977, Land expounded the Retinex
theory and random path algorithm in more detail [13]. After
that, researchers confirmed the appropriation of this theory to
digital images and developed different path selection strategies
[14], [15]. In 1997, Jobson proposed a Retinex version for
digital images, named center/surround Retinex, but halo arti-
facts appeared in the results [16]. A multiscale center/surround
Retinex was developed to eliminate these halos [17], but the
effect is not pleasing. Ron Kimmel introduced the variational
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Retinex framework [18] in 2003, in which the illumination
was firstly extracted from a given image by solving an energy
function, and then it was eliminated to result in the recovered
lightness. Provenzi discussed the local property of Retinex in
2007 and proposed a 2-D pixel spray to replace the 1-D random
path [19].

It is noted that the use of partial differential equations (PDEs)
and variational techniques in image processing are becom-
ing more and more common [20]–[22]. In this paper, rather
than discussing the properties of these algorithms, we aim to
construct an energy function driven by perception to correct
the uneven dispersion of remote sensing image intensity. The
reason for such a construction is that functional methods allow
us to deal with several problems of image processing at the
same time and combine different types of algorithms in the
framework of PDE or other variational equations [23].

The rest of the paper is organized as follows. In Section II,
we review the intrinsic Retinex and its variational framework
(VFR). Section III presents the proposed variational correc-
tion model, with Section IV describing the experiment results.
Section V concludes the paper.

II. PERCEPTUALLY INSPIRED FRAMEWORK: RETINEX

In recent years, more attention has been paid to perceptually
inspired image processing algorithms, because even though the
radiation goes through the same transfer from targets to receiv-
ing devices in the HVS and machine systems, the HVS provides
us with more abundant knowledge about the scene. This can
be attributed to the special properties of HVS: one is locality,
that is to say our perception is sensitive to intensity contrast,
rather than absolute lightness [23], [24]; the other is color
constancy, which means that humans can perceive the colors
of a scene almost independent of the spectral electromagnetic
composition of a uniform illuminant, usually called color cast
[24]. Owing to these characteristics, objects under uneven or
chromatic illumination in a scene can be distinguished. We are
now going to review the first perceptually inspired theory, the
Retinex theory.

A. Retinex Theory

The basic scheme for the Retinex theory is that the intensity
eyes perceive depends on the product of reflectance and illumi-
nation [12]. Hence, the basic Retinex model for each pixel x in
a digital image can be written as

I(x) = L(x) ·R(x) (1)

where, I(x) is the light intensity human eyes perceive, L(x)
is the even or uneven distribution of the natural illumination,
and R(x) represents the object reflectance to the light, which is
associated with the physical characteristics of object materials.
Among these three variables, I(x) is the only known one, and
both L(x) and R(x) are unknown. Retinex algorithms aim to
recover the lightness free of uneven illumination, like the image
the HVS presents in our retinas.

Retinex generates appropriate intensity related to reflectance
for a multiband image, channel by channel [12]. The intrinsic

calculation procedure is composed of four steps: ratio, sequen-
tial product, reset, and average. Ratio is employed to imitate
the contrast cognition of the HVS and exhibits the locality of
this theory. Neighborhoods are considered through sequential
products along the paths. Reset is the heart for finding the
highest reflectance [25], which can be also called the local
white patch (WP) [26]–[28]. Averaging the results of paths
with different directions fetches up the defect of one dimension
for 2-D images. The final reflectance of every point can be
written as R(x) = [

∑N
i=1 I(x)/I(xHi

)]/N , where xHi
is the

point with the highest gray value in each path and N is the
number of paths.

Given that the original image values are normalized, 0 <
I(x) ≤ 1, so I(x)/I(xHi

) ≥ I(x), we can easily prove that
R(x) ≥ I(x) for every pixel [29]. It indicates that the result
always increases the pixel values, which leads to this algo-
rithm’s defect in dealing with overbright pixels in images. The
ratio-reset mechanism based on the WP assumption can be
responsible for this phenomenon because WP states that at least
one white object exists in every observed scene and that the
ratio-reset aims to find it out.

