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A B S T R A C T   

More accurate, spatio-temporally, and physically consistent land surface temperature (LST) estimation has been a 
main interest in Earth system research. Developing physics-driven mechanism models and data-driven machine 
learning (ML) models are two major paradigms for gapless LST estimation, which have their respective advan
tages and disadvantages. In this paper, a mechanism-guided ML model, which combines the strengths in the 
mechanism model and ML model, is proposed to generate gapless LST with physical meanings and high accuracy. 
The hybrid model employs ML as the primary architecture, under which the input variable mechanistic guidance 
is incorporated to enhance the interpretability and extrapolation ability of the model. Specifically, the light 
gradient-boosting machine (LGBM) model, which only uses remote sensing data as input, serves as the pure ML 
model. Mechanistic guidance (MG) is coupled by further incorporating key Community Land Model (CLM) 
forcing data (cause) and CLM simulation data (effect) as inputs into the LGBM model. This integration forms the 
MG-LGBM model, which incorporates surface energy balance (SEB) guidance underlying the data in CLM-LST 
modeling within a biophysical framework. Results indicate that, MG-LGBM model shows a good accuracy for 
the sample-based validation, with a root-mean-square error of 1.23–2.03 K, and a Pearson correlation coefficient 
of 0.99. Validation with four independent ground measurements shows that MG-LGBM can generate clear-sky 
LST that is comparable to the original Moderate Resolution Imaging Spectroradiometer- (MODIS) LST under 
fully clear-sky conditions and can correct for the likely cloud-contaminated LST pixels. The generated LST also 
presents a high accuracy (RMSE = 2.91–3.66 K and R = 0.97–0.98) under cloudy-sky conditions. Compared with 
a pure mechanistic method and pure ML methods, the MG-LGBM model improves the prediction accuracy and 
mechanistic interpretability of LST. It also demonstrates a good extrapolation ability in the regions without valid 
samples, suggesting that the predictions of MG-LGBM model not only exhibit low errors on the training dataset 
but also align consistently with the known mechanistic laws in the unlabeled set. Compared with other popular 
ML methods and sophisticated gapless products, the MG-LGBM model delivers a superior validation accuracy and 
image quality. The proposed method represents an innovative way to map accurate and mechanistically inter
pretable gapless LST, and could provide insights to accelerate knowledge discovery in land surface processes and 
data mining in geographical parameter estimation.   

1. Introduction 

Land surface temperature (LST) is a crucial parameter in land- 
atmosphere interactions, reflecting the surface energy balance (SEB) 
and fluxes exchange and is widely used in multi-disciplinary research, 
such as climatology (Hansen et al., 2010), urbanology (Shen et al., 
2016), agriculture (Karnieli et al., 2010), ecology (Connors et al., 2013) 

and hydrology (Anderson et al., 2012). Accordingly, LST has been 
identified as one of the most essential climate variables (ECVs) by the 
Global Climate Observing System (GCOS). For LST acquisition, thermal 
infrared (TIR)-based remote sensing has attracted increasing attention 
due to the relatively fine spatial resolution, high accuracy and data 
availability across the globe (Li et al., 2013b). Over the past decades, a 
wealth of LST products based on TIR algorithms have been developed 
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and used, such as Moderate Resolution Imaging Spectroradiometer- 
(MODIS-), Spinning Enhanced Visible and Infrared Imager- (SEVIRI-), 
Advanced Very High-resolution Radiometer- (AVHRR-) and Visible 
Infrared Imaging Radiometer- (VIIRS-) LST. However, cloud contami
nation often leads to large gaps in TIR LST. For example, the MODIS LST 
covers <40% of the globe, which severely hinders the potential appli
cations of the data (Duan et al., 2017). Therefore, filling LST gaps caused 
by cloud contamination is an urgent priority in relevant studies. 

A series of approaches have been developed to fill the LST gaps and 
generate gapless LST products (Shen et al., 2015; Wu et al., 2021). The 
early mainstream methods typically utilized the spatio-temporal infor
mation of TIR LST itself, considering LST temporal variation laws, such 
as the diurnal temperature cycle (DTC) (Xu and Shen, 2013) and annual 
temperature cycle (ATC) (Xia et al., 2021), or spatial neighboring laws, 
such as kriging (Ke et al., 2013) and spline function (Neteler, 2010), or 
both of them (Kilibarda et al., 2014; Li et al., 2018; Weiss et al., 2014). 
However, the accuracy of these methods is significantly affected by the 
accessibility of neighboring clear pixels in space and time, with an un
satisfactory performance found in large-scale or long time-series data 
missing cases (Fu and Weng, 2016). Furthermore, this type of method 
cannot reflect the cloud effects, thus leading to a hypothetical clear-sky 
LST (Hong et al., 2021). 

To obtain the real cloudy-sky LST, methods considering the differ
ence between LST in clear and cloudy conditions were proposed. These 
methods normally take proxy data for clouds from other sources as the 
additional information, such as meteorological data, passive microwave 
(PMW)-based data, and land surface model (LSM)-simulated or assimi
lation data. By calculating and adding the cloud effect estimated from 
meteorological data, SEB-based methods have been proposed to correct 
the hypothetical clear-sky LST (Jia et al., 2021; Jin, 2000; Zeng et al., 
2018). Nevertheless, some meteorological data, such as ground-based 
air temperature and radiation data, are difficult to obtain, thus 
impeding the applications of SEB-based methods in poorly gauged re
gions (Lu et al., 2011; Yu et al., 2014b). Due to the ability to penetrate 
clouds, PMW LST is another commonly used data source for mapping 
real and gapless LST (Duan et al., 2017; Wu et al., 2022; Xu and Cheng, 
2021). However, the retrieval of high-quality PMW LST remains chal
lenging due to the surface penetration, swath gaps and the relatively 
coarse spatial resolution, which can degrade the quality of the recon
structed LST (Zhang et al., 2020). LSMs can achieve the spatio- 
temporally continuous simulation of land surface parameters, such as 
LST, soil moisture (SM), and surface energy fluxes, and are regarded as a 
fundamental methodology in Earth system science (ESS) (Fisher and 
Koven, 2020). In addition, LSMs are rooted in scientific theory based on 
physical mechanisms and parameterization schemes, thereby providing 
more realistic LST estimates with physical meanings by learning 
explainable relationships between input and output variables. Some 
studies have incorporated LSM-simulated data as the complementary 
information to fill the gaps of TIR LST, which is an approach that have 
received much attention in recent years (Long et al., 2020; Ma et al., 
2022; Zhang et al., 2021). However, LSMs mostly rely on the available 
mechanisms and lack capability to directly derive insights from data 
(Karpatne et al., 2017). For example, many LSMs use simplified mech
anisms for representing the complex mechanistic processes that are not 
fully understood, thus resulting in a relatively low accuracy of LSM 
simulation data, which can introduce uncertainties in the reconstruction 
process. 

Motivated by the remarkable data mining and non-linear represen
tation capabilities of ML architectures, many achievements have been 
made in LST reconstruction studies. The reconstruction is usually 
implemented by establishing the non-linear function between TIR LST 
and gapless LST (e.g., PMW LST) or its spatio-temporal descriptors, such 
as the normalized difference vegetation index (NDVI), digital elevation 
model (DEM), day of year (DOY), and albedo in clear conditions, and 
applying the relationship to obtain the cloudy LST (Buo et al., 2021; Tan 
et al., 2021b; Wu et al., 2022; Wu et al., 2019; Xiao et al., 2023). Thanks 

to the emergence and introduction of proxy data for clouds, ML methods 
have advanced the ability to reconstruct the actual cloudy-sky LST (Cho 
et al., 2022; Fu et al., 2019; Shwetha and Kumar, 2016; Zhao and Duan, 
2020). Nevertheless, the mainstream methods incorporate independent 
proxy data (e.g., solar radiation data or LSM simulated LST) which are 
only correlated with cloudy LST, but provide no prior assumptions or 
mechanistic understanding of the processes. As is well known, ML 
methods are empirically based and rely heavily on massive training 
data, making it difficult to transfer the model to other data-sparse re
gions (Lin et al., 2023). Furthermore, “correlation does not imply 
causation” (Aldrich, 1995; Altman and Krzywinski, 2015). The LST 
retrieval mechanisms and the process knowledge (such as conservation 
of energy) behind LST reasoning remain unclear, which may result in 
spurious predictions and extrapolation problems (Read et al., 2019). 
Therefore, it is necessary to incorporate causal data involved in the LST 
reasoning process as input, thereby coupling such mechanisms into the 
ML model to enhance its interpretability and transferability. 

Coupling mechanistic knowledge into ML is one of the current 
research hotspots, and has been successfully applied in estimating 
various land surface parameters (De Bézenac et al., 2019; Karniadakis 
et al., 2021; Karpatne et al., 2017; Koppa et al., 2022; Shang et al., 2023; 
Shen and Zhang, 2023; Wang et al., 2021; Wang et al., 2023). Toward 
LST reconstruction, to the best of our knowledge, few studies have been 
conducted on coupling the mechanism and learning. Regarding the 
above issues, this study takes into consideration the rationalism and 
empiricism that inform a mechanism-guided ML method for mapping 
gapless LST. Specifically, an advanced LSM, i.e., the Community Land 
Model (CLM), which uses meteorological forcing data to calculate the 
SEB was first used to produce model-based estimates. The complete 
process of CLM-LST modeling was deduced to identify the optimal 
combination of mechanistic variables with causal relationships as inputs 
for the ML model. By incorporating key CLM forcing data (cause) and 
CLM simulation data (effect), the mechanistic guidance based on the 
SEB underlying the data were integrated into the ML model. The 
generated LST product under all-weather conditions tends to be mech
anistically realistic while maintaining a high accuracy. 

2. Study area and data 

2.1. Study area 

Fig. 1 shows the study area, which covers most of the middle and 
upper reaches of the Heihe River Basin (HRB-MU), and is located within 
37.5◦N–39.5◦N and 99◦E–101◦E in arid Northwest China. Featuring 
glaciers, alpine meadows, grassland and forest in the upstream and 
dominated by irrigated crops and desert in the middle part of the HRB, 
the terrain of the HRB-MU is complex, with the elevation ranging from 
1325 to 5040 m. The HRB-MU has a continental climate with mean 
annual precipitation of ~400 mm and mean annual temperature of 
~275 K (Tan et al., 2021a). The in-situ measurements used in this study 
were derived from four weather stations in a well-known watershed 
observatory network, namely the Watershed Allied Telemetry Experi
mental Research (WATER) network (Li et al., 2009). The observatory 
network in the HRB-MU provides an ideal testbed for the validation of 
the proposed method in estimating gapless LSTs under various topo
graphic conditions (Liu et al., 2018). 

2.2. Data 

The data used in the study consisted of: 1) satellite data for model 
training and validation; 2) meteorological forcing data for model 
training, validation and CLM driving; 3) CLM simulations for model 
training and validation; and 4) in-situ LST observations for model vali
dation. Before the model implementation, the satellite data, meteoro
logical forcing data and CLM simulation data from 2008 to 2011 were all 
resampled to a 0.01◦ × 0.01◦ spatial resolution using a nearest neighbor 
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interpolation and re-projected to the WGS84 coordinate system. Table 1 
summarizes the basic information about the multi-source data used in 
this study. 

2.2.1. Satellite data 
The satellite data used in this study from 2008 to 2011 are listed in 

Table 1. The 1-km MODIS daily LST/emissivity product (MYD11A1) in 
Collection 6 was selected as the model label data. The MYD11A1 v6 
product was retrieved from Aqua MODIS using the generalized split- 
window algorithm (Wan and Dozier, 1996), with an approximate 
overpass time of 1:30 p.m. (local solar time) in ascending orbit and 1:30 
a.m. in descending orbit. Some studies have indicated that the MODIS 
LST product has an accuracy of within 1 K in homogeneous areas (Wan, 
2014). The quality control (QC) flags with “LST produced, good quality 
(QC = 0)” and “average LST error <= 1 K" were used to identify the 
clear-sky MODIS LST data. 

Four surface variables that are highly correlated with surface ther
mal properties were chosen as the LST predictors. The 16-day 1-km 
NDVI data were retrieved from the MODIS vegetation index product 
(MOD13A2). The Global LAnd Surface Satellite (GLASS) (Liang et al., 
2021) black-sky surface albedo product with visible (B_VIS) and near- 
infrared (B_NIR) spectral ranges was obtained from GLASS02A06. A 

normalized difference snow index (NDSI) product produced by a Spatio- 
Temporal Adaptive fusion method with error correction (STAR-NDSI) 
(Jing et al., 2022) was adopted in this study. The DEM and latitude 
(LAT) data were used to account for the LST terrain effect and temper
ature gradients (Minder et al., 2010; Zhao et al., 2019). We acquired the 
Shuttle Radar Topography Mission DEM (SRTM DEM) data with a 90-m 
spatial resolution from the United States Geological Survey (USGS). For 
the temporal feature, the DOY was selected. 

The temporal resolutions of the GLASS product and MODIS vegeta
tion index product vary from 8 days to 16 days. To obtain these products 
at a daily time scale, different interpolation methods were employed. 
The nearest neighbor interpolation approach was used for albedo due to 
its relative invariance within 8 days. As for the NDVI, the linear inter
polation approach was applied, as it can represent the true trend of this 
variable. After the preprocessing, all the auxiliary variables were gapless 
with a 1-km and daily spatio-temporal resolution. 

2.2.2. Meteorological forcing data and surface data 
The China Meteorological Administration Land Data Assimilation 

System version 2.0 (CLDAS v2.0) (Shi et al., 2011) was used as the 
forcing data for driving the Community Land Model Version 5.0 
(CLM5.0) and the input data for the ML model. The CLDAS v2.0 product 
was developed and maintained by the China Meteorological Adminis
tration (CMA), covering East Asia (0–65◦N, 60–160◦E) and spanning 
from 2008 to 2018. It was produced by merging reanalysis data, 
satellite-based products, and in-situ measurements from >2400 national 
automatic stations of the CMA, with a spatial resolution of 0.0625◦ ×

0.0625◦ and a temporal resolution of 1 h (Liu et al., 2019). The dataset 
consists of six meteorological forcing variables, i.e., 2-m air temperature 
(TMP), 2-m specific humidity (RHU), 10-m wind speed (WIN), precipi
tation rate (PRE), air pressure (PRS), and downward shortwave radia
tion (SRA). Compared with the Global Land Data Assimilation System 
(GLDAS) forcing data, the CLDAS product has been proven to be more 
accurate in China due to the integration of more site observations (Yang 
et al., 2017). The soil properties data, i.e., percent sand, percent clay and 
organic matter density with a 30 arc-second resolution, were derived 
from the China Dataset of Soil Properties for Land Surface Modeling 
(Shangguan et al., 2013). The static land-cover data, including percent 
crop/lake/wetland/glacier/urban/natural vegetation and different 
percent plant functional types (PFTs) were collected from the MODIS 
land-cover type product (MCD12Q1) for 2010. The other surface data, 

Fig. 1. Location of (a) the Heihe River Basin (HRB) and (b) the study area (HRB-MU). Land-cover types for 2010 are from the MODIS land-cover type product 
(MCD12Q1) with a 500 m spatial resolution. The rectangles filled with null values represent the divided regions. The rectangle filled with light red represent the 
selected region for testing, while the other rectangles represent the regions for training in the space-based validation (Section 3.3). (For interpretation of the ref
erences to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Summary of the satellite data, meteorological forcing data, model simulation 
data and in-situ measurements used in this study.a  

Short name Variables Spatial 
resolution 

Temporal 
resolution 

Usage 

MYD11A1 LST 1 km Daily Model label 
MOD13A2 NDVI 1 km 16-day Model input 
GLASS02A06 Albedo 1 km 8-day Model input 
STAR NDSI NDSI 500 m Daily Model input 
SRTM DEM DEM, latitude 90 m – Model input 
CLDAS 

forcing 
TMP, RHU, 
PRS, SRA, WIN, 
PRE 

0.0625◦ Hourly CLM driving 
Model input, 

CLM 
simulated 

CLM-LST, CLM- 
SM 

0.05◦ Hourly Model input 

WATER ULW, DLW Point 30-min Model 
validation  

a The definitions of the variables are in the text and the download links are 
attached in the Acknowledgements. 
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such as elevation, slope, and the monthly leaf and stem area index, were 
obtained from the CLM surface data pool (Oleson et al., 2010). 

The above-mentioned high-quality forcing and surface data were 
introduced to replace the default datasets in the CLM5.0 data pool, to 
improve the model performance. After the CLM5.0 build and spin-up, a 
four-year numerical simulation was conducted to produce model-based 
LST and SM estimates with a 0.05◦ and 1-h spatio-temporal resolution. 
To match the satellite data, the CLDAS forcing data and CLM simulation 
data for ML model training were temporally interpolated to the value at 
the MYD11A1 view time by a cubic spline interpolation method. 

2.2.3. In-situ data 
To access the accuracy of the reconstructed LST, four in-situ long

wave radiation measurements with different land-cover types were 
collected from WATER, who provided continuous and high-quality in- 
situ measurements for LST assessment studies (Duan et al., 2017; Wu 
et al., 2022; Yu et al., 2014a). The A’rou freeze station (AR), Huazhaizi 
desert station (HZZ), Yingke oasis station (YK), and Linze grassland 
station (LZ) are equipped with Kipp & Zonen (CNR1/CNR4) or CAMP
BELL (CG3) net radiometers for measuring upwelling (ULW) and 
downwelling longwave radiation (DLW) every 30 min. Fig. 1 shows the 
locations of the stations, and Table 2 lists the basic information about 
the four stations. 

The in-situ LSTs were retrieved using Stefan-Boltzmann law as fol
lows (Wang and Liang, 2009): 

Ts =

[
F↑ − (1 − εb)F↓

εb • σ

]1/4

(1)  

where Ts is the surface skin temperature or LST; F↑ and F↓ denote the 
surface upwelling and atmospheric downwelling longwave radiation, 
respectively; σ is the Stefan-Boltzmann constant (5.67×

10− 8 W m− 2 K− 4); and εb is broadband emissivity (BBE), which was 
acquired from a GLASS BBE product representing the emissivity value at 
8–13.5 μm (Cheng et al., 2015). Finally, the “3σ (standard deviations) 
edit rule” method (Pearson, 2002) was utilized to remove outliers due to 
cloud contamination. 

3. Methodology 

We propose a mechanism-guided ML model for mapping gapless LST. 
The hybrid model takes ML as the main architecture, under which the 
underlying mechanistic laws (e.g., the SEB) between the key CLM 
forcing data (SRA, TMP, RHU, PRS) and CLM simulation data (CLM-LST, 
CLM-SM) in the CLM-LST modeling are incorporated and guide the ML 
model. The LST estimations of the hybrid model were compared with 
those of a pure mechanistic method, pure ML methods, and other 
advanced ML methods. The well-trained model was applied for the HRB- 
MU from 2008 to 2011. The generated LST data were validated against 
in-situ LST and compared with other gapless LST data. The details of the 
proposed method are provided below. 

3.1. Pure ML model 

ML has gained increasing popularity in gapless LST estimation (Li 
et al., 2021; Zhang et al., 2020; Zhao and Duan, 2020). To date, the ML 
has usually been implemented by establishing the relationship between 
the clear-sky LST and auxiliary variables. The established relationship 
was then subsequently applied to the gapless auxiliary variables for 
mapping all-weather LST. The early studies normally used gapless data 
(e.g., remote sensing data) as the explanatory variables. The empirical 
model can be constructed as follows: 

LST = ML(DEM,LAT,NDVI,NDSI,B VIS,B NIR,DOY) (2)  

where ML is the pure ML model without mechanistic constraints; LST is 
the MODIS LST with the highest quality; DEM, LAT,NDVI,NDSI,B VIS, 
and B NIR are the remote sensing data, which represent the surface 
thermal properties and terrain effect of LST; and the day of year (DOY) 
represents the temporal characterization. 

In this study, the light gradient-boosting machine (LGBM) model was 
used as the learner. Fig. 2 shows a schematic diagram of the LGBM 
model. As the successor of the extreme gradient boosting (XGBoost) 
model, the LGBM model is a newly developed ML algorithm based on the 
gradient-boosting decision tree (GBDT) (Ke et al., 2017). Compared with 
conventional deep learning methods, such as a deep belief network 
(DBN) and generalized regression neural network (GRNN), the LGBM 
model is advantageous in dealing with massive data and countering 
overfitting problems. A second-order approximation is used to minimize 
the objective function in the LGBM model, which is formulated as 
follows: 

L(t) =
∑n

i=1

[

l
(
yi, ŷ(t− 1) )+ ∂ŷ(t− 1)l

(
yi, ŷ(t− 1) )ft(xi)+

1
2
∂2

ŷ(t − 1)l

(
yi, ŷ(t− 1) )f 2

t (xi)

]

+Ω(ft)

(3)  

where L(t) is the objective function of the t − th iteration solution; xi is 
the sample; n denotes the number of samples; l denotes the loss function 
used to measure the difference between the actual value yi and the 
predicted value ŷ, which is the root-mean-square error (RMSE) in this 
case; ∂ and ∂2 denote the first- and second-order gradients of l, 
respectively; ft is an independent regression tree and ft(x) is the corre
sponding increment; and Ω(f) denotes the regularization term, which is 
defined as follows: 

Ω(f ) = γT +
1
2

λ‖w‖2 (4)  

where T denotes the number of leaf nodes; w denotes the leaf weights; γ 
and λ are hyper-parameters, and larger γ and λ indicate that the model 
prefers simpler tree structures, which are adopted from a leaf-wise tree 
growth strategy(Chen and Guestrin, 2016). 

The effectiveness of the LGBM model mainly stems from Gradient- 
based One-Side Sampling (GOSS) and Exclusive Feature Bundling 
(EFB) (Fig. 2). GOSS is a novel sampling technique that keeps a good 
balance between reducing the number of data instances and maintaining 
a high accuracy. Firstly, it sorts the data instances based on their 
gradient absolute values and selects the top m % instances. Secondly, it 
randomly samples n % instances from the remaining data. Finally, the 
sample instances with small gradients are amplified by a 1− m%

n% weight to 
ensure that more emphasis is placed on the under-trained instances 
without changing the original data distribution. EFB was designed to 
safely filter the features (such as NDVI, NDSI, B_VIS, B_NIR, etc.) based 
on the sparsity of high-dimensional data, which is founded on a 
histogram-based algorithm. It first clusters the data to find those sparse 
but frequently co-occurring features, which are usually mutually 
exclusive. It then bundles these exclusive features into a single feature to 
avoid unnecessary computation for zero feature values. This bundling 

Table 2 
The basic information about the four weather stations used in this study.  

Site Location Elevation 
(m) 

Land-cover Period 

AR 100.4647◦E, 
38.0444◦N 

3033 Alpine 
meadow 

2008/01–2011/ 
12 

HZZ 100.3201◦E, 
38.7659◦N 

1731 Desert steppe 2008/01–2011/ 
12 

YK 100.4167◦E, 
38.85◦N 

1519 Cropland 2008/01–2011/ 
12 

LZ 100.0667◦E, 
39.25◦N 

1394 Grassland 2008/01–2008/ 
10  
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process can reduce the dimension of the samples, thereby reducing 
memory usage, preventing overfitting and retaining accuracy. 

3.2. Mechanism-guided ML model 

Despite filling the gaps of the MODIS LST, the obtained cloudy LST 
based on pure ML (Eq. (2)) is far away from realistic due to the un
availability of data that can distinguish between clear-sky and cloudy- 
sky conditions. Furthermore, pure ML methods can only learn the 
relationship between discrete LST samples and the explanatory data. 
The causal relationship and the underling mechanistic process between 
LST retrieval input and output remain unclear. As a result, the obtained 
LST lacks mechanistic interpretability, which is usually ignored in LST 
reconstruction studies using ML methods. In our previous work, three 
guidance methods were proposed to integrate the mechanistic knowl
edge into the ML model, i.e., input variable guidance, objective function 
guidance, and model structure guidance (Shen and Zhang, 2023). In this 
case, the input variable mechanistic guidance is employed. In this sec
tion, we first describe the overall framework of input variable 
mechanism-guided ML model, termed mechanism-guided LGBM (MG- 
LGBM). Then, the LST retrieval mechanisms and the involved process 
knowledge in CLM5.0 are deduced in mechanism-based equations to 
help understand the process of coupling. 

3.2.1. Overall framework 
Consider a predictive learning problem in which we have a set of 

input forcing data, CF, that are mechanistically related to a target var
iable of interest, LST. A common approach is to train a data driven 
model, such as an LGBM model, fLG : CF→LST, which can be used to 
generate estimates of the target variable, L̂ST. Alternatively, we can also 
use a mechanistic model, e.g., fCLM : CF→LST, to simulate the value of 
the target variable, LSTCLM, given its mechanistic relationships with F. 
However, LSTCLM may provide an incomplete representation of LST due 
to the approximations of parameterized forms in fCLM , thus resulting in 
discrepancies between model simulations and observations (Karpatne 
et al., 2017). Therefore, the primary objective of MG-LGBM is to 
combine fCLM and fLG so as to overcome their respective limitations and 
leverage information in both mechanism and data. One simple yet 
effective way for combining fCLM and fLG is to use the simulated outputs 
of the mechanistic model, LSTCLM, along with the forcing data, F, as joint 
inputs for the ML model. The relationship is improved as: 

LST =MG − LGBM(CF,CS,DEM,LAT,NDVI,NDSI,B VIS,B NIR,DOY)

(5)  

where CF = { SRA,TMP,RHU,PRS} denotes the four sets of CLM forcing 
data that are mechanistically dominant in CLM-LST simulation; and 
CS = { CLM − LST,CLM − SM} represents the two sets of CLM simula
tion data that correspond to the CLM forcing data. Both CF and CS can 
characterize the real thermal state under clouds. The downward short
wave radiation SRA is only used in the daytime model. MG-LGBM is the 
mechanism-guided ML model obtained by imposing SEB guidance in 
mechanism-based equations to the LGBM model (Fig. 3). Mentioning 
that if the mechanistic model and its output is accurate enough, MG- 
LGBM can learn to predict L̂ST with the same level of accuracy as 
LSTCLM. However, if there are systematic bias in LSTCLM, then MG-LGBM 
can learn to mitigate these differences by extracting latent features from 
the input forcing data space, thereby narrowing the knowledge gap. 

3.2.2. The CLM5.0 model and its configuration 
In this study, the Community Land Model Version 5.0 (CLM5.0) was 

utilized to produce the model-based LST and SM estimates. CLM5.0 is 
the land component coupling in the Community Earth System Model 2 
(CESM2, https://www.cesm.ucar.edu/models/cesm2), which is the 
latest version released by the National Center for Atmospheric Research 
(NCAR) in 2019 (Lawrence et al., 2019). Compared with CLM4.5, 
CLM5.0 is updated with several parameterizations in soil and plant 
hydrology, snow density, river modeling, carbon and nitrogen cycling 
and crop modeling (Lawrence et al., 2019). Previous studies have 
confirmed that CLM5.0 performs better than CLM 4.5 in soil tempera
ture simulation (Deng et al., 2020; Luo et al., 2020). A 7-year 
(2001–2007) spin-up simulation at the regional scale over the HRB- 
MU was implemented to reach an initialization equilibrium of the 
thermal regime for CLM5.0. Subsequently, offline numerical simulations 
with a 0.05◦ × 0.05◦ grid resolution and a 1-h time interval during 
2008–2011 were conducted in the prescribed satellite phenology mode. 

3.2.3. Reasoning of the mechanism guidance coupled in the ML model 
As mentioned, the input variable guidance is applied to incorporate 

mechanistic knowledge into the LGBM model. Thus, it is important to 
explore which forcing data are used to carry out the mechanism simu
lation of the dynamics and what the mechanistic guidance coupled into 
the ML model actually represents. Here, we provide a detailed reasoning 

Fig. 2. Schematic of the light gradient-boosting machine model.  
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process for the retrieval of LST in the CLM, to identify the meteorological 
forcing data that are mechanistically related to CLM-LST and the 
mechanistic laws containing in the mechanism-based equations. The 
mathematical derivation is given below. 

In CLM 5.0, LST is computed as follows: 

Ts =

(
L↑
σ

)1/4

(6)  

where Ts is the skin temperature (LST); and L↑ is the surface upward 
longwave radiation, which can be estimated as:  

where L and S denote the exposed leaf area index and stem area index, 
respectively; L + S < 0.05 represents the non-vegetated surfaces, and 
otherwise vegetated surfaces; Tg and Tv are the ground (soil, snow and 
surface water) and vegetation temperatures, respectively; σ is the Stefan- 
Boltzmann constant; εg and εv are the ground and vegetation emissivity, 
respectively; and Latm↓ is the downward atmospheric longwave radia
tion, which is calculated based on Idso (1981): 

Latm↓ =

[

0.7+ 5.95× 10− 5 × 0.01× eatm × exp
(

1500
Tatm

)]

σ Tatm
4 (8)  

where eatm =
Patmqatm

0.622+0.378qatm 
is the atmospheric vapor pressure; and Patm, 

qatm, and Tatm are the air pressure (PRS), the air specific humidity (RHU), 

and the air temperature (TMP), which were obtained from the CLDAS 
meteorological forcing dataset. 

The numerical solutions for Tg and Tv are based on the SEB equation. 
Taking Tg as an example, the SEB is defined as follows: 

G = S→g − L→g − Hg − λEg (9)  

where G is the ground heat flux, which is used for the soil temperature 
calculation; S→g and L→g are the net solar radiation and the net longwave 
radiation absorbed by the ground, respectively; Hg and λEg are the 
sensible and latent heat fluxes, respectively, where Eg is the water vapor 

flux, and λ is a multiplier for converting the water vapor flux to an en
ergy flux. The surface net radiation ( S→g − L→g) is given as: 

Rn,g = (1 − α)S↓+ εgLatm↓ − εgσ
(
Tg
)4 (10)  

where Rn,g is the surface net radiation; S↓ is the incident solar flux 
(W m− 2), which is obtained from the solar shortwave radiation (SRA); 
and α is the ground albedo, which is associated with the land-cover type 
and soil color. 

The calculations of Hg and Eg are based on Monin-Obukhov similarity 
theory (Monin and Obukhov, 1954) using the ground temperature from 
the previous time step, in conjunction with the atmospheric potential 
temperature, specific humidity, and thermodynamic and aerodynamic 
resistances. The formulas for Hg and Eg can be found in CLM5.0 technical 

Fig. 3. Framework of the proposed mechanism-guided ML method for mapping gapless LST. Δz is the layer thickness between two layers; Tg and T2 are the soil 

temperatures at the first and second layer, respectively; S→g and L→g are the net solar radiation and the net longwave radiation absorbed by the ground, respectively; 
and Hg and λEg are the sensible and latent heat fluxes, respectively. 

L↑ =

{ (
1 − εg

)
Latm↓ + εgσ

(
Tg
)4
,L + S < 0.05

(
1 − εg

)
(1 − εv)

2Latm↓ + εv
[
1 +

(
1 − εg

)
(1 − εv)

]
σ(Tv)

4
+ εg(1 − εv)σ

(
Tg
)4
, otherwise

(7)   
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note (https://escomp.github.io/ctsm-docs/versions/release-clm5. 
0/html/tech_note/). Hg and Eg are then used as the surface forcing for 
the solution of the ground temperature at the current time step. The law 
of heat conduction in one-dimensional form is: 

c
∂T
∂t

=
∂
∂z

[

tk
∂T
∂z

]

(11)  

where c denotes the volumetric heat capacity of snow/soil (J m− 3 K− 1 ); 
t denotes the time, which was 3600 s in this study; tk denotes the thermal 
conductivity (W m− 1 K− 1), depending on the soil property; and z de
notes the vertical direction depth (m). Combining Eqs. (9) and (11) 
yields the energy balance equation for LST calculation: 

cΔz
∂Tg

∂t
=

tk

Δz

(
T2 − Tg

)
+ S→g − L→g − Hg − λEg (12)  

where Δz denotes the layer thickness (m) between the two layers; Tg and 
T2 are the soil temperature (K) at the first and second layer, respectively. 
In CLM5.0, there are 25 layers in total, which are thinker from the top 
layer to the bottom layer. This equation is solved numerically using the 
Crank-Nicolson method to calculate the ground temperature, with the 
boundary conditions of G as the ground heat flux into the top ground 
surface from the overlying atmosphere. 

According to Eq. (12), LST is determined by subtracting the outgoing 
energy from the incident energy, which represents the amount of energy 
that is absorbed by the surface (Jin, 2000). To represent the incident 
energy, the SRA is used (Eq. (10)). In CLM5.0, the downward atmo
spheric longwave radiation Latm↓ also exerts a crucial role on LST (Eqs. 
(7) and (10)). The Latm↓ is parameterized using TMP, PRS, and RHU (Eq. 
(8)). Furthermore, TMP and RHU are also required in the sensible and 
latent heat flux parameterizations. In this respect, the CLM forcing data 
(specifically, SRA, TMP, PRS and RHU) with a strong mechanistic rela
tionship on CLM-LST are selected as the input variables for the MG- 
LGBM model, making it feasible in the identification of causation from 
the correlation between the model forcing data and simulation data. 
Based on Eq. (12), we can also observe that interpretable process 
knowledge (i.e., the SEB and the law of heat conduction) is concealed 
within the simulation process of CLM-LST. 

3.3. Evaluation strategies 

LST varies significantly on diurnal and intra-annual scales (Göttsche 
and Olesen, 2001; Zhan et al., 2014). In this respect, we divided all the 
samples from 2008 to 2011 into eight data subsets based on spring 
(March–May), summer (June–August), autumn (September–No
vember), and winter (December–February), as well as daytime and 
nighttime. Therefore, eight models in total were trained and evaluated. 

Sample-based validation, space-based validation and independent 
site validation were used for the model validation. Fig. 4. shows the 
schematic diagram of sample-based validation and space-based valida
tion. For the sample-based validation, 10-fold cross-validation (CV) was 
utilized, i.e., all the matched (spatially and temporally) samples were 
randomly and evenly divided into 10 folds, with nine folds used for 

model training and one for model validation. This process was repeated 
10 times so that each fold can be validated, and the average accuracy 
was calculated. The sample-based CV shows superiority in evaluating 
the overall model performance and overfitting problems (Rodriguez 
et al., 2009). However, it is less effective in tackling spatial extrapolation 
problems in particular locations (Shen et al., 2022). Accordingly, space- 
based validation was applied to further test the model’s spatial predic
tion accuracy in regions without valid observations. The procedure of 
space-based validation is similar to that of sample-based validation. The 
only difference is that the spatial grids within the study area were evenly 
divided into 10 folds (Fig. 1), instead of all the matched samples (Li 
et al., 2020c). The generated LST product was then further compared 
with independent in-situ LST and the CLM-LST. The Pearson correlation 
coefficient (R), the RMSE, the mean absolute error (MAE) and the 
overall bias (BIAS) were selected as the validation indicators. 

4. Results 

4.1. Spatio-temporal patterns of the MG-LGBM estimated gapless LST 

One representative year (2010) was selected to enable the investi
gation into the spatio-temporal patterns of the generated gapless LST. 
Fig. 5 shows the spatial distribution of the CLM-simulated LST, MODIS 
LST, and estimated gapless LST in the different seasons (DOYs 16, 105, 
196, and 287) in the daytime and nighttime of 2010. Due to the inter
ference of clouds, missing data are prevalent in the MODIS LST. Despite 
spatial completeness, the CLM-LST has relatively few spatial details. 
Comparatively, the MG-LGBM LST is spatially complete and retains a 
high consistency with the MODIS LST in spatial details as well as LST 
magnitude. In addition, there are no block effects or artifacts in the 
estimated LST image, indicating that the MG-LGBM model can suc
cessfully address the scale inconsistencies between the input data and 
MODIS data. As shown in Fig. 5, the LST is highly variable in space and 
time, especially during the summer daytime, whereas relatively gentle 
variation is found during the nighttime. Relatively high LST values are 
observed in the low-altitude northeast region of the HRB-MU, where 
bare land is dominant. Likewise, relatively low LST values are observed 
in the high-altitude southern HRB-MU, where grassland and forest are 
widespread. Overall, it is viable to use the MG-LGBM model to generate 
gapless LST with full spatial continuity and to accurately depict the 
spatial thermal dynamics of the land surface. 

Fig. 6 displays the temporal variation of the MG-LGBM estimated all- 
weather LST during the daytime and nighttime in 2010 over the three 
sites. The in-situ LST, pure ML LST (e.g., ML predicted LST which only 
uses remote sensing data) and the corresponding MODIS LST are also 
provided for a comparison. The black, blue, and red lines represent the 
in-situ LST, pure ML LST, and estimated all-weather LST, respectively. 
The clear-sky MODIS LST is represented as a black hollow circle. The 
results show that the estimated all-weather LST can basically capture the 
seasonal and daily variations during both the daytime and nighttime, 
with an accuracy comparable to that of clear-sky MODIS LST, but with 
stronger time continuity. It is shown that the estimated daytime LST 
varies more sharply than the nighttime LST, with an RMSE of 2.92–3.79 

Fig. 4. Schematic diagram of sample-based validation and space-based validation in our study.  
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Fig. 5. Spatial patterns of the original MODIS LST, CLM-simulated LST, and estimated gapless LST for DOYs 16, 105, 196, and 287 in 2010 during (a) the daytime 
(around 13:30 local time) and (b) nighttime (around 01:30 local time). The land cover map can be referenced in Fig. 1. 
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Fig. 6. Time series of the in-situ LST, clear-sky MODIS LST, pure ML LST, and the MG-LGBM estimated all-weather LST at the three sites in 2010 during (a) the 
daytime and (b) the nighttime. The first, second and third rows in each subgraph represent the AR, HZZ and YK sites, respectively. DOY denotes the day of year. The 
discontinuity of the black line is mainly due to the missing in-situ LST data. 
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K and 2.49–2.66 K during the daytime and nighttime, respectively. 
Benefiting from the incorporation of the mechanistic laws, the proposed 
method can capture some of the sudden rises (e.g., DOY 121 during the 
daytime) or drops (e.g., DOY 67 during the nighttime) in LST. Compared 
with the MG-LGBM estimated LST, the pure ML LST exhibits an inferior 
performance, in terms of an RMSE of 4.15–7.53 K and a BIAS of 
− 2.27–3.23 K. By extracting complex features from CLM forcing data 
and CLM simulated data, the MG-LGBM estimated LST is to largely 
compensate for these errors. 

4.2. Quantitative evaluation results 

The performance of the MG-LGBM model was validated by simula
tion and real-data experiments using MODIS LST and in-situ LST mea
surements, respectively. Fig. 7 shows the sample-based and space-based 
validation results for the daytime and nighttime. As witnessed in Fig. 7, 
the sample size of the validation is adequate (>10 million), which 
demonstrates the reliability of the validation results. For the sample- 
based CV results, the averages of the R, RMSE, MAE, and BIAS are 
0.99, 2.03 K, 1.49 K, and 0 K, respectively, for the daytime. Meanwhile, 

these values for the nighttime are 0.99, 1.23 K, 0.92 K, and 0 K, 
respectively. The results indicate that the MG-LGBM model shows a 
favorable performance in LST prediction. Moreover, the MG-LGBM 
model shows good results under the space-based validation, with an R 
of 0.98 (0.99), RMSE of 2.62 K (1.56 K), MAE of 1.94 K (1.16 K), and 
BIAS of − 0.05 K (0.02 K) for the daytime (nighttime), which verifies the 
predictive ability of the model in regions without training samples. 
Compared with the model performance in the daytime, a higher accu
racy can be observed in the nighttime, which could be associated with 
the high thermal heterogeneity and TIR directional anisotropy during 
daytime (Cao et al., 2019; Zhang et al., 2021). 

In-situ LST measurements from four sites with different land-cover 
types were further used to assess the estimated gapless LST. Fig. 8 
shows the scatter plots of the estimated LST against in-situ LST mea
surements under all-weather conditions. The CLM-simulated LST under 
cloudy-sky conditions is also provided for a comparison. As can be seen, 
the MG-LGBM estimated LST is in good agreement with the in-situ LST 
under clear-sky conditions, with an RMSE of 2.45–2.79 K, MAE of 
2.05–2.21 K and R of 0.99. Through the powerful ability of the ML model 
in data mining, MG-LGBM largely corrected the systematic discrepancies 

Fig. 7. Scatter plots of the sample-based CV results and space-based CV results for the daytime and nighttime. The red solid line denotes the 1:1 line. The color bar is 
the density of the samples. N represents the sample size. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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in CLM-LST. As a result, the accuracy of the cloudy-sky LST is generally 
comparable to that of the clear-sky LST, in terms of RMSE differences of 
0.3–0.89 K, suggesting that the proposed approach can successfully 
recover cloudy LST from the established clear-sky model. In more detail, 
a better performance is observed at the YK and LZ sites, with an RMSE of 
2.91 K and 3.12 K, respectively, whereas a relatively poor performance 
is observed at the HZZ and AR sites, with an RMSE of 3.23 K and 3.66 K, 
respectively. The inferior accuracy can be attributed to the errors of the 
MODIS LST retrievals arising from the uncertainty in emissivity esti
mation in specific land-covers (e.g., the HZZ site in a desert region, and 
the AR site in an alpine snowy region) (Duan et al., 2019; Li et al., 2019). 
In general, the estimated gapless LST resembles the in-situ LST reason
ably well under both clear-sky and cloudy-sky conditions, demon
strating the reliability of the proposed method for estimating all-weather 
LST. 

4.3. Comparison with other methods and datasets 

4.3.1. Comparison with pure ML methods 
In this study, the key CLM forcing data and CLM simulation data 

were jointly compiled for training an ML model, according to their 
strong causal associations. In order to better understand the contribu
tions of mechanistic guidance made to the LGBM model, the perfor
mance of ML models with different combinations of data was evaluated. 

Table 3 summarizes the model accuracy metrics for different combina
tions of data under the space-based validation. It should be clarified that 
RS, CF, and CS represent remote sensing data, key CLM forcing data 
(SRA, TMP, PRS and RHU), and CLM simulation data (CLM-LST and 
CLM-SM), respectively. Due to the introduction of input variable 
mechanistic guidance (i.e., the underlying process knowledge between 
CF and CS in CLM modeling) in the ML model, RS + CF + CS belongs to a 

Fig. 8. Scatter plots of the estimated LST against in-situ LST measurements under all-weather conditions and CLM-LST against in-situ LST measurements under 
cloudy-sky conditions during 2008 to 2011 at the four sites: (a) AR (alpine meadow), (b) HZZ (desert steppe), (c) LZ (cropland), and (d) YK (grassland). 

Table 3 
Space-based model accuracy for different combinations of data, based on the 
LGBM model. The bold metrics denote the best performances among all the data 
combinations.  

Time Input combinations RMSE (K) MAE (K) R 

Daytime RS 3.88 2.94 0.97 
RS + CF 2.7 2 0.98 
RS + CS 2.95 2.19 0.98 
RS + CF + CS (MG-LGBM) 2.62 1.94 0.98 

Nighttime RS 2.62 1.96 0.98 
RS + CF 1.65 1.22 0.99 
RS + CS 1.85 1.36 0.99 
RS + CF + CS (MG-LGBM) 1.56 1.16 0.99 

RS: remote sensing data; CF: key CLM forcing data, i.e., SRA, TMP, PRS and 
RHU; CS: CLM simulation data, i.e., CLM-LST and CLM-SM. The numbers of 
samples are 16,403,324 (29656243) for the daytime (nighttime), respectively. 
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mechanism-guided ML method (see Section 3.2), while RS, RS + CF, and 
RS + CS belong to pure ML methods. The results show that all the 
methods achieve reasonable accuracies, with the RMSE (MAE) lower 
than 3.88 K (2.94 K) and R >0.97. In more detail, the worst accuracy is 
found when using only remote sensing data as input, with an RMSE of 
3.88 K and 2.62 K for the daytime and nighttime, respectively. It is 
demonstrated that the daily remote sensing data interpolated from an 8- 
day or 16-day temporal resolution cannot sufficiently depict the high 
daily fluctuations in LST. When instantaneous key CLM forcing data or 
CLM simulation data are incorporated into the ML model, obvious im
provements can be observed, compared with the basic result, followed 
by an RMSE decrease of 0.77–1.18 K, a MAE decrease of 0.6–0.94 K, and 

an R increase of 0.01–0.02. Compared with the pure ML methods, it is 
evident that the proposed MG-LGBM model (i.e., RS + CF + CS) per
forms the best among all the data combinations, which demonstrates the 
superiority of coupling mechanistic knowledge with the ML model in 
LST estimation. 

To further evaluate the influence of the mechanistic guidance on the 
estimated LST under all-weather conditions, scatter plots of the all- 
weather LST with different data inputs against in-situ LST are pre
sented in Fig. 9. The CLM modeling is also added as a pure mechanistic 
method for comparison. The accuracy of CLM-LST in cloudy-sky con
ditions (RMSE = 4.56 K, R = 0.97) is comparable with that under clear- 
sky conditions (RMSE = 4.63 K, R = 0.98), indicating that the model 

Fig. 9. Scatter plots of the all-weather LST against in-situ LST (four sites) during 2008 to 2011 with different data inputs: (a) CLM simulated; (b) RS; (c) RS + CF; (d) 
RS + CS; and (e) RS + CF + CS. 
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forcing and simulation data can effectively characterize the actual 
thermal information under clouds (Fig. 9a). This phenomenon also 
provides evidence in support of the reliability of applying the clear-sky 
ML model to recover LST in cloudy-sky conditions. Among all the esti
mated LSTs, the RS LST performs worst, with an RMSE of 3.57 K (6 K) 
and R of 0.94 (0.98) in clear-sky (cloudy-sky) conditions. Table 4 further 
lists the bias of predicted LSTs under cloudy-sky conditions during the 
daytime and nighttime, respectively. The RS LST demonstrates poor 
performances in reflecting the cooling and warming effects of clouds 
during the daytime and nighttime, respectively. This results in a sig
nificant overestimation (BIAS = 4.32 K) during the daytime and an 
underestimation (BIAS = − 1.95 K) during the nighttime in LST in cloudy 
conditions. Once the model forcing data or simulation data are incor
porated into the ML model, significant improvements in LST accuracy 
can be found, with an RMSE, MAE, and R of 2.78–3.43 K, 2.19–2.73 K, 
and 0.98–0.99, respectively (Fig. 9c− d). Additionally, this incorporation 
substantially reduces the bias of RS LST (Table 4). The best accuracy is 
found for RS + CF + CS LST, for which the RMSE, MAE, BIAS, and R are 
2.7–3.23 K, 2.14–2.6 K, − 0.37 − 0.07 K, and 0.98–0.99, respectively, 
which ranks first under both clear-sky and cloudy-sky conditions in all 
the scenarios (Fig. 9e). This again confirms that integrating key LSM 
forcing data and LSM simulation data simultaneously into the ML model 
actually makes sense in all-weather LST estimation. A reasonable illus
tration is that the MG-LGBM model is capable of implicitly learning the 
explicit process knowledge (e.g., the SEB) embedded in the CLM, guid
ing the learning process and improving the accuracy. 

4.3.2. Comparison with other advanced ML methods 
To further investigate the effectiveness of the proposed ML method, 

we selected three other advanced ML methods, including an XGBoost 
model (Chen and Guestrin, 2016) and two deep learning models, i.e., a 

DBN (Hinton et al., 2006) and a GRNN (Specht, 1991), as the compar
ative approaches, which are popular and widely used in climate and 
environment variable estimation (Li et al., 2020b; Shen et al., 2020; Tan 
et al., 2021b). It is worth noting that the random forest model was not 
used in this study, because it is time-consuming and inappropriate for 
tackling massive (e.g., 10 million level) datasets (Breiman, 2001). In 
addition to the test accuracy, the efficiency is critical when the data size 
is large. Fig. 10 shows the model accuracy and the time efficiency under 
the space-based validation for the different ML models using the same 
input data. The experimental environment is a Linux (Centos 7) server, 
with an Intel(R) Xeon(R) Bronze 3104 CPU (12 cores) and 256 GB 
memories. As shown, all the ML methods achieve a reasonable accuracy, 
with an RMSE (R) of 2.62–3.55 K (0.97–0.99) during the daytime and 
1.56–2.25 K (0.98–0.99) during the nighttime. The decision tree based 
boosting models (i.e., MG-LGBM and MG-XGBoost) perform better than 
the neural network based models (i.e., MG-DBN and MG-GRNN) on the 
basis of model accuracy, which could be due to the advantages of 
boosting methods in countering overfitting problems when solving 
pixel-pixel regression tasks (Chen et al., 2022). In particular, the MG- 
LGBM model performs the best among all the mechanism-guided ML 
methods, with an RMSE of 1.56–2.62 K and R of 0.99. Furthermore, MG- 
LGBM accelerates the training process mostly, speeding up by an 
average of 206×, 127× and 5.1× respectively comparing with MG-DBN, 
MG-GRNN and MG-XGBoost models. The encouraging efficiency was 
mainly attributable to the EFB and GOSS strategies used in MG-LGBM. 
Overall, the LGBM-based method outperforms the other popular ML 
methods in terms of model accuracy and efficiency. 

4.3.3. Comparison with other gapless LST data 
A number of fusion or reconstruction methods have been proposed to 

generate gapless LST. To further evaluate the proposed method, we 
compared the MG-LGBM method with one interpolation method (Zhang 
et al., 2022) and three fusion-based methods (Wu et al., 2022; Xu and 
Cheng, 2021; Zhang et al., 2021), which were recently proposed and 
proven to be effective in gapless LST mapping. Note that the four afore- 
mentioned methods have been applied to produce gapless LST data or 
products covering the HRB-MU, so it is convenient to make such a 
comparison. Table 5 provides the summary information of the gapless 
LST data. To prevent any possible confusion, the products produced by 
Zhang et al. (2022) and Zhang et al. (2021) are referred to as the Zhang 
I’s LST and Zhang II’s LST, respectively. Fig. 11 shows a spatial com
parison between the MG-LGBM LST and the four sets of gapless LST data 
with the original MODIS LST for DOY 106 in 2010. It can be seen that, in 
comparison with the original MODIS LST, all the LST data are spatially 
complete during both the daytime and nighttime, but show a difference 

Table 4 
The bias between predicted LSTs and in-situ measurements under cloudy-sky 
conditions during the daytime and nighttime, respectively.  

Time Input combinations BIAS (K) 

Daytime RS 4.32 
RS + CF 1.65 
RS + CS 1.67 
RS + CF + CS (MG-LGBM) 1.57 

Nighttime RS − 1.95 
RS + CF − 1.53 
RS + CS − 1.53 
RS + CF + CS (MG-LGBM) ¡1.43 

The bold metrics denote the best performances among all the data combinations. 

Fig. 10. Space-based (a) model accuracy (RMSE and R) and (b) efficiency (training time) for the different ML models.  
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Table 5 
Summary of the gapless LST data used for a comparison.  

Study Spatiotemporal resolution Spatial 
Coverage 

Temporal 
Coverage 

Input 
data 

Methodology 

Zhang et al. 
(2022) 

1 km / 13:30 and 01:30 local 
time (LT) 

global land 2003–2020 MODIS spatiotemporal interpolation of MODIS LST 

Zhang et al. 
(2021) 

1 km / 13:30 and 01:30 LT Tibetan 
Plateau 

2000–2021 MODIS 
GLDAS/ 
CLDAS 

fusion of TIR LST and reanalysis LST by LST time series decomposition 

Xu and Cheng 
(2021) 

1 km / 
13:30 and 01:30 LT 

mainland 
China 

2002–2020 MODIS 
AMSR-2 

fusion of TIR LST and PMW LST by CDFa matching and MKFb 

Wu et al. (2022) 1 km / 13:30 and 01:30 LT Mainland 
China 

2010 MODIS 
AMSR-E 

fusion of TIR LST and PMW LST by a deep learning method 

Our 1 km / 13:30 and 01:30 LT HRB-MU 2008–2011 MODIS 
CLDAS 
GLASS 

a mechanism-guided ML method using multi-source remote sensing 
and model simulated data  

a Cumulative distribution function. 
b Multiresolution Kalman filtering. 

Fig. 11. Spatial patterns of the original MODIS LST and the gapless LST from the ZhangI’s LST (Zhang et al., 2022), Xu’s LST (Xu and Cheng, 2021), Wu’s LST (Wu 
et al., 2022), ZhangII’s LST (Zhang et al., 2021) and our LST for DOY 106 in 2010 during (a) the daytime and (b) the nighttime. The black boxes denote certain 
regions for a detailed comparison. 
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in spatial patterns and LST magnitude. Obvious block effects and 
“blurred” effects are found in the Xu’s LST (Fig. 11a). This phenomenon 
can be attributed to the coarse resolution of the AMSR-2 data (i.e., 0.1◦

× 0.1◦) used for multiresolution Kalman filtering in LST fusion (Xu and 
Cheng, 2021). Since only spatial and temporal neighboring information 
of clear-sky MODIS LST is utilized in the reconstruction process pro
posed by Zhang et al. (2022), the reconstructed LST is a hypothetical 
“clear-sky” LST, resulting in a spatial difference between the Zhang I’s 
LST and other LSTs in cloudy conditions. Some artifacts can be observed 
in the Wu’s LST, because the original MODIS LST is retained. However, 
such a broken effect may not represent the real LST pattern due to the 
uncertainties in identifying the clear-sky pixels in MODIS LST (Wang 
et al., 2019). The uncertainties can lead to abnormal retrievals of 
partially cloud-contaminated pixels, particularly near the clustered 
cloud pixels (see Section 4.4) (Jia et al., 2022; Ma et al., 2020). Our LST 
shares a similar LST pattern with the Zhang II’s LST, enhancing the 
spatial details and appearing more “natural”, indicating the robustness 
of the proposed method in obtaining a more real LST. 

To quantitatively compare the accuracy of the developed gapless LST 
with the four sets of LST data, the same in-situ measurements from the 
AR, HZZ, and YK sites were used. The validation results under all- 
weather conditions during the daytime and nighttime are shown in 
Fig. 12. In general, all the gapless LST data have a relatively high ac
curacy, with R >0.92 (0.97) and the RMSE <3.9 K (3.1 K) during the 
daytime (nighttime). Although the RMSE of our LST is slightly higher 
than that of some of the LST data (e.g., at the daytime AR site and the 
nighttime YK site), the mean RMSE remains the lowest, and the R of the 
MG-LGBM LST is higher than that of all the other LST data. The average 
values of R (RMSE) for the ZhangI’s LST, Xu’s LST, Wu’s LST, ZhangII’s 
LST and our LST from the three sites during both the daytime and 
nighttime are 0.96 (3.23 K), 0.96 (3.21 K), 0.96 (3.2 K), 0.96 (3.22 K), 
and 0.98 (3.01 K), respectively. Overall, the proposed method is superior 
to the above-mentioned fusion-based and reconstruction methods, based 
on both the mapping effect and validation accuracy over the HRB-MU 
region. 

4.4. Comparison between clear-sky LST and the original MODIS LST 

Clouds are prevalent over the land surface, and can be especially 
heavy in regions with complex terrain. To obtain more clear-sky MODIS 
LST samples for LST fusion (e.g., a similar pixel selection) or recon
struction, a number of studies have selected clear pixels with the “LST 
produced” and “average LST error <=3 K" according to the MODIS QC 

flags (hereafter termed “clear LST”) (Duan et al., 2017; Gong et al., 
2023; Long et al., 2019; Wu et al., 2022). However, owing to the solar- 
cloud-satellite geometry (SCSG) effect existing in the MODIS LST (Wang 
et al., 2019), LST detection based on poor QC flags may not represent the 
true situation. In this case, such a selection could weaken the accuracy of 
the fusion or reconstruction results. 

In this study, the clear-sky MODIS LST pixels with the highest quality 
(“good quality” and “average LST error <= 1 K", hereafter termed “fully 
clear LST”) were selected as the label data, and the likely-cloudy LST 
pixels (“other quality” and “average LST error > 1 K & <=3 K", hereafter 
termed “partially cloudy LST”) were then recovered by MG-LGBM. 
Taking 2010 as an example, Fig. 13a shows the cumulative distribu
tion plot of the spatially averaged percentages of the clear-sky samples 
for the daytime and nighttime over the HRB-MU. Overall, clear-sky LST 
pixels accounts for 55.3% over the HRB-MU, of which 38.4% are fully 
clear and a non-ignorable proportion of 16.9% are partially cloudless. 
Fig. 13b–c shows the scatter plots of the official MODIS LST under 
different conditions and the corresponding MG-LGBM LST against in- 
situ LST measurements in 2010. Under fully clear-sky conditions, the 
MG-LGBM LST closely approximates the MODIS LST, with an RMSE 
difference of 0.02 K, illustrating the excellent performance of the MG- 
LGBM model in reproducing the magnitude of clear-sky MODIS LST. 
Meanwhile, under partially cloudy conditions, the MODIS LST shows an 
unsatisfactory performance, followed by an RMSE of 5.31 K, MAE of 
3.77 K, and a considerable negative BIAS of 2.58 K. It has been 
demonstrated that partially cloud-contaminated areas generally block 
the surface heating processes, leading to abnormally cool LSTs in the 
images (Jia et al., 2022). Correspondingly, the MG-LGBM LST largely 
makes up for this underestimation, with an RMSE of 3.72 K, MAE of 
2.79 K, and a small BIAS of − 0.45 K. In summary, MG-LGBM model can 
generate LST that is comparable to the original MODIS LST under fully 
clear-sky conditions and can correct for the likely-cloudy LST under 
partially cloudy conditions. 

5. Discussion 

5.1. Impacts of time, land-cover type and elevation on clear-sky LST 
estimation 

LST exhibits significant temporal variations. Previous studies have 
indicated that the accuracy of LST estimation is affected by the season 
(Li et al., 2021; Wu et al., 2022) and month (Xiao et al., 2023) within the 
year. It is therefore of special significance to evaluate the accuracies of 

Fig. 12. Comparison between the gapless MG-LGBM LST and the LST obtained by Zhang et al. (2022), Xu and Cheng (2021), Wu et al. (2022) and Zhang et al. (2021) 
against in-situ LST under all-weather conditions at the AR, HZZ, and YK sites in 2010: (a) R, (b) RMSE. 
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the estimated LST at different time scales (e.g., seasonal and monthly 
scales). Table 6 lists the sample-based validation results in the different 
seasons during the daytime and nighttime. The performance of the MG- 
LGBM model varies in the different seasons, with a relatively low ac
curacy observed in the spring and summer during the daytime. The 
reason for this may be that the vegetation grows and peaks in these two 
seasons, which brings uncertainty to the LST estimation (Li et al., 2021). 
A relatively high accuracy is obtained in autumn, with the RMSE <1.8 K 

and R of 0.99. In addition, the season impact during the daytime is 
slightly higher than that during the nighttime. The difference between 
the maximum and minimum RMSE reaches 0.51 K and 0.38 K for the 
daytime and nighttime, respectively. 

To further evaluate the intraannual variation of MG-LGBM LST, 
Fig. 14 shows the model accuracies at monthly scale. Similar to the 
seasonal validation results, the MG-LGBM model’s performance fluctu
ates across various months. During the daytime and nighttime, the 
smallest RMSEs of 1.73 K and 0.98 K were obtained in October and 
August, respectively, whereas the largest RMSEs of 2.33 K and 1.42 K 
were obtained in April and February, respectively. It was also observed 
that MG-LGBM model tends to slightly overestimate LST during the day, 
while underestimating it slightly at night. Overall, the impacts of season 
and month on the model accuracy exist, but are not significant, 
demonstrating the robust performance of the MG-LGBM model. 

The heterogeneity of LST is significantly affected by different land- 
cover types (Holmes et al., 2009; Xu et al., 2022) and elevations (He 
et al., 2019; Zhao et al., 2019). Fig. 15 shows the performance of the MG- 
LGBM model by calculating the RMSE for different land-cover types and 
elevations. As shown in Fig. 15a, all the RMSE values are <2.27 K but 
varies across the different land-cover types, with the lowest value 
occurring in cropland and the highest value occurring in grassland 

Fig. 13. (a) Cumulative distribution plots of the spatially averaged percentages of clear sky samples over the HRB-MU, and scatter plots of the official MODIS LST 
and MG-LGBM LST against in-situ LST measurements at the AR, HZZ, and YK sites for the daytime and nighttime in 2010 from (b) fully clear-sky pixels, and (c) 
partially cloud-covered pixels. Clear_sky percent denotes the proportion of clear-sky samples among all samples over the HRB-MU region in 2010. 

Table 6 
Sample-based validation results in the different seasons for the daytime and 
nighttime, respectively.  

Time Season RMSE (K) MAE (K) R N 

Daytime spring 2.3 1.71 0.98 4,021,766 
summer 2.1 1.53 0.98 3,907,006 
autumn 1.79 1.32 0.99 4,840,660 
winter 1.95 1.44 0.97 3,633,792 

Nighttime spring 1.25 0.93 0.99 6,967,453 
summer 1.03 0.73 0.99 6,400,269 
autumn 1.17 0.88 0.99 8,191,298 
winter 1.41 1.08 0.97 8,097,223 

N denotes the sample size. 

J. Ma et al.                                                                                                                                                                                                                                       



Remote Sensing of Environment 303 (2024) 114001

17

Fig. 14. Comparison of the MG-LGBM LST with MODIS LST at monthly scale: (a) RMSE (K) and (b) BIAS (K).  

Fig. 15. Validation results (RMSE) of the MG-LGBM LST against MODIS LST in clear-sky conditions for specific (a) land-cover types and (b) elevation ranges.  

Fig. 16. Mean importance values of the input variables of the daytime model and nighttime model.  
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during both the daytime and nighttime. The difference between the 
maximum and minimum RMSE for the MG-LGBM model is 0.56 K and 
0.35 K for the daytime and nighttime, respectively. These results suggest 
that the proposed method demonstrates both a high accuracy and sta
bility for different land-cover types. 

To evaluate the impact of topography on the model performance, the 
model accuracies for different elevation ranges are presented in Fig. 15b. 
In general, as the elevation increases, the accuracy of the model tends to 
decrease (Xu et al., 2022; Zhao et al., 2019), while relatively little 
change can be observed during the nighttime. However, there is a 
reverse trend when the elevation is above 3500–4500 m, which in
dicates that LST is comprehensively affected by different factors (Xu 
et al., 2022; Zhao and Duan, 2020). Nonetheless, the RMSE values 
remain stable, at <2.4 K and 1.3 K during the daytime and nighttime, 
respectively. This indicates that the MG-LGBM model shows a stable 
accuracy in estimating clear-sky LST across different elevation ranges. 

5.2. Variable importance analysis 

LST varies rapidly in space and time. The LST variation is affected by 
the surface conditions, topographic conditions, and atmospheric con
ditions (Crosson et al., 2012; Prata et al., 1995). In this study, we 
selected four sets of CLM meteorological forcing data (SRA, TMP, RHU, 
PRS), two sets of CLM simulation data (CLM-LST and CLM-SM), six sets 
of remote sensing data (DEM, LAT, NDVI, NDSI, B_VIS, B_NIR), and DOY, 
giving a total of 13 variables as the predictors. During the construction 
of the decision tree in the LGBM model, the collective benefits gained 
from the splits that utilize the feature of interest were used to measure 
the importance of the predictors. Fig. 16 displays the mean importance 
values of the predictors over the four seasons. The results reveal that 
CLM-LST and the four sets of meteorological forcing data are the main 
contributors to the model during both the daytime and nighttime, which 
confirms the SEB guidance theory in MG-LGBM. DOY and DEM also have 
important impacts on LST estimation, owing to their contributions in 
representing LST temporal variability and the terrain effect. In addition, 
SM is an essential factor contributing to the spatial heterogeneity of LST, 
due to its controlling impact on surface thermal inertia and evapo
transpiration (Sandholt et al., 2002; Tang et al., 2010). 

5.3. Further validation of the developed method in non-vegetated regions 

As shown in Fig. 8b, CLM model exhibits uncertainty in simulating 
LST at a site dominated by sparse vegetation (i.e., HZZ). This uncertainty 

may be attributed to the incomplete parameterization schemes for tur
bulent flux calculation, which has been reported by other studies (Ma 
et al., 2021; Trigo et al., 2015; Zheng et al., 2014). Obtaining gapless LST 
with high accuracy in non-vegetated regions poses a challenge. 
Although the HZZ site is used for validation, such comparisons may not 
be comprehensive enough. To further validate the transferability of the 
proposed method in non-vegetated regions, we selected two typical 
barren-dominated sites, i.e., the Bajitan Gobi station (GB) and the 
Shenshawo desert station (SSW), from the Heihe Watershed Allied 
Telemetry Experimental Research (HiWATER)(Li et al., 2013a). The 
generated gapless LST from 2013 to 2015 over the HRB-MU region was 
then validated against in-situ LST. 

Fig. 17 shows the comparison results between the estimated LST and 
in-situ LST measurements under all-weather conditions. The MG-LGBM 
estimated LST agree adequately with the in-situ LST under clear-sky 
conditions, with an RMSE of 2.14–2.43 K and R of 1, respectively. By 
extracting complex features from the space of input data, MG-LGBM can 
effectively recover LST under cloudy-sky conditions, with an RMSE 
ranging from 2.98 to 3.25 K and R ranging from 0.98 to 0.99, respec
tively. This indicates the effectiveness of transferring the proposed 
model to the non-vegetated regions. 

5.4. Advantages and limitations of the proposed method 

The advantages of the proposed method are reflected in the following 
aspects. Firstly, the previous studies usually applied the relationship of 
the clear-sky model to restore cloudy LST, without sufficient consider
ation of the cloud effects on LST (Buo et al., 2021; Xiao et al., 2021). 
Meanwhile, the linking predictors were typically temporally sparse (e.g., 
3-h to 16-day), which resulted in uncertainty in presenting the high 
temporal variability of LST (Cho et al., 2022; Li et al., 2021). In response 
to this issue, the MG-LGBM model fully maximizes the potential of proxy 
data for clouds with a high spatio-temporal resolution (e.g., reanalysis 
data and model-simulated data with ~7 km and 1-h resolutions), which 
can discriminate between clear-sky and cloudy-sky conditions, resulting 
in a good and comparable accuracy in the estimated gapless LST under 
both clear-sky and cloudy-sky conditions (see Section 4.2). 

Secondly, it is acknowledged that ML models suffer from “black box” 
problems, which has led to an absence of physical meaning in the 
reconstrued cloudy LST. Inspired by the advances in coupling process 
understanding and ML in ESS (Reichstein et al., 2019), we investigated 
the rationality and feasibility of incorporating explicit mechanistic 
guidance into an implicit ML model to improve LST prediction accuracy 

Fig. 17. Scatter plots of the estimated LST against in-situ LST measurements under clear-sky and cloudy-sky conditions during January 2013 to April 2015 at the two 
sites: (a) GB (gobi, 100.3042◦E, 38.915◦N), and (b) SSW (desert, 100.4933◦E, 38.7892◦N). 
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and mechanistic interpretability. Special attention was paid to the 
evaluation of uncertainty in different data combinations and the effects 
of mechanistic intervention. Compared with the pure ML models (e.g., 
RS, RS + CF, and RS + CS in Section 4.3.1), the MG-LGBM model (i.e., 
RS + CF + CS) achieved a superior performance. It was demonstrated 
that the underlying process knowledge (e.g., the SEB and the law of heat 
conduction, see Eq. (12)) between the key LSM forcing data and LSM 
simulation data in the CLM was mined and applied in the learning 
process, so that the learning model has relatively high interpretability. 
Meanwhile, ML models are known to have extrapolation problems, and 
coupling such mechanistic guidance helped to capture the LST values in 
regions without valid samples, thereby enhancing the generalization 
ability of the ML model (see Section 4.1). 

Thirdly, benefiting from the utilization of the highest-quality MODIS 
LST and the powerful data mining ability of ML, the likely cloudy MODIS 
LST was corrected. Theoretically and practically, the LST obtained in 
this study achieved a comparable accuracy to the original MODIS LST in 
general clear-sky conditions (see Section 4.4). Lastly, the proposed 
method is currently applicable to the HRB-MU with CLDAS data. Given 
that all the remote sensing data used are gapless and worldwide, and 
provided that the LSM forcing data and simulation data are updated on a 
larger scale, or replaced with other global-scale data (e.g., GLDAS and 
European Centre for Medium-Range Weather Forecasts Reanalysis v5 
(ERA5)), this method could be easily expanded to other regions. More
over, the MG-LGBM model has excellent efficiency, so once the model is 
trained, it could be readily applied for generating gapless and long time- 
series LST products. 

Nevertheless, there are also some uncertainties and limitations to 
this method. We compared our method with other excellent LST 
reconstruction methods, demonstrating a superior performance of the 
MG-LGBM model (see Section 4.3.3). However, this comparison was 
conducted at a regional scale, and further investigation is needed for a 
larger-scale (e.g., national or global scale) comparison. It is acknowl
edged that due to the relatively coarse spatial resolution of CLM-LST 
(approximately 5 km), the variability of CLM-LST may be less pro
nounced than that in MODIS LST, which may introduce some uncer
tainty in the estimation of 1-km LST under clouds. Future studies could 
consider improving the grid resolution of the CLM, to address the un
certainties arising from spatial resolution differences between CLM-LST 
and MODIS LST. Another uncertainty is the spatial representativeness of 
the ground sites. Although previous studies have evaluated the spatial 
representativeness of the sites in the WATER and HiWATER observatory 
networks and demonstrated that the sites used in the study were qual
ified for homogeneity validation (Yu et al., 2017; Yu et al., 2014a), the 
scaling effects induced by spatial mismatch cannot be totally neglected, 
which is a typical difficulty in remote sensing product validation (Duan 
et al., 2019; Li et al., 2020a). 

In this study, LSM-related data were used as a proxy to reflect cloud 
effects. However, the true “cloudy” label data were still unavailable. 
Further studies are advocated to incorporate additional ground-based 
measurements or PMW information into the learning-based model. 
Additionally, alternative radiative transfer and energy balance models, 
such as Soil Canopy Observation, Photochemistry and Energy fluxes 
model (SCOPE)(Van der Tol et al., 2009), Discrete Anisotropic Radiative 
Transfer energy budget model(DART-EB)(Gastellu-Etchegorry, 2008), 
and Thermal Radiosity-Graphics Combined energy budget model 
(TRGM-EB)(Bian et al., 2017) could be further explored to provide extra 
mechanism-guided simulation data over urban and natural areas. This 
consideration could extend the proposed method to finer-scale LST data, 
such as Landsat and the ECOsystem Spaceborne Thermal Radiometer 
Experiment on Space Station (ECOSTRESS). Lastly, we mainly verified 
the effectiveness of coupling the input variable mechanistic guidance 
into the ML model in this study (Shen and Zhang, 2023). In future work, 
more attention should be paid to further investigating the different 
guidance construction methods, such as objective function guidance (e. 
g., imposing model penalties in the cost function for violating the SEB) 

and model structure guidance (e.g., adding a mechanistic relationship 
expressing the SEB to the middle or back of the neural network). 

6. Conclusion 

Cloud contamination has hindered the access to gapless LST for po
tential applications. In this paper, we have proposed a mechanism- 
guided ML model (MG-LGBM) by integrating key CLM forcing data, 
CLM simulation data and remote sensing data into an ML model. The 
MG-LGBM model combines the advantages of process knowledge (SEB 
mechanistic guidance, interpretability) and ML (data adaptability). The 
well-trained model was applied to instantaneous observations from 
Aqua MODIS to generate a daily 0.01◦ × 0.01◦ gapless LST dataset from 
2008 to 2011 over the HRB-MU. The generated LST showed excellent 
spatio-temporal continuity and retained high consistency with the 
MODIS LST in spatial details. In terms of temporal variability, the 
generated LST can basically capture the seasonal and daily changes of 
LST. In addition, the MG-LGBM model showed a robust performance 
across different time scales, land-cover types, and elevation ranges. The 
accuracy of the clear-sky LST generated by the MG-LGBM model was 
similar to that of the original MODIS LST under fully clear-sky condi
tions. Moreover, MG-LGBM can correct for the likely-cloudy LST pixels 
under partially cloudy conditions. The reconstructed cloudy LST against 
in-situ measurements showed a satisfactory accuracy (RMSE =

2.91–3.66 K, MAE = 2.35–3 K, R = 0.97–0.98), which was generally 
comparable to that obtained under clear-sky conditions. Among the four 
popular ML methods, the LGBM-based model performs the best in model 
accuracy and time efficiency. Compared with a pure mechanistic 
method and pure ML methods, the MG-LGBM model improved the LST 
prediction accuracy, mechanistic interpretability, and generalization 
ability of the LST estimation. When compared with other gapless LST 
data, it was found that the MG-LGBM LST was more “real” and “natural” 
and had a higher accuracy over the HRB-MU region. In our future work, 
it is anticipated to expand the proposed model to a larger-scale study. It 
should further address the spatial transferability issue in ML. One 
feasible solution is to partition the study area into multiple subregions 
based on geographical features and then perform the reconstructions 
separately in each subregion, finally merge them and generate fused 
estimates at a national or global scale, as in the research into Shen et al. 
(2020). 
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Appendix A. Symbols and corresponding meanings in the methodology  

Symbol (in the order of appearance) Meaning 

LST Label data (i.e., MODIS LST) with the highest quality 
ML Pure ML model 
RS Remote sensing data, including DEM, LAT, NDVI, NDSI, B_VIS, B_NIR, DOY 
L(t) Objective function of the t − th iteration solution in the LGBM model 
xi Sample in the LGBM model 
n Number of samples in the LGBM model 
l Loss function in the LGBM model 
yi Actual value in the LGBM model 
ŷ Predicted value of the LGBM model 
∂ First-order gradient of l in the LGBM model 
∂2 Second-order gradient of l in the LGBM model 
ft Independent regression tree in the LGBM model 
ft(x) Corresponding increment of ft in the LGBM model 
Ω(f) Regularization term in the LGBM model 
T Number of leaf nodes in ft in the LGBM model 
w Leaf weights of ft in the LGBM model 
γ Hyper-parameter of Ω(f) in the LGBM model 
λ Hyper-parameter of Ω(f) in the LGBM model 
MG − LGBM Mechanism-guided LGBM model 
CF CLM forcing data that are mechanistically dominant in CLM-LST simulation, including SRA, TMP, RHU, PRS 
CS CLM simulation data, including CLM-LST, CLM-SM 
Δz Layer thickness between two layers in the CLM model 
Tg Soil temperature at the first layer in the CLM model 
T2 Soil temperature at the second layer in the CLM model 

S→g 
Net solar radiation absorbed by the ground 

L→g 
Net longwave radiation absorbed by the ground 

Hg Sensible heat flux 
λEg Latent heat flux 
Ts Skin temperature (LST) 
L↑ Surface upward longwave radiation 
L Exposed leaf area index 
S Exposed stem area index 
Tv Vegetation temperature 
σ Stefan-Boltzmann constant 
εg Ground emissivity 
εv Vegetation emissivity 
Latm↓ Downward atmospheric longwave radiation 
eatm Atmospheric vapor pressure 
Patm Air pressure (PRS) 
qatm Air specific humidity (RHU) 
Tatm Air temperature (TMP) 
G Ground heat flux 
Eg Water vapor flux 
λ Multiplier for converting the water vapor flux to an energy flux 
Rn,g Surface net radiation 
S↓ Incident solar shortwave radiation 
α Ground albedo 
c Volumetric heat capacity of snow/soil 
t Time step 
tk Soil property 
z Vertical direction depth  
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Appendix B. Abbreviation index  

Term (in alphabetical order) Abbreviation 

Advanced Microwave Scanning Radiometer-2 AMSR-2 
Advanced Microwave Scanning Radiometer for EOS AMSR-E 
Advanced Very High-resolution Radiometer AVHRR 
Air pressure PRS 
Air temperature TMP 
Annual temperature cycle ATC 
Black-sky albedo in near-infrared spectral range B_NIR 
Black-sky albedo in visible spectral range B_VIS 
broadband emissivity BBE 
China Meteorological Administration Land Data Assimilation System CLDAS 
Community Earth System Model CESM 
Community Land Model CLM 
Community Land Model simulated land surface temperature CLM-LST 
Community Land Model simulated soil moisture CLM-SM 
Cross-validation CV 
Cumulative distribution function CDF 
Discrete Anisotropic Radiative Transfer energy budget model DART-EB 
Day of year DOY 
Deep belief network DBN 
Digital elevation model DEM 
Diurnal temperature cycle DTC 
Downwelling longwave radiation DLW 
Earth system science ESS 
ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station ECOSTRESS 
European Centre for Medium-Range Weather Forecasts Reanalysis v5 ERA5 
Exclusive Feature Bundling EFB 
Extreme gradient boosting XGBoost 
Generalized regression neural network GRNN 
Global Land Data Assimilation System GLDAS 
Global LAnd Surface Satellite GLASS 
Gradient-based One-Side Sampling GOSS 
Land surface model LSM 
Land surface temperature LST 
Latitude LAT 
Machine learning ML 
Mean absolute error MAE 
Middle and upper reaches of Heihe River basin HRB-MU 
Moderate Resolution Imaging Spectroradiometer MODIS 
Multiresolution Kalman filtering MKF 
Normalized difference snow index NDSI 
Normalized difference vegetation index NDVI 
Overall bias BIAS 
Passive microwave PMW 
Pearson correlation coefficient R 
Mechanism-guided Light gradient boosting model MG-LGBM 
Precipitation rate PRE 
Quality control QC 
Root-mean-square error RMSE 
Soil Canopy Observation, Photochemistry and Energy fluxes model SCOPE 
Soil moisture SM 
Solar cloud satellite geometry SCSG 
Solar shortwave radiation SRA 
Specific humidity RHU 
Spinning Enhanced Visible and Infrared Imager SEVIRI 
Surface energy balance SEB 
Thermal Radiosity-Graphics Combined and energy budget model TRGM-EB 
Thermal infrared TIR 
Upwelling longwave radiation ULW 
Visible Infrared Imaging Radiometer VIIRS 
Wind speed WIN  
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Bajat, B., 2014. Spatio-temporal interpolation of daily temperatures for global land 
areas at 1 km resolution. J. Geophys. Res. Atmos. 119, 2294–2313. 

Koppa, A., Rains, D., Hulsman, P., Poyatos, R., Miralles, D.G., 2022. A deep learning- 
based hybrid model of global terrestrial evaporation. Nat. Commun. 13, 1912. 

Lawrence, D.M., Fisher, R.A., Koven, C.D., Oleson, K.W., Swenson, S.C., Bonan, G., 
Collier, N., Ghimire, B., van Kampenhout, L., Kennedy, D., 2019. The community 
land model version 5: description of new features, benchmarking, and impact of 
forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287. 

Li, X., Li, X., Li, Z., Ma, M., Wang, J., Xiao, Q., Liu, Q., Che, T., Chen, E., Yan, G., 2009. 
Watershed allied telemetry experimental research. J. Geophys. Res. Atmos. 114. 

Li, X., Cheng, G., Liu, S., Xiao, Q., Ma, M., Jin, R., Che, T., Liu, Q., Wang, W., Qi, Y., 
2013a. Heihe watershed allied telemetry experimental research (HiWATER): 
scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 94, 
1145–1160. 

Li, Z.-L., Tang, B.-H., Wu, H., Ren, H., Yan, G., Wan, Z., 2013b. Satellite-derived land 
surface temperature: current status and perspectives. Remote Sens. Environ. 131, 
14–37. 

Li, X., Zhou, Y., Asrar, G.R., Zhu, Z., 2018. Creating a seamless 1 km resolution daily land 
surface temperature dataset for urban and surrounding areas in the conterminous 
United States. Remote Sens. Environ. 206, 84–97. 

Li, H., Yang, Y., Li, R., Wang, H., Cao, B., Bian, Z., Hu, T., Du, Y., Sun, L., Liu, Q., 2019. 
Comparison of the MuSyQ and MODIS collection 6 land surface temperature 
products over barren surfaces in the Heihe River basin, China. IEEE Trans. Geosci. 
Remote Sens. 57, 8081–8094. 

Li, H., Li, R., Yang, Y., Cao, B., Bian, Z., Hu, T., Du, Y., Sun, L., Liu, Q., 2020a. 
Temperature-based and radiance-based validation of the collection 6 MYD11 and 
MYD21 land surface temperature products over barren surfaces in northwestern 
China. IEEE Trans. Geosci. Remote Sens. 59, 1794–1807. 

Li, T., Shen, H., Yuan, Q., Zhang, L., 2020b. Geographically and temporally weighted 
neural networks for satellite-based mapping of ground-level PM2. 5. ISPRS J. 
Photogramm. Remote Sens. 167, 178–188. 

Li, T., Shen, H., Zeng, C., Yuan, Q., 2020c. A validation approach considering the uneven 
distribution of ground stations for satellite-based PM 2.5 estimation. IEEE J. Select. 
Top. Appl. Earth Observ. Remote Sens. 13, 1312–1321. 

Li, B., Liang, S., Liu, X., Ma, H., Chen, Y., Liang, T., He, T., 2021. Estimation of all-sky 1 
km land surface temperature over the conterminous United States. Remote Sens. 
Environ. 266, 112707. 

Liang, S., Cheng, J., Jia, K., Jiang, B., Liu, Q., Xiao, Z., Yao, Y., Yuan, W., Zhang, X., 
Zhao, X., 2021. The global land surface satellite (GLASS) product suite. Bull. Am. 
Meteorol. Soc. 102, E323–E337. 

Lin, L., Shen, Y., Wu, J., Nan, F., 2023. CAFE: a cross-attention based adaptive weighting 
fusion network for MODIS and landsat spatiotemporal fusion. IEEE Geosci. Remote 
Sens. Lett. 

Liu, S., Li, X., Xu, Z., Che, T., Xiao, Q., Ma, M., Liu, Q., Jin, R., Guo, J., Wang, L., 2018. 
The Heihe integrated observatory network: a basin-scale land surface processes 
observatory in China. Vadose Zone J. 17, 1–21. 

Liu, J., Shi, C., Sun, S., Liang, J., Yang, Z.-L., 2019. Improving land surface hydrological 
simulations in China using CLDAS meteorological forcing data. J. Meteorol. Res. 33, 
1194–1206. 

Long, D., Bai, L., Yan, L., Zhang, C., Yang, W., Lei, H., Quan, J., Meng, X., Shi, C., 2019. 
Generation of spatially complete and daily continuous surface soil moisture of high 
spatial resolution. Remote Sens. Environ. 233, 111364. 

Long, D., Yan, L., Bai, L., Zhang, C., Li, X., Lei, H., Yang, H., Tian, F., Zeng, C., Meng, X., 
2020. Generation of MODIS-like land surface temperatures under all-weather 
conditions based on a data fusion approach. Remote Sens. Environ. 246, 111863. 

Lu, L., Venus, V., Skidmore, A., Wang, T., Luo, G., 2011. Estimating land-surface 
temperature under clouds using MSG/SEVIRI observations. Int. J. Appl. Earth Obs. 
Geoinf. 13, 265–276. 

Luo, Q., Wen, J., Hu, Z., Lu, Y., Yang, X., 2020. Parameter sensitivities of the community 
land model at two alpine sites in the Three-River source region. J. Meteorol. Res. 34. 
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