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Abstract—Monitoring of lake water level (WL) changes with 

satellite altimeters is pivotal in assessing the dynamics of 

hydrological ecosystems. However, the spatial coverage, temporal 

interval, and quality degradation of altimeter data limit the 

continuity of the measurements. In this study, a learning-based 

framework is proposed for the reconstruction of WLs for inland 

lakes and reservoirs. This is achieved by learning the relationship 

between lake WLs and the related hydrological and climate 

variables employing the deep learning models. By introducing 

hydrological knowledge into the data-driven learning framework, 

the lakes are firstly clustered into several groups for training and 

prediction considering the spatial homogeneity and heterogeneity 

of water cycling process among multiple lakes. Secondly, for each 

cluster category, the number of WL training samples is augmented 

using the empirical function fitted with lake level-area pairs, and 

the augmented samples are used in the pretraining process to 

improve the accuracy of the deep learning model simulation. The 

obtained models are used for estimating the missing WLs and to 

construct a consecutive 192-month WL dataset (2003-2018) for the 

14 lakes (>20 km2) in the Altai Mountains. The typical multiple 

layer perceptron and deep belief network models are tested. 

Validation indicates that the proposed method performs well in 

WL reconstruction in the case of a large proportion of missing 

data. Moreover, the performance of learning-based models can be 

effectively improved by introducing the idea of spatial clustering 

and pretraining. The comparative tests also show that the 

proposed method outperforms the traditional level-area fitting 

methods. 

 
Index Terms—Lake level, data reconstruction, deep learning, 

Altai Mountains.  

 

I. INTRODUCTION 

HE ongoing global warming trend and intensified 

human activities have greatly influenced the dynamics 

of inland lakes, and have brought severe challenges to 

monitoring global and regional hydrological and ecological 

changes [1]. As one of the key physical parameters of lake 

hydrology, the variation of lake water levels (WLs) can directly 
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reflect the change of a hydrological ecosystem [2]. Therefore, 

the dynamic monitoring of lake WLs is of great significance for 

the assessment of the regional response of lakes to climate 

change, as well as the utilization and protection of water 

resources. 

Lake WLs are usually measured by in-situ hydrological 

stations and altimetry satellites. However, hydrological stations 

are generally sparsely distributed, especially for remote 

mountainous areas, and are thus unable to meet the demand of 

dense monitoring of WL fluctuations. Since the late 1980s, the 

development of remote sensing altimetry techniques and the 

increased availability of satellite altimeter data have provided 

us with an effective way to conduct large-scale and high-

accuracy monitoring of lake WL changes [3], [4]. 

Satellite altimeters record the range between the nadir point 

and sensor by analyzing the waveforms of reflected 

electromagnetic pulses. According to the working wavebands, 

altimeter systems can be categorized into two kinds, i.e., laser 

altimeters and radar altimeters [5]. The radar altimeters carried 

on board satellites use microwave pulses (e.g., 

TOPEX/Poseidon, CryoSat-1/2, ENVISAT, ERS-1/2, Jason-

1/2/3), and can thus receive returned echoes in all weather 

conditions, regardless of the cloud cover [6]–[8]. However, the 

footprint sizes of radar altimetry data are generally too coarse 

to monitor most of the medium- and small-size lakes [9]. For 

the satellite laser systems (e.g., the Geoscience Laser Altimeter 

System (GLAS) on the Ice Cloud, and land Elevation Satellite 

(ICESat-1)), the altimeters use pulses in the visible and near-

infrared wavelengths to obtain surface elevation with a sub-

meter level accuracy [10], [11]. Although the GLAS data have 

a finer spatial resolution (smaller footprints and denser points 

along the tracks) and have been reported to have a higher 

vertical accuracy compared with radar altimetry measurements, 

the temporal coverage is limited due to the long repeat cycle 

(~90 days) and invalid data caused by cloud contamination [12]. 

Moreover, the GLAS sensor stopped operating in 2009, and 
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thus the data only cover from 2003 to 2009. In September 2018, 

the subsequent ICESat-2 mission was launched and began to 

acquire data points with denser tracks [13]. Due to the sparse 

track distribution and temporal intervals of the pulse points, 

some researchers have tried to integrate multiple altimetric data 

sources to extend the spatial and temporal coverage of the 

survey points [14], [15]. However, the spatial coverage, 

temporal interval, and quality degradation of altimeter data still 

limit the continuity of the measurements [16], [17]. Therefore, 

the reconstruction of lake WLs is necessary for fine-scale 

monitoring and the evaluation of water resource variations.  

One of the common ways to estimate missing WL values is 

to establish the statistical relationship between the extracted 

surface area and measured WL of each lake, and to reconstruct 

the time-series WL data depending on the corresponding water 

area derived from remote sensing images. This empirical 

method has been proved to be effective in previous works, 

where linear and polynomial curve fitting methods have been 

widely used in estimating WLs based on matched lake area data 

[18]–[20]. However, the level-area (L-A) fitting approach 

assumes that the terrain around the lakes is relatively stable, and 

the performance varies for different lakes. Moreover, the 

missing WLs can only be reconstructed with known water area 

values. The water surface area is generally extracted from 

optical remote sensing images, which are also easily affected 

by rainy and cloudy weather conditions. 

The essence of spatio-temporal reconstruction is to estimate 

the unknown value of a target object or geographical variable 

according to the auxiliary attributes. Considering the spatio-

temporal correlation among samples, geostatistical methods are 

commonly used to predict the sampling values to be estimated, 

e.g., univariate and multivariate interpolation methods [21], 

[22] and Bayesian geostatistical models [23], which are widely 

used in geospatial fields. However, these strategies often fail to 

fully mine the complex nonlinear correlations between the data 

sources across the spatial and temporal dimensions in the 

modeling process. As a result, it is difficult to achieve high-

precision estimation in cases with large temporal gaps or 

distinctive spatial heterogeneity. In recent years, machine 

learning methods has been widely utilized in solving 

hydrological problems, including the prediction of river flow, 

lake WLs, and water quality factors [24]–[27]. Artificial neural 

networks (ANNs) are one of the most popular models, and have 

the potential to learn the complex nonlinear relationships 

between multi-dimensional data in a nonparametric manner. 

The machine learning methods have shown great advantages 

and potential in estimating WLs, by taking the related 

geographical and environmental variables into account. 