Retinex algorithms based on WP assumption cannot avoid
this defect, no matter what path selection strategies are em-
ployed. Furthermore, paths are 1-D geometrical structures, but
images are 2-D and are usually sampled at discrete points. Horn
proposed a 2-D version of Retinex which uses PDEs, linear
systems, convolutions, and iterative solutions [30]. The four
basic steps of this Retinex version are logarithms, differencing,
thresholding, and summing. By using logarithms, the scheme
for Retinex can be transferred as i = l + r where i, l, and r are
log intensity, log illumination, and log reflectance, respectively.
This Retinex version extends the dynamic range of intensities
for the original image, overcomes the intrinsic defect of Retinex
in processing overbright pixels, and gives pleasing results.
Researchers later developed several other Retinex versions to
accompany Horn’s idea. Blake added more suitable boundary
constraints to improve the treatment of boundaries [31], and
Kimmel integrated Horn’s theory and some constraints into one
energy function and proposed the VFR [18].

B. Variational Framework for Retinex

Based on the scheme of the Retinex theory, separating the
illumination from reflectance in a given image is concluded to
be an ill-posed problem, which can be solved through adding
regularization items. In the image processing field, regular-
ization has been described from both the algebraic [32] and
statistical perspectives [33]. Using regularization techniques,
the variational function of VFR is proposed as

min F [l] =

∫
Ω

(
‖∇l‖22 + α(l − i)2 + β ‖∇(l − i)‖22

)
dxdy

s.t. l ≥ i and 〈∇l, �n〉 = 0 on ∂Ω (2)

where, Ω is the image domain, ∂Ω is its boundary, and �n is
the normal to the boundary. α and β are free nonnegative real
parameters.
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The three penalty items in the VFR force illumination spatial
smoothness, the proximity between l and i, and reflectance
spatial smoothness, respectively. However, reflectance is not
spatially smooth in most cases, and this assumption may cause
some halo artifacts.

In the VFR, the illumination is firstly estimated through
the variational function, and then reflectance component is
obtained by subtracting the estimated illumination from the
logarithmic given image intensity. Hence, the result depends on
the illumination estimation, which is the middle outcome in the
procedure. That means that the final result we get may not be
optimal. Therefore, this paper aims to construct a perceptually
inspired variational model to recover the lightness directly
and correct the uneven intensity dispersion in remote sensing
images.

III. PERCEPTUALLY INSPIRED VARIATIONAL METHOD

A. Model Definition

Since our purpose is to adjust the intensity dispersion of an
image explicitly, reducing the intensities in high-bright regions
while increasing them in low-bright regions means that the
energy in the image should be freshly arranged. The general
energy function for an image can be expressed, as in [24], as

E(I) = C(I) +D(I) (3)

where E(I) is the total energy in an image, C(I) represents the
intensity contrast, and D(I) represents the intensity dispersion.
It is noted that the contrast c(a, b) between two gray levels is
defined as the value of min(a, b) relative to max(a, b), such
as min(a, b)/max(a, b) or min(a, b)−max(a, b). Minimizing
E(I) amounts to increasing the contrast while controlling the
global intensity dispersion in an even state. It can be seen
that the VFR is consistent with (3). The proposed model is
constructed based on the energy function.

1) Contrast Item: The intensity contrast item is proposed
based on two assumptions: the environmental illumination is
of spatial smoothness; and the reflectance has both features of
spatial smoothness and sharpness, depending on the region. It
is noted that log illumination and log reflectance share the same
features as spatial illumination and reflectance.

The common prior constraints employed in a variational
model can be sorted into two types: one is proposed to guaran-
tee the image smoothness while attenuating edges and details,
such as the L2 norm prior, which satisfies the Gaussian assump-
tion of the image distribution [34]–[36]; the other is proposed
to preserve edge and detailed information, such as the total
variation (TV) prior [37]–[39]. However, TV favors a piecewise
constant solution; therefore, it often causes staircase effects in
the smooth regions while preserving the edges.

The environmental illumination varies gradually in the na-
ture, which is considered as the major inducing factor of macro
uneven intensity. Hence, we constrain it with the first kind of
prior measured by the L2 norm

∑
Ω

‖∇(r − i)‖22 . (4)

The reflectance reveals the true properties of the imaged ob-
jects. Remote sensing imaging objects are complicated; there-
fore, it is difficult to choose an appropriate prior for them. Halo
artifacts are often caused by the traditional Retinex processing,
which can be attributed to the inappropriate smoothness as-
sumption of reflectance. The widely existing edges in an image
are abrupt changes, which violates the previous assumption.
Hence, halo artifacts usually occur at the juncture of edges
and nonedges in the partion of the result that was under dark
fog before. Therefore, it is reasonable to propose multiprior to
the reflectance according to the image contents. Primarily, the
TV prior and the L2 norm prior are arranged to the edges and
nonedges, respectively

∑
Ω

‖∇r‖tt , where t =

{
1, if x ∈ Edges
2, if x ∈ Non-edges

(5)

where x represents a pixel in an image. The usual way to
distinguish edges and nonedges is based on edge extraction
relying on the threshold setting, which varies according to
different images. Hence, it is necessary to select the threshold
value adaptively. For an image, we cannot determine the exact
threshold value visually but can estimate the percentage of edge
or nonedge information approximately. Hence, the problem of
setting the absolute value is first converted into the relative
percentage setting, which can be calculated statistically. An
image cumulative histogram reveals the cumulative percentage
that each intensity level takes up in an image. Hence, the second
step is to determine the according intensity value through the
image cumulative histogram. Given that the gradient image IG
represents the edge information of the original image, the per-
centage parameter is p, and the intensity value corresponding
to p in the cumulative histogram is IGp, if IG(x) > IGp then
x ∈ Edges, else x ∈ Non-edges. Thus, p percent of image
contents are constrained by the TV prior, and (1− p) percent
are constrained by the L2 norm prior.

Hence, the contrast item of r can be expressed as

C(r) = αC

∑
Ω

‖∇(r − i)‖22 + βC

∑
Ω

‖∇r‖tt (6)

where t =

{
1, if x ∈ Edges
2, if x ∈ Non-edges

, αC and βC are

nonnegative free parameters weighting the above items,
respectively.

2) Dispersion Item: There are several possible choices for
the dispersion control item, such as attachment to original data,
attachment to the average value, assumed to be 1/2 for nor-
malized data, and the linear combination of the above two. In
principle, to measure the dispersion, any distance function can
be used. The simplest example would be a quadratic distance.

In the uniform variational models for HE and automatic color
enhancement, attachment to the average value is employed as
the dispersion control item [23]; while the VFR employs the
attachment to original data item to control the illumination
dispersion. It is noted that attachment to the average value
sometimes leads to overcontrast, so that the linear combination
of these two kinds of constraints is often adopted. However,
since the contrast can be well controlled in our model by the
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Fig. 1. Single-band images. (a) Original image. (b) Horizontally degraded image.

Fig. 2. Quantitative assessment of percentage parameter. (a) MSE. (b) PSNR. (c) HFM. (d) gradient.

contrast item that is adaptive to the regions, only the attachment
to the average value is used as the dispersion item. Moreover,
considering the physical characteristics of reflectance in the
spatial domain, we suppose that R is normalized 0 ≤ R ≤ 1,
in other words, L ≥ I and r ≤ 0. This assumption overcomes
the traditional Retinex defect in processing overexposed regions
owing to its WP mechanism. In addition, the attachment to
average value can be interpreted by the “gray world” (GW)
assumption [28], which says that the average channel color
intensity in every observed scene is perceived as the middle

gray. Overall, we constrain the spatial reflectance R as (R−
1/2)2, and this can be translated into the logarithmic domain as
[exp(r)− 1/2]2. Consequently, the dispersion item of r can be
written as

D(r) = βD

∑
Ω

[exp(r)− 1/2]2 , r ≤ 0. (7)

3) Correction Model: By integrating the contrast and dis-
persion items in an energy function, we tentatively put forward
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TABLE I
QUANTITATIVE ASSESSMENT

Fig. 3. Corrected results of three methods. (a) Mask filtering. (b) VFR. (c) Proposed method.

the perceptually inspired variational model about r as

min F [r] =
∑
Ω

(
‖∇(r − i)‖22 + λ1‖∇rt‖tt

+ λ2 [exp(r)− 1/2]2
)

t =

{
1, if x ∈ Edges
2, if x ∈ Non-edges

, s.t. r(x) ≤ 0 (8)

where λ1 := βC/αC and λ2 := βD/αC are nonnegative pa-
rameters to control the contribution of the second and the third
items in (8), respectively.

B. Numerical Solution

The minimization for F [r] can be referred as an optimal
problem; thus, we consider its Euler–Lagrange equation written
as

δF (r) =
∂F

∂r
= −Δ(r − i)− λ1 ·

(
∇

(
∇r1
|∇r1|

+ 2Δr2

))

+λ2 · 2 exp(r) [exp(r)− 1/2] = 0 (9)

where Δ is the Laplacian operator, which can be approximated
by a linear convolution with the kernel [0 1 0; 1 − 4 1; 0 1 0].
Since our equation involves both linear and nonlinear problems,
we intend to choose the classic steepest descent method to solve
it. In addition, the steepest descent solution of the Laplacian
operator is a Gaussian smoothing operation with increasing
variance of the initial condition. This explains why Jobson et al.
[16], [17] proposed to reconstruct the illumination by Gaussian
smoothing and reflects the locality of the L2 norm prior. The L2
norm prior is isotropic, whereas the TV is anisotropic, so that
edges with a certain direction in a local region can be preserved
efficiently. Generally, the contrast item in the proposed model
performs the locality of human vision. Based on the steepest

decent method, the above problem is transformed to solve the
following equation:

∂r

∂t
= −δF (r). (10)

When discretized with respect to parameter t, the above equa-
tion can be written as

rk+1 − rk

Δt
= Δ(r − i) + λ1 ·

(
∇

(
∇r1

|∇r1|+ ξ
+ 2Δr2

))

−λ2 · 2 exp(r) [exp(r)− 1/2] (11)

where Δt is the setting constant as the iteration step length,
Δt ≥ 0, and ξ is a constant avoiding the denominator to be 0.
Hence, the iteration equation can be expressed as

rk+1 = rk +Δt ·G (12)

G =Δ(r − i) + λ1 ·
(
∇

(
∇r1

|∇r1|+ ξ
+ 2Δr2

))

− λ2 · 2 exp(r) [exp(r)− 1/2] . (13)

The iteration will not stop until the terminal condition is
satisfied. This is a time-consuming process due to the image
size. For a 1000 × 1000 image, about 10 min is needed to
achieve a satisfactory resolution. However, there is room for an
improvement in efficiency by using some advanced mathemat-
ical optimization method, and this is the subject of our further
work.

IV. EXPERIMENTS

The proposed method was validated by applying it to remote
sensing images. To evaluate the results quantitatively, experi-
ments on synthetic data are firstly carried out. Then, real remote
sensing images are utilized to test the proposed method.
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Fig. 4. Multiband degraded images and classification images. (a) Original image, (b) classification image of (a), (c) horizontally degraded image, (d) classification
image of (c), (e) classification image of the corrected result of (c), (f) vertically degraded image (g), classification image of (f), (h) classification image of the
corrected result of (g), (i) Gaussian degraded image (j) classification image of (i), (k) classification image of the corrected result of (i).

A. Experiments on Synthetic Data

A remote sensing image with high quality from Washington
DC acquired by the HYDICE sensor was chosen as the original
standard image. This image has 210 bands and a 5-m spatial
resolution. We selected a 307 × 280 subset and four bands
from the original whole image for the subsequent synthetic
experiments. Although the parameters λ1, λ2, and Δt should

vary in terms of specific images, overall good results with
the following set were found: Δt = 0.075, λ1 = 0.02, and
λ2 = 0.01. For the proportion parameter p, the optimal value
was determined through testing a series of different proportions
on one selected single-band image shown as Fig. 1(a). It
was horizontally degraded, as the following test data shows
in Fig. 1(b).
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TABLE II
CLASSIFICATION ACCURACY AND KAPPA COEFFICIENT

Now, we will discuss the influence of the percentage param-
eter p to the final result. According to the parameter selecting
strategy described in Section 3-A, p is manually tuned in the set
P = {100, 90, 80, 65, 60, 55, 50, 40, 30, 20, 15, 10, 0}%. When
p equals 100%, it means that the L2 norm totally constrains r.
On the contrary, when p equals 0%, the TV totally constrains r.
Several factors, including MSE, PSNR, HFM (histogram flat-
ness match), and gradient, are introduced to make quantitative
assessments to the results

MSE =E
(
(Î − I)2

)
(14)

PSNR =10× log

(
2552

MSE

)
(15)

HFM =
1

N

255∑
I=0

∣∣∣H(Î)−H(I)
∣∣∣ (16)

and (17), shown at the bottom of the page, where Î is the
estimated value, I is the original vale, N is the size of the
image, H(I) represents the frequency of intensity value I ,
and G is the maximum of the gradients in four directions
G = max(GH,GV,GD,GrD). The lower HFM corresponds to
a better match of the result to the original image. As smooth
light is removed from the image, the result usually contains
high-frequency information with a high gradient. If appropriate
prior constrain different regions, the result should have an
appropriate gradient higher than the degraded and lower than
the overenhanced.

Fig. 2 shows the curves of different assessment factors versus
the percentage parameter p. The following conclusions are
drawn: First, the multiprior constraint outperforms the solitary
constraint, either L2 norm or TV. Second, consulting Table I
and Fig. 2(d), we found that all the results had higher gradient
values than the original image, which means that the proposed
algorithm enhances the high-frequency information, as well as
weakens the low-frequency information. However, the multi-
prior constraint yields relatively satisfying results. It suggests
that associating prior type with image content is reasonable
and effective. Finally, integrating the assessment with the four

factors, p = 30% is employed as the percentage setting in the
following tests for the Washington DC image.

Fig. 3 shows the corrected results of the mask, the VFR,
and the proposed method. The intensity dispersion in the three
results is all corrected to an even level. However, Fig. 3(b) and
(c) shows a more pleasing visual effect than Fig. 3(a) does.
Fig. 3(a) is blurred after the uneven illumination is wiped off be-
cause the simple subtract operation in the mask method reduces
the amount of information in images without fully considering
spatial features and correlations. The brightness of Fig. 3(c)
is lower than in Fig. 3(b) and is closer to the original image.
This is attributed to the dispersion item in the proposed model,
which restricts the intensity attachment to the middle gray and
avoids overexposure in the result. In addition, Fig. 3(b) is likely
to be covered in mist, whereas Fig. 3(c) shows clear edges
and details owing to the TV prior constraint, which eliminates
the halo artifacts. Table I presents the quantitative assessment
results of these three methods, in which the proposed method
outperforms the mask and the VFR.

To test the effectiveness of the proposed method further, it
was applied to process multiband images with three differ-
ent types of degradation: horizontal, vertical, and Gaussian.
Fig. 4(c), (f), and (i) show the degraded images. The multiband
images were processed band by band. The four selected bands
are distributed in red, green, blue, and the near infrared spectral
range, respectively. Classification results of degraded and cor-
rected images by MLC were adopted to assess the correction
effects via the overall classification accuracies and kappa coef-
ficients. The parameter setting in this test is coherent with the
single-band test. In terms of visual assessment, the classifica-
tion maps of the corrected images are better than those of the
degraded images, particularly the darker and brighter regions.
Quantitatively, Table II presents the overall accuracy and kappa
coefficients, which are both improved in the classification maps
of the images corrected by the proposed method. However,
the classification maps of the corrected images appear more
cracked than in Fig. 4(b), which is attributed to the increased
gradients of the processed images. In summary, whether from
qualitative or quantitative assessment, it can be concluded that
the proposed method can efficiently remove the influence of

Gradient =
1

N

∑ √
(G−GH)2 + (G−GV )2 + (G−GD)2 + (G−GrD)2 (17)
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Fig. 5. Results of the aerial data I. (a) Original aerial image. (b) VFR. (c) The
proposed method.

uneven light, explore the valid information, and enhance the
details in images.

B. Experiments on Real Aerial Remote Sensing Images

In this section, the proposed method is applied to real aerial
remote sensing images. Fig. 5(a) shows the first experimental

Fig. 6. Histograms of Fig. 5(a)–(c).

data size of 1000 × 1000 pixels, in which the brightness of
the left and top buildings is brighter than that of the right and
bottom buildings, due to the uneven distribution of environmen-
tal light. As no references are available for real remote sensing
images, it is hard to select the most appropriate parameters
and assess the results quantitatively. Parameters were adjusted
manually, consulting the setting in the synthetic test. For the
first data, parameters were set as Δt = 0.075, λ1 = 0.02, λ2 =
0.01, and p = 50%.

The comparison between the proposed method and the VFR
was carried out, as shown in Fig. 5(b) and (c). Results in-
dicate that both the VFR and the proposed method can re-
move the uneven brightness distribution in the original image
visually, but some regions in Fig. 5(b) are overexposed after
processing, while in Fig. 5(c), this phenomenon is eliminated.
Objectively, from the histograms shown in Fig. 6, it is seen that
(b) and (c) are flatter than (a), but there is a leap in the tail
of (b), which is responsible for the overexposed phenomenon
in Fig. 5(b), whereas (c) has high similarity with Gaussian
distribution.

Fig. 7 shows four detailed regions cropped from
Fig. 5(a)–(c). Two regions in the first line are bright before,
and the corrected results decline their intensities. The other
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Fig. 7. Detailed regions cropped from Fig. 5(a)–(c).

Fig. 8. Six selected regions and their means. (a) Six regions. (b) Broken lines
with the means of six regions for three images in Fig. 5.

two detailed regions in the second line are dark before and
are enhanced in the corrected results but overexposed in the
VFR, as shown in Fig. 7(b). This is attributed to the third item
in the proposed method, which controls the macro intensity
dispersion and ensures the whole visual performance.

For quantitative assessment, six regions were cropped from
the original image, as shown in Fig. 8(a), and their normalized
means in one band were compared. In Fig. 8(b), the middle
line crossing value 1 represents the ideal mean value. The
other three parallel lines from bottom to top correspond to the
means of the original image, the corrected images processed by
the proposed method, and the VFR. The points around these

Fig. 9. Results of real data II. (a) Original aerial image. (b) VFR. (c) The
proposed method.
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Fig. 9. (Continued). Results of real data II. (d)–(f) Detailed region 1 cropped from (a)–(c). (g)–(i) Detailed region 2 cropped from (a)–(c). (j)–(l) Detailed region
3 cropped from (a)–(c).

lines correspond to those six region means, and the distances
from these points to their mean line reflect the even degree
of brightness. In Fig. 8(b), points in the second broken line
have the shortest distances among the three broken lines, which
indicate that the final image corrected by the proposed method
has the highest even degree.

Results of the second data with a size of 950 × 600 and
the third data with a size of 600 × 400 are shown in Figs. 9
and 10. Parameters were set as Δt = 0.075, λ1 = 0.001, λ2 =
0.01, and p = 50%. Nine bright regions were cropped from
the second data and shown in Fig. 9(d)–(l). Lightness in the
middle column is not darker or even brighter than that in
the left, whereas image in the right column shows an even
tone with the lightness of bright areas declining. These results
indicate that out method outperforms the VFR in handling those
originally bright areas. The region in the third line of Fig. 10
is also a bright area, whose lightness has tremendous decline
in the result of the right column comparing with the left and
middle columns. Lightness in Fig. 10(e) is raised, but the color
is distorted a little. Fig. 10(f) is more satisfactory visually.
Generally, results demonstrate the effectiveness of our method
in dealing with both dark and bright regions.

Finally, we intend to discuss the convergence of the proposed
method thorough analyzing the relative iteration error with
the iteration number. From the convergence curves shown in
Fig. 11, it can be seen that this method can quickly converge to
a stable-state solution with a few steps.

V. CONCLUSION

A variational method has been presented for correcting un-
even intensity in remote sensing images, using multi priors (L2
norm and TV) as the contrast item and GW as the dispersion
item. Synthetic and real remote sensing images were used to
validate this method, and the performances were evaluated both
subjectively and objectively. The experimental results show
that corrected images by the proposed method have an even
intensity and maintain the original chrominance. Compared
with the VFR, our method avoids the overexposure phe-
nomenon and halo artifacts owing to the effective items in the
energy function. As with the VFR, the proposed method is
time consuming and the parameters weighting each item are
determined manually. We will investigate a fast algorithm and
automatic parameter selection in our future work.
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Fig. 10. Results of real data III. (a) Original aerial image. (b) VFR. (c) The proposed method.
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Fig. 10. (Continued). Results of real data III. (d)–(f) Detailed region 1 cropped from (a)–(c). (g)–(i) Detailed region 2 cropped from (a)–(c).

Fig. 11. Convergence curves. (a) Convergence curve for the synthetic image.
(b) Convergence curve for the aerial data I.
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