However, the current machine learning-based methods still 

have some limitations. Firstly, most of the current methods for 

WL prediction train the model for a single lake, and use the 

temporally dense in-situ WL data for the training process [25], 

[28]. For basin-scale lake level monitoring with satellite 

altimetry data, there are generally larger temporal gaps among 

WL measurements. Moreover, the homogeneous and 

heterogenous fluctuation states among multiple lakes related to 

recharge sources, climate patterns, and human activities need to 

be considered [29]. This situation has increased the difficulty of 

obtaining accurate WL estimation results. 

Deep learning, which is a powerful tool to better represent 

the nonlinear numerical relationship from raw data with more 

hidden layers, may be a potential way to address the problem 

[14], [22], [30], [31]. For example, Zhu et al. tested a recurrent 

neural network (RNN) to predict the monthly lake WL of 69 

temperate lakes in Poland and obtained good estimation results 

[31]. Wen et al. used a deep neural network (DNN) to simulate 

and predict the lake level dynamics on a 2-hour time scale, and 

the results showed that the performance of the deep learning 

model is beneficial for exploring the mechanism of lake level 

dynamics [22]. However, the prediction model was still trained 

separately for each lake in this study, and the potential spatial 

correlation was ignored. In addition, the long short-term 

memory (LSTM) neural network is a popular framework for 

lake WL prediction, which captures the short- and long-term 

dependencies and learns the sequential relationships [32]–[34]. 

Nevertheless, this model requires temporally dense sequential 

data for the training process. On the whole, the deep learning 

models generally require sufficient training samples to learn the 

numerical relationship between the input and target variables. 

In the case of large spatial and temporal gaps, the amount of 

satellite altimetry data may be insufficient to train a well-

established deep learning model. 

To address the above issues, this study was aimed at 

introducing deep learning techniques to the reconstruction of 

lake WLs. The Altai Mountains region was chosen as the study 

area, where the abundant lakes play a significant role in 

freshwater supply and are sensitive to regional climate 

variations. The overall objective of this study was to develop a 

deep learning-based method to obtain the spatial-temporal 

complex relationship between lake WLs and the auxiliary 

components related to terrestrial water storage changes, and to 

then reconstruct a region-scale monthly WL dataset. The core 

idea behind this study was to integrate the hydrological 

knowledge into the data-driven learning framework, including 

the lake level-area correlation, the spatial homogeneity and 

heterogeneity of water cycling process among multiple lakes 

within basin-scale. Specifically, the main contributions include: 

 1) The lakes were clustered into several groups for training 

and prediction, based on the different climate conditions and 

recharge sources. This is different with the single-lake models 

established in the previous works, where similar or different 

hydrological changing patterns among lakes could be explored. 

2) For each cluster category, the amount of WL data for the 

model training was augmented using the empirical function 

fitted with lake level-area pairs. Considering the uncertainties 

of the fitted WLs, a two-step training strategy was proposed, 

where the augmented samples were used in the pretraining 

followed with a fine-tune process to improve the accuracy of 

the learning model simulation. 

3) The deep learning models were trained in the proposed 

manner of two-step training, and constructed the consecutive 

monthly WL dataset using the estimated missing WLs for the 

14 lakes (>20 km2) in the Altai Mountains from 2003 to 2018.  

To clarify the influence of model structure, the typical 
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multiple layer perception (MLP) and deep belief network 

(DBN) models were involved in the tests. The evaluation of the 

estimated WL values was conducted using the random testing 

set and the independent HydroWeb datasets. Finally, the fine-

scale spatial and temporal variation of lake WL change was 

analyzed based on the reconstructed WL dataset. 

II. STUDY AREA AND MATERIALS 

A. Study Area 

The Altai Mountains (Fig. 1) are located in the middle of 

Europe-Asia continent, spanning four countries, i.e., China, 

Kazakhstan, Russia, and Mongolia. The altitude in this region 

varies from 2000 m in the northwest to over 4500 m in the 

central area. In the central high-mountain area, there are large-

area glaciers with a total area of ~1191 km2, which have shown 

a rapid retreating trend over the past decades [35]. As a result, 

glacier and snow meltwater is the major water supply for the 

lakes distributed around this region [36]. The precipitation 

decreases from northwest to southeast, with an annual average 

of ~250 mm. Moreover, the precipitation increases with 

altitude, due to the topography effect [37]. Overall, the Altai 

Mountains region is widely regarded as a vast transnational 

“water tower” with a complex distribution of lakes, which is 

dependent on precipitation, glacial meltwater, and upstream 

river supply [38]. The scale of human activities in the region is 

limited, due to the harsh natural environment; however, the 

increase of land development and industrial water consumption 

is having an impact on the regional ecosystem and water 

resource changes [39].  

There are more than 40 lakes over 5 km2 in Altai Mountains 

region, with a total area of more than 9700 km2. In this work, 

we selected 14 typical lakes (Table Ⅰ) larger than 20 km2, whose 

total area represents over 90% of the overall lake area in this 

region.  

B. Optical Satellite Images 

The Landsat Thematic Mapper (TM)/Enhanced Thematic 

Mapper Plus (ETM)+/Operational Land Imager (OLI) surface 

reflectance collection image series were used to extract the lake 

extent of the study area at a monthly scale from 2003 to 2018. 

The satellite revisit cycle is 16 days, and the spatial resolution 

of the visible and near-infrared bands is 30 m. To ensure high-

quality extracted lake area data, 586 scenes were selected with 

no cloud cover over the lake areas of interest (Table Ⅱ). The 

months without a valid cloud-free image were masked as 

missing observations, as shown in Fig. 2. The water area was 

extracted based on the automated water extraction index 

(AWEI) [40]. Through a literature study and experimentation, 

0 was used as the threshold for AWEI values to distinguish 

water and non-water [41]. 

In this work, the data collection and image processing were 

implemented on the Google Earth Engine (GEE) platform. 

Firstly, the Landsat surface reflectance images were selected 

considering the spatial coverage, temporal resolution, and cloud 

cover. Since the failure of the ETM+ airborne scan line 

corrector (SLC) resulted in the loss of data strips after 2003 

(Landsat 7 ETM+ SLC-off), the “Gapfill” function was 

employed to fill the gaps within the data tiles. After water area 

extraction using the AWEI index, the results were visually 

examined and the misclassification was manually edited. Thus, 

the influence of hill shade and glaciers on the extraction of the 

lake boundaries could be partly eliminated. The paired lake area 

and the WL data will be used to obtain the regression 

relationship between the two variables, and the L-A relationship 

was then used to obtain an initial estimation of WL from the 

known lake area information for the model construction. 

C. Satellite Altimetry Data 

The altimetry data for the monthly lake WLs were obtained 

from the ICESat-1 Level 2 Global Land Surface Altimetry 

(GLAH14) dataset (2003–2009) published by the US National 

Snow and Ice Center (NSIDC) 

(http://nsidc.org/data/icesat/data_releases.html) [42] and the 

CryoSat-2 Level 2 Geophysical Data Record (GDR) data 

(2010–2018) provided by the European Space Agency (ESA) 

(ftp://science-pds.cryosat.esa.int/) [43]. Detailed descriptions 

of the two altimeters are provided in Table Ⅲ. We integrated 

the WL data for the 14 lakes obtained by the ICESat-1 and 

CryoSat-2 altimetric missions to derive time-series WL data for 

2003–2009 and 2010–2018, respectively. The spatial and 

temporal coverage of the initial data extraction is shown in Fig. 

2. Due to the low temporal resolution and the exclusion of 

invalid data points, there are large temporal gaps in the time 

series. It is worth noting that only ICESat-1 and CryoSat-2 data 

were incorporated in this study to provide the initial data 

sequence. The reason for this is that the incorporation of other 

satellite observations would only slightly extend the overall 

data coverage. Given that the proposed method is designed to 

tackle data reconstruction in the case of large spatial and 

temporal gaps, the extra satellite data were used in the 

validation stage. 

The lake WLs correspond to the elevation of earth surface 

regarding to the reference ellipsoid measured with satellite 

altimetry [44]. To maintain consistency with the CryoSat-2 data, 

the datum of the ICESat-1 GLAS data was converted from the 

T/P reference ellipsoid to the WGS84 ellipsoid. The ground 

height observed by the altimeter was then converted to the 

EGM96 geoid height to obtain the monthly variation of lake 

WLs [45]. Based on the extracted water surface extent, the 

temporally matched altimetry points within each lake were 

segmented. The outliers contaminated with gross errors were 

then excluded using the three-sigma criteria, and the remaining 

data values were averaged to represent the monthly WL. 

D. Auxiliary Meteorological Data 

The Global Land Data Assimilation System (GLDAS) 

merges satellite- and ground-based observational data to 

generate optimal fields of land surface states and fluxes, by 

using advanced land surface modeling and data simulation 

technologies. There are simulation products of different land 

surface models, e.g., the NOAH, Mosaic, CLM, and VIC land 

surface models [46]. Previous studies have shown that the main 

natural variables affecting lake WL changes are temperature (T), 
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precipitation (P), evapotranspiration (E), surface runoff (QS), 

and underground runoff (QU) [29], [47], [48]. Thus, these five 

meteorological and hydrological parameters were considered in 

this study for simulating the water cycle process. These 

parameters were all derived from the GLDAS_NOAH025_M 

version v2.1 dataset, with a spatial resolution of 0.25 × 0.25 

degrees and a temporal resolution of one month [49]. The 

variables were used to construct the training set as the input 

auxiliary information. 

E. HydroWeb  

To evaluate the performance of the reconstruction model, the 

validation was conducted from two aspects. Except for the 

validation conducted using the testing set randomly selected 

from the altimetry measurements of the ICESat-1/GLAS and 

CryoSat-2 SIRAL altimeters, independent validation was also 

conducted using the HydroWeb datasets. It is a database 

established by Laboratoire d 'etudes en Geophysique et 

Oceanographie Spatiales (LEGOS) [50]. The HydroWeb 

database provides monthly lake WL and storage data derived 

from multi-source altimetry data, including ERS-1, T/P, 

GEOSAT Follow-On (GFO), ERS-2, Jason-1/2, and Envisat 

data, for over 150 large lakes around the world, starting from 

1995. In this paper, HydroWeb water level data cover five lakes 

including Ulungu, Hala, Dorgon, Uvs and Hyargas in the Altai 

Study Area. 

 

Fig. 1. The distribution of the lakes in the Altai Mountains. 

 

Fig. 2. The lake WL and area data coverage of the satellite observations. The horizontal axis represents the total of 192 monthly 

WL and area records obtained for 2003–2018. The red grid cells indicate that the WL and area observations are both valid, while 

the orange and blue grid cells indicate that only WL or lake area data are available at that time, respectively. Moreover, the white 

grid cells indicate that no water area or WL data are available. 
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TABLE I 

BASIC DETAILS OF THE LAKES (AREA > 20 KM2) CONSIDERED IN THIS STUDY 

NO. Lake 
Latitude 

(°） 

Longitude 

(°) 

Lake area 

(km2) 
Lake type 

Main water 

supply 

Climate 

zone 

1 Uvs 50.43 92.74 3558.27 alpine closed lake river Dfa 

2 Hyargas 49.13 93.37 1452.76 alpine closed lake river Dfa 

3 Har US 48.08 92.30 957.35 exorheic lake glacier& river BSk 

4 Hala 48.07 93.19 566.23 exorheic lake river BSk 

5 Dorgon 47.67 93.43 367.82 exorheic lake river BWk 

6 Ureg 50.11 90.99 246.21 alpine closed lake glacier&river Dfb 

7 Achit 49.46 90.55 291.44 alpine closed lake glacier&river Dfa 

8 Tolbo 48.55 90.06 78.41 alpine closed lake glacier Dfb 

9 Kendlkty 50.34 89.82 65.37 alpine closed lake glacier Dfb 

10 Kurgan 48.53 88.57 63.02 exorheic lake glacier Dfb 

11 Khoton 48.62 88.34 53.00 exorheic lake glacier Dfb 

12 Ulungu 47.19 87.21 863.13 terminal lake river BSk 

13 Jili 46.91 87.40 172.95 terminal lake river BWk 

14 Markakol 48.77 85.74 452.56 exorheic lake glacier Dfb 

(The climate zones are from the Köppen climate classification scheme [51]. BSk: semi-arid grassland climate; BWk: desert 

climate; Dfa: tropical humid climate; and Dfb: temperate humid climate. The lake area information is based on the extracted 

results of 2018.) 

 

TABLE II 

DETAILS OF THE OPTICAL SATELLITE IMAGES USED IN THIS STUDY 

Sensor Time series Bands Resolution (m) Numbers 

Landsat TM 2003-2012 7 30 308 

Landsat ETM+ 2012-2013 8 30 27 

Landsat OLI 2013-2018 9 30 251 

 

TABLE III 

DETAILS OF THE ICESAT-1 GLAS AND CRYOSAT-2 SIRAL ALTIMETERS 

Satellite 
Radar 

altimeter 
Band 

Operation 

period 

(year) 

Revisit (d) 
Footprint 

interval (m) 

Footprint diameter 

(km) 

ICESat-1 GLAS 
1064 nm& 

532 nm 
2003–2009 91 ~170 ~0.07 

CryoSat-2 SIRAL Ku 2010– 
369 

subcycle 30 
~280 

~1.6 (across track), 

~0.3 (along track) 

 

III. METHODS 

The overall flowchart of the proposed WL reconstruction 

method is shown in Fig. 3, which is composed of four major 

procedures:  

1) Firstly, the data for multiple lakes were clustered based on the 

different climate conditions, recharge sources, and change patterns.  

2) For each lake cluster, the PLSR algorithm was used to select 

the optimal regional meteorological variables to construct the input 

set for the model training and testing.  

3) The L-A fitted empirical model was used to expand the 

training samples for each lake, and a two-step strategy was used to 

train the reconstruction model for each lake category.  

4) Based on the well-trained model, the consecutive monthly 

WLs in the Altai Mountains region from 2003 to 2018 were then 

reconstructed. 
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Fig. 3. Flowchart of water level reconstruction. 

 

A. Lake Clustering 

The lake fluctuations result from the combined influence of 

climate variations, hydrological conditions, and human 

activities. Generally speaking, lakes distributed in the same 

climate zone and hydrologic catchment could show similar 

behaviors in storage dynamics. Correspondingly, the WL 

changes of lakes with different recharge sources and 

hydrological conditions can differ significantly [52]. In this 

study, the lakes were clustered into several groups for the 

training and prediction. In this way, the spatial homogeneity 

and heterogeneity of the hydrologic cycling conditions among 

the multiple lakes could be considered, and training on 

clustered multiple lakes could generate more WL samples than 

single-lake modeling. Following the work of Song et al.[20], 

we used the cosine similarity index (CSI), which calculates the 

cosine value of the angle between two vectors in the vector 

space, to identify the similarity between two lakes’ hydrological 

conditions:  

 𝑐𝑜𝑠(𝑥, 𝑦) = 𝑐𝑜𝑠 𝜃 =
𝑥⋅𝑦

‖𝜒‖⋅‖𝑦‖
.         (1) 

where 𝑥  and 𝑦  are the vectors composed of the monthly 

hydrological and meteorological factors (i.e., T, P, E, QS, and 

QU, as introduced in Section Ⅱ) related to any two lakes for 

2003–2018. The results range from −1 to 1, with 1 meaning the 

same, and 0 indicating no correlation between the two lakes. 

The CSI values were calculated for each pairing among the 14 

lakes, and we obtained 91 non-repetitive values. For the initial 

cluster centers corresponding to the 14 lakes, the maximum 

similarity was used to merge the two closest clusters into a new 

category. The cluster centers were iteratively updated with 

merging process, and the iterations were stopped when all the 

lakes were grouped into 𝑘  groups. In this study, the cluster 

category 𝑘 was set as 4 with a preliminary judgement of the 14 

lakes (Fig. 1 and Table Ⅰ) in terms of spatial distribution, as well 

as climate and hydrological conditions. 

The initial clustering results, as shown in Table Ⅳ, are based 

on the similarity between the hydrological and meteorological 

forcing data related to lake variation. However, the response 

mechanism of the lake WL changes to the environmental 

variables varies with the lake type, basin landform, and 

interactive effects. Therefore, lakes with similar environmental 

conditions may have different pivotal factors reflecting WL 

changes. Based on these facts, the initial lake clustering results 

were adjusted with a further consideration of their geospatial 

   Clustering and variable selectionSample optimization 

Meteorological  data

Clustering

Category 1 ...

E、QU QS、QU ...

PLSR

Satellite altimetry dataOptical satellite data Auxiliary data

TM&ETM+&OLI
ICESat-1 

Cryosat-2
T P QSE QU

Time

Latitude

Longitude

Category 2 Category n

...

AWEI

Water area(A)

H=A-R-c

Water level(H)

H=kA+b

Inputs Models Prediction

Model training 

and testing

20% Observed 

samples

Fitted samples

80% Observed 

samples
Predicted WLs

Testing

Training

Validation and 

analysis

Hydroweb dataset Independent validation 

MLP
W, b

DBN

Pre-training

Monthly lake WL dataset

(2003-2018)
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relationship, as well as the recharge and discharge conditions.  

The final clustering results are shown in Table Ⅳ and Fig. 4. 

Category 1 indicates the plain terminal lakes distributed in the 

southwestern arid basin of the Altai Mountains. Compared with 

the initial clusters, Achit Lake, which is located in the humid 

area and is mainly fed by a glacial river, was adjusted to 

Category 2. Category 2 refers to the set of lakes distributed in 

the humid climate zone around the mountain range being 

supplied from glaciers and rivers, with surrounding altitudes of 

1410–1450 m. As an exoreic lake in the arid area of the 

Mongolian Plateau, and closely connected with Hala Lake, the 

response mechanism of Dorgon Lake should be more similar to 

that of the Category 4 lakes, which are far away from the 

glaciers. The six lakes belonging to Category 3 in the initial 

clusters were further divided into two types. One category was 

composed of the small lakes in the middle of the high-altitude 

Altai Mountains region that are mainly fed by meltwater from 

neighboring glaciers. The other two large alpine closed lakes 

located in the northwestern Mongolian Plateau, i.e., Uvs and 

Hyargas, are primarily affected by evapotranspiration and 

precipitation, and have shown a significant decreasing trend for 

water storage in the past decades [39]. These lakes were 

allocated into a separate category, referring to Category 5. 

 

TABLE Ⅳ 

THE CLUSTERING RESULTS BASED ON THE COSINE SIMILARITY INDEX AND FINE-TUNING 

Category 1 2 3 4 5 

Initial 
Ulungu, 

Jili, Achit 

Markakol, Ureg, 

Dorgon 

Tolbo, Kurgan, Khoton, 

Uvs, Hyargas,  Kendlkty 
Har US, Hala / 

Fine-tuned 
Ulungu, 

Jili 

Markakol, Ureg, 

Achit 

Tolbo, Kurgan, Khoton, 

Kendlkty 

Har US, Hala, 

Dorgon 

Uvs, 

Hyargas 

 

 
Fig. 4. The final clustering results after adjustment considering the geospatial relationships, as well as the recharge and discharge 

conditions. 

 

B. Environmental Variable Selection 

The PLSR method was used to quantitatively evaluate the 

contribution degree of the environmental variables to WL 

changes [53]. The WL data and the environmental variables 

(i.e., T, P, E, QS, and QU) can be organized as follows:  

𝑋 = (

𝑥11 ⋯ 𝑥1𝑝
⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑝

) ，Y = (

𝑦11
⋮
𝑦𝑛1

)                 (2) 

where 𝑋 is the input matrix composed of the five time-series 

meteorological factors (i.e., 𝑝 = 5 ), and 𝑛  is the number of 

samples corresponding to the effective WL observations. 𝑌 

indicates the output WLs. Thus, 𝑥𝑖𝑗 and 𝑦𝑖1 denote the elements 

in the 𝑖𝑡ℎ  row and 𝑗𝑡ℎ  column of 𝑋  and 𝑌 , respectively. With 

principal component analysis and residual updating, the PLSR 

equation for the dependent variables can be correspondingly 

constructed as: 

𝑌0̃ = 𝑎1𝑥̃1 + 𝑎2𝑥̃2 +⋯+ 𝑎𝑝𝑥̃𝑝                  (3) 

where 𝑥̃𝑗(𝑗 ∈ [1, 𝑝])  means the normalized vector of 𝑗𝑡ℎ 

environmental variable, and 𝑌0̃ is the normalized WL dataset. 

For more details about the PLSR algorithm, we refer the reader 

to the Appendix. In our work, the regression coefficient 𝑎𝑖(𝑖 ∈
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[1, 𝑝])  between the normalized dependent variable and 

independent variables was used as the contribution degree of 

each variable in explaining the WL changes. The higher the 

coefficient, the greater role of the independent variable in 

reflecting the variation of the dependent variable. In other 

words, the lake WL dynamics have a stronger response to the 

change of the specific environmental forces with larger 

coefficients, which were selected to construct the optimal 

subset of forcing factors for the model input. 

C. Model Construction 

1) Sample Augmentation 

As shown in Fig. 2, a large proportion of the WL data is 

missing, and few data points are available for most of the lakes 

before 2010. The inadequate number of training data samples 

and their uneven distribution would degrade the model 

performance. To extend the spatial and temporal data coverage, 

we proposed to incorporate the estimated WLs inferred from 

the lake area in the case of missing altimetry information. In 

previous works, linear or polynomial curve fitting has been 

commonly used to establish the relationship between the time-

series WLs and the temporally matched lake areas, and positive 

results have been obtained [19], [20]. Therefore, the empirical 

L-A statistical relationship in the Altai Mountains region was 

constructed using the paired monthly area and WL observations 

(the red grid cells in Fig. 2) for each lake. In our study, a linear 

function was employed [54],which can be expressed as: 

𝐻𝑖 = 𝑘𝐴𝑖 + 𝑏                               (4) 

where 𝐴𝑖 and 𝐻𝑖 respectively indicate the measured area and 

WL at the 𝑖𝑡ℎ  month, while 𝑘  and 𝑏  are the regression 

parameters. The parameters can be solved by minimizing the 

residual sum of squares by the use of the ordinary least squares 

regression algorithm. The WLs can then be estimated using the 

established relationship with known lake areas.  

2) MLP and DBN 

Over the past few decades, ANN models have become 

popular in various geoscience-related fields for classification or 

prediction problems in a supervised manner [55], [56]. An ANN 

model is generally composed of an input layer, several hidden 

layers, and an output layer, where each layer is composed of 

several neuron units. The nonlinear relationship between the 

input-output variables can be learned during the training 

process through the multiple layers in the neural network. With 

the rapid development of computational power, the potential of 

ANNs has been improved with deeper and distinguished model 

structures, where MLP, DBN, and RNN are the popular 

networks. Among them, the MLP is a representative structure 

of DNN, with cross-layer fully connected neurons [57]. 

Through the multiple layers, the neurons receive signals from 

the previous layer by weighted connections. The weighted 

inputs are added up and produce the output of the current layer 

through a nonlinear transfer function, and are then input into the 

next layer until the output layer is reached. The model 

optimization is usually solved using the backpropagation (BP) 

method, with the output errors propagated backward through 

the network layers and the weights fine-tuned to reduce the 

summed error loss. 

The DBN model proposed by Hinton et al. with greedy layer-

wise pretraining, was another type of the most widely used deep 

learning models [58]. The DBN model is composed of several 

restricted Boltzmann machine (RBM) layers and one BP layer, 

as shown in Fig. 5. Each RBM is formed by a visible layer and 

a hidden layer, in which the hidden layer of the first RBM is the 

visible layer of the next RBM, and the multiple RBMs are 

stacked to extract the characteristics of the input data. 

 

 
Fig. 5. The DBN model structure. 

 

The RBMs in the DBN are trained sequentially, starting from 

the input layer. Specifically, the hidden layer trained with the 

visible layer in the first RBM unit can be expressed as: 

ℎ1,𝑖 = {
1, 𝑓(𝑊0,𝑖𝑣 + 𝑏𝑖) ≥ 𝜇

0, 𝑓(𝑊0,𝑖𝑣 + 𝑏𝑖) < 𝜇
, 𝜇~𝑈(0,1)               (5) 

𝑓(𝑥) =
1

1+𝑒−𝑥
                                   (6) 

where 𝑣 is the input to the hidden layer from the visible layer, 

while 𝑊0,𝑖  and 𝑏𝑖 indicate the weights and bias for the 𝑖𝑡ℎ   

neuron.  𝑓(∙) denotes the transfer function, which is defined as 

shown in Eq. (6). The results are then used as the training input 

for the next RBM, and the training process terminates when all 

the layers are traversed. The weights in the 𝑛𝑡ℎ iteration are 

updated following the contrastive divergence algorithm: 

𝑊0
𝑛+1 = 𝑊0

𝑛 + 𝜀((ℎ1)
𝑇𝑣 − (ℎ1

2)𝑇𝑥1)                 (7) 

where 𝜀  is the learning rate. In this equation, 𝑥1  is the 

reconstruction result from hidden layer ℎ1  based on Eq. (5). 

Similarly, ℎ1 and ℎ1
2 are the corresponding results from 𝑣 and 

𝑥1, respectively. Once the input data are fed into the model, the 

pretraining is firstly implemented in an unsupervised manner to 

generate the initial parameters. In the following fine-tuning 

stage with labeled data as supervision, the refined weights of 

the DBN are trained iteratively, backward through the network, 

using the BP algorithm [59].  

3) Model Training and Testing 

The MLP and DBN were employed as the deep learning 

models for the reconstruction of the missing WLs. Despite the 

differences in model structures, both the two models were 

trained and tested in the same way. As shown in Fig. 4, for each 

lake category, the input variables are the subset of the 

environmental driving parameters, the spatial location (the 

latitude and longitude coordinates) of the lakes, and the 

temporal information at a monthly scale. The output is the lake 

WL, which denotes the target in this study. To establish a well-

trained relationship between the input forces and references, the 
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monthly observed WLs from January 2003 to December 2018 

were used for the model training. Before the model training, the 

L-A fitting was used to augment the amount of training data. 

The reconstruction model was then trained in a two-step manner. 

Specifically, the model was first pretrained incorporating both 

the observed WL data and the empirically estimated values as 

the target dataset. The pretrained model was then further fine-

tuned using only the true observations acquired by the satellite 

altimeters, where the pretrained weights were used to initialize 

the network. In the testing stage, the corresponding components 

of the input data were imported into the final well-trained 

models, and the missing WLs could be correspondingly 

estimated.  

The implementation details are as follows. Five DBN or 

MLP models were trained separately, corresponding to the five 

lake categories defined in this paper. For each lake belonging 

to the same category, the input variables were normalized 

independently. Moreover, to suppress the impacts of the time 

lag effect and data anomalies, the environmental variables were 

extracted by the use of a temporal window. This means that, for 

the reconstruction of the WL at month 𝑡 , the sequential 

variables at month [𝑡 − 2, 𝑡 − 1, 𝑡] comprise the model input. 

The datasets with measured WL information were then 

randomly divided into a training set (80%) and a test set (20%), 

where the test set was used to validate the model prediction 

performance. The parameters employed for implementing MLP 

and DBN models were determined after the trail experiments. 

For more details, please refer to Table A-Ⅰ. 

D. Model Evaluation 

The determination coefficient (R2), root-mean-square error 

(RMSE), and mean absolute error (MAE) are used in this paper 

[60]. The specific calculation methods for the related indicators 

are as follows: 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

                               (8) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1                      (9) 

𝑀𝐴𝐸 =
∑ |𝑦𝑖−𝑦̂𝑖|
𝑛
𝑖=1

𝑛
                           (10) 

where 𝑦𝑖  is the reference, and 𝑦̂𝑖  is the prediction.  𝑦̅  is the 

average of the observations, and n is the number of samples. 

With higher values of R2 and lower values of RMSE and MAE, 

the reconstruction method is considered to obtain better results.  

IV. RESULTS 

A. Results of the Environmental Variable Selection 

With regard to the clustered lake categories, the different 

driving factors reflecting the WL variations were selected using 

the PLSR algorithm (Section Ⅲ). Table Ⅴ lists the contribution 

degree (𝑎𝑝 in Eq. (3)) of the different environmental variables 

to the WL changes for the five categories of lakes. The results 

show that the response of the lake WLs to the environmental 

variables varies with the lake type. 

 
 

TABLE Ⅴ 

THE CONTRIBUTION DEGREE OF THE ENVIRONMENTAL 

PARAMETERS TO THE WL CHANGES FOR THE DIFFERENT LAKE 

CATEGORIES, AS CALCULATED WITH THE PLSR ALGORITHM 

Category 
Contribution degree 

T P E QS QU 

1 0.058 0.055 0.232 0.021 0.360 

2 0.001 0.044 0.014 0.267 0.360 

3 0.230 0.033 0.031 0.033 0.301 

4 0.238 0.021 0.265 0.077 0.289 

5 0.100 0.026 0.150 0.128 0.100 

 

As presented in Table Ⅴ, the contribution degree of 

precipitation is relatively small for all the lake categories, which 

implies that precipitation might not be the pivotal influencing 

factor for the variation of lake WL changes in the study area. 

As introduced in Section Ⅱ-A, the precipitation in this region 

shows a decreasing trend from northwest to southeast (Fig. 6 

(a)), while the 14 lakes are mainly distributed in the central and 

eastern areas. The annual precipitation shown in Fig. 6 (b) 

shows that the interannual variation trend of the regional 

precipitation is not significant. Furthermore, the high-altitude 

precipitation above the snow line mainly falls as snow, where 

the contribution can be partly attributed to runoff derived from 

meltwater. Therefore, glaciers melting and river runoff in this 

alpine area played more significant roles in lake replenishment. 

In terms of the water supply sources, the lakes directly fed by 

glacial meltwater are generally sensitive to the temperature 

variations. Moreover, for the lakes distributed in the arid/semi-

arid areas (e.g., Ulungu, Uvs, and Hyargas), evapotranspiration 

has a significant influence on their storage variation [61]. We 

empirically set the threshold t as 0.1 to select the optimal 

subsets of the input for the reconstruction models, which are 

labeled as the bold values in Table Ⅴ. 

B. Results of the Sample Augmentation 

The L-A linear fitting method was used for the training 

sample augmentation, and the fitting results for the 14 lakes are 

presented in Fig. A1. The fitted R2 values range from 0.48 to 

0.95, which indicates that the correlation between lake area and 

surface elevation varies with the different lakes. Based on the 

established empirical relationship, the unknown WL samples 

with valid lake area data could be reconstructed as an initial 

estimation. In the second column of Table Ⅵ, we list the 

number of estimated samples based on the L-A linear fitting for 

each lake category. As described in Section Ⅲ-C, the WL data 

measured by satellite altimeter were randomly divided into a 

training dataset (80%) and a test dataset (20%). The pretraining 

process was conducted with the training set combining the fitted 

estimations and the true altimetry WL training dataset. In the 

fine-tuning stage, only the true observations were used as the 

target to obtain the final model parameters. It can be observed 

that the L-A fitting can increase the training samples by an 

average of 43%. The effectiveness of the sample augmentation 

with regard to the model performance is validated in next 

section. 
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Fig. 6. The precipitation distribution and temporal variation in the study area. (a) The annual average precipitation for 2003–

2018. (b) The annual precipitation for 2003–2018. 

 

C. Model Performance 

1) Model Performance Analysis 

The performance of the proposed WL reconstruction method 

is analyzed in this section, where the effectiveness of the lake 

clustering, forcing variable selection, and two-step training is 

respectively discussed. The results are summarized in Tables 

Ⅶ-Ⅷ, where the accuracy of the estimated WL values is 

validated using the same test datasets (see Table Ⅵ). In Tables 

Ⅶ-Ⅷ, the rows referring to “SINGLE” mean that the results 

are obtained with 14 models trained separately for each lake, 

which is the common solution adopted by the existing works. 

Moreover, “ALL” denote the results obtained without the lake 

clustering process, where the whole training dataset for the 14 

lakes was used to train the model. The tables also show the 

model performance with different input variable sets 

corresponding to the different lake categories and the results are 

denoted as “MLP-X” an “DBN-X”. Table Ⅷ lists the model 

performance results with pretraining using the augmented 

samples, referring to “P-MLP” and “P-DBN”. 

Firstly, the overall accuracy shows that both the MLP and 

DBN models can obtain favorable reconstruction results. The 

DBN model generally achieves a slightly better performance, 

with the more efficient network structure used to learn the 

complex nonlinear relationship among the data. The “SINGLE” 

and “ALL” models show no significant differences in terms of 

the overall statistics. However, when the characteristics of the 

lakes in terms of climate and hydrological conditions are 

considered, the performance shows an obvious improvement, 

for both the MLP and DBN models. Moreover, model 

construction based on the selected optimal forcing variables 

also promotes the simulation accuracy in the majority of the 

categories. This is reflected in the reduction of the overall 

RMSE value of 0.972 m for the DBN-X model compared with 

1.102 m for the DBN-SINGLE and 1.084 m for the DBN-ALL 

model. The possible reason for the error reduction is that a 

better relationship can be learned by the predictors with the 

distracting elements excluded. On the other hand, the lower 

dimension of input can also improve the model training 

efficiency.  

Comparing the results presented in Tables Ⅶ-Ⅷ, the main 

difference is whether augmented samples estimated using L-A 

linear fitting model are used for the pretraining and to obtain 

the initialized network parameters. In most cases, the sample 

augmentation can improve the estimation accuracy. It can be 

analyzed from the results that the effectiveness of the 

pretraining process depends on the quality of the fitted samples. 

For example, for Category 1 consisting of Ulungu and Jili lakes, 

the accuracy of the results derived from P-DBN-X is slightly 

lower than that of the original DBN. As shown in Fig. A1, it can 

be seen that the L-A fitted R2 for these two lakes is 0.58 and 

0.68, respectively. The relatively low regressed correlation for 

both lakes might indicate undesirable estimations, which would 

result in an inaccurate pretrained model parameter set. Overall, 

the proposed P-DBN-X method achieves the best results, with 

the lowest overall RMSE of 0.912 m and MAE of 0.647 m. The 

performance of learning-based models can be effectively 

improved by introducing the idea of spatial clustering and 

pretraining, with the overall RMSE improvement reached 17.0% 

for MLP and 17.2% for DBN compared with the SINGLE and 

ALL models. 

Except for the overall statistics, we show the prediction 

results obtained with DBN using different training strategies for 

each lake in Fig. 7. Given that DBN-ALL and P-DBN-SINGLE 

obtain the results with the second best accuracy in Table Ⅶ 

and Table Ⅷ respectively, the reconstruction results of those 

two models were presented. It can be clearly observed from the 

figures that the red dotted lines referring to as the results 

obtained by P-DBN-X model have a more similar varying trend 

with the referenced dark lines. This is consistent with the 

quantitative evaluation results presented in Tables Ⅶ-Ⅷ. 

Besides, the quantitative results of DBN modelling with 

different training strategies for the 14 lakes are presented in 

Table A-Ⅱ. The results further demonstrate that the proposed 

method with lake clustering and two-step training generally has 

significant improvement on the results’ accuracy compared 

with the traditional solutions, especially for the small lakes with 

limited valid observations. 
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TABLE Ⅵ 

THE NUMBERS OF SAMPLES FOR EACH LAKE CATEGORY IN THE TRAINING PROCESS 

 L-A linear fitting L-A estimation 
Altimeter data 

Pretraining 
Training (80%) Testing (20%) 

Category 1 85 89 133 33 222 

Category 2 61 94 186 47 280 

Category 3 30 97 167 41 264 

Category 4 100 99 251 62 350 

Category 5 45 17 191 43 208 

Overall 321 396 928 226 1324 

 
TABLE Ⅶ 

PERFORMANCE OF THE MODELS IN WL RECONSTRUCTION WITH DIFFERENT INPUT VARIABLES, WITHOUT PRETRAINING USING 

THE AUGMENTED SAMPLES (UNITS: M) 

Category Inputs 

MLP DBN 

Training Testing Training Testing 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

SINGLE P, E, Qu, Qs, T 1.029 0.749 1.134 0.832 0.947 0.714 1.102 0.783 

ALL P, E, Qu, Qs, T 1.006 0.738 1.124 0.815 0.920 0.707 1.084 0.773 

1 

P, E, Qu, Qs, T 

0.877 0.830 1.108 0.890 0.838 0.660 1.160 0.823 

2 0.395 0.346 0.473 0.401 0.358 0.289 0.437 0.333 

3 1.604 1.116 1.818 1.323 1.388 1.024 1.694 1.266 

4 0.706 0.561 0.784 0.624 0.664 0.505 0.735 0.596 

5 0.926 0.726 1.160 0.919 0.922 0.698 0.936 0.743 

Overall  0.956 0.730 1.118 0.794 0.875 0.685 1.025 0.751 

1 E, Qu 0.873 0.698 0.906 0.701 0.728 0.590 0.832 0.652 

2 Qs, Qu 0.365 0.296 0.420 0.364 0.349 0.284 0.452 0.326 

3 T, Qu 1.521 1.162 1.714 1.365 1.368 1.048 1.481 1.350 

4 T, E, Qu 0.653 0.523 0.716 0.584 0.595 0.460 0.774 0.623 

5 T, E, Qu, Qs 0.930 0.656 1.146 0.905 0.905 0.686 0.924 0.701 

Overall / 0.919 0.702 1.039 0.771 0.837 0.671 0.972 0.734 

 

TABLE Ⅷ 

PERFORMANCE OF THE MODELS IN WL RECONSTRUCTION WITH DIFFERENT INPUT VARIABLES, WITH PRETRAINING USING THE 

AUGMENTED SAMPLES (UNITS: M) 

Category Inputs 

P-MLP P-DBN 

Training Testing Training Testing 

RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

SINGLE P, E, Qu, Qs, T 0.965 0.735 1.077 0.778 0.908 0.698 0.956 0.729 

ALL P, E, Qu, Qs, T 1.063 0.772 1.082 0.780 0.916 0.700 1.022 0.744 

1  0.789 0.660 0.982 0.730 0.703 0.558 1.002 0.726 
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2  

P, E, Qu, Qs, T 
0.423 0.311 0.452 0.372 0.363 0.289 0.426 0.307 

3 1.538 1.104 1.725 1.233 1.120 1.030 1.120 1.146 

4 0.683 0.543 0.774 0.595 0.585 0.446 0.697 0.567 

5 1.022 0.716 1.103 0.866 0.927 0.647 0.935 0.697 

Overall  0.943 0.715 1.058 0.780 0.836 0.670 0.954 0.726 

1 E, Qu 0.781 0.614 0.821 0.653 0.806 0.636 0.871 0.662 

2 Qs, Qu 0.423 0.307 0.436 0.352 0.346 0.273 0.392 0.283 

3 T, Qu 1.371 1.071 1.416 1.139 0.800 0.534 1.202 0.946 

4 T, E, Qu 0.635 0.522 0.737 0.577 0.493 0.391 0.586 0.450 

5 T, E, Qu, Qs 0.981 0.689 1.099 0.805 0.854 0.623 0.869 0.675 

Overall / 0.876 0.677 0.941 0.687 0.789 0.568 0.912 0.647 

 

 
Fig. 7. Comparison of predicted lake levels with DBN models using different training strategies with the true observations 

(testing data) for each lake involved in this study. 

 

2) Comparison with the Empirical L-A Fitting 

The empirical L-A fitting model has been widely used in 

previous works for the estimation of missing WLs. In this 

section, the deep learning-based reconstruction method is 

compared with the L-A fitting algorithm. Due to the limited 

spatial coverage of the sample set, only the 10 lakes (i.e., 

Ulungu, Jili, Markakol, Ureg, Achit, Har US, Hala, Dorgon, 

Uvs, and Hyargas) with sufficient samples are involved in the 

evaluation. The overall quantitative evaluation results are 

presented in Table Ⅸ, where the validation dataset for the three 

models is the same for a fair comparison. Because the L-A 

fitting method can only obtain estimations when the lake area 

observations are available, the data samples with both valid lake 

area and WL are divided into subsets for regression (211 points) 

and validation (80 points) in this comparative analysis. The 

regression set is used to obtain the L-A statistical relationship 

for each single lake, and the evaluation results for the derived 

estimations are presented in the first row of Table Ⅸ. DBN-

ALL means the model trained with the whole training dataset 

of 10 lakes, and DBN-SINGLE indicates the model trained for 

each lake (L-A estimations not included). Moreover, P-DBN-X 

incorporate the L-A fitted samples in the pretraining stage. The 

model training mechanism is almost the same as that described 

in Section Ⅲ, except that the validation set is excluded from the 

training dataset for all the models involved in the comparison.  

As presented in Table Ⅸ, the L-A fitting method obtains the 

best results in this test, obtaining the overall lowest RMSE of 

0.637 m and MAE of 0.587 m. The P-DBN-X model achieves 

the second best results, with a similar accuracy (RMSE: 0.667 

m, MAE: 0.593 m) to L-A fitting. However, the L-A fitting 

method is limited to the cases with accurate lake area 

information. Due to the cloud cover and temporal interval of the 

satellite observations, it is always difficult to obtain high-

quality consecutive lake area data. Therefore, the proposed 

deep learning-based method is more suitable for the 

reconstruction of fine-scale lake WLs at a basin scale. The 
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scatter plots of the validation results present more detailed 

information about the model performances. For the five lakes 

(i.e., Ulungu, Jili, Uvs, Har US, and Hala) in Fig. 8, the RMSE 

and MAE values of the P-DBN-X results are superior to the L-

A fitted estimations. The P-DBN-X method shows a more 

robust performance, with the test R2 values ranging from 0.40 

to 0.69. In contrast, the regression performance varies with the 

different lakes. For example, the R2 value of the L-A fitted 

results for Har US lake is only 0.02. 

 

TABLE Ⅸ 

COMPARATIVE PERFORMANCE OF THE L-A CURVE FITTING AND DBN-BASED WL RECONSTRUCTION MODELS 

Model 
Number of samples 

RMSE (m) MAE (m) 
Training Validation 

L-A fitting 211 80 0.637 0.587 

DBN-ALL 866 80 1.297 1.142 

DBN-SINGLE 866 80 0.788 0.621 

P-DBN-X 866 80 0.667 0.593 

 

 
Fig. 8. Scatter plots of the validation results obtained with the L-A linear fitting and P-DBN-X models. 

 

 

3) Independent Validation with the HydroWeb Datasets 

Based on the above analysis, the proposed P-DBN-X model 

is used to reconstruct the monthly consecutive lake WL data for 

the Altai Mountains region. To further evaluate the accuracy of 

the reconstructed results, the data from HydroWeb are 

employed for an independent validation for the five lakes with 

valid observations in this area, i.e., Ulungu, Hala, Dorgon, Uvs, 

and Hyargas. The estimated WL values are compared with the 

reference values by the use of scatter plots in Fig. 9. 

The evaluation results show that the reconstructed WLs are 

highly consistent with the measured WL data, with small 

RMSE and MAE values below 1 m. The R2 values, however, 

differ for the different lakes. For example, the R2 value for Uvs 

Lake is 0.12, which shows a relatively low correlation. It can be 

speculated that this is because the fluctuations of the interannual 

WL change of Uvs Lake are small, and the overall variation 

within the study period is less than 1 m. Similar reasoning can 

be applied when analyzing the results for Ulungu Lake. The 

small-range WL fluctuations for the lakes can cause low R2 

values, but the low error statistics indicate that the 

reconstruction model is still reliable. 

 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3182646

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14 

 

 
Fig. 9. Scatter plots comparing the WLs derived by the P-DBN-X model and the WLs from the HydroWeb datasets. 

 

4) Long-term Variation Trends of the WL Series 

Based on the reconstructed WLs, the monthly consecutive 

lake WL time series could be obtained. The temporal WL 

variation curves for the 14 lakes during 2003–2018 in the Altai 

Mountains region are shown in Fig. 10. The curves in Fig. 10 

show that the predicted WL values generally agree well with 

the true observations, and the intra-annual dynamics can be 

reconstructed well. Comparatively, the reconstructed results of 

single-lake DBN modelling (Fig. A2) show more violent 

fluctuations, where the marginal values imply the unstable 

performance of single-lake models. Moreover, the change 

trends of the lake WL variations during the study period were 

analyzed using the Mann-Kendall test (see Appendix), where 

the changes of the lakes are defined as either slight or 

significant (Fig. 11).  

Among these lakes, Hyargas, Toblo, and Kurgan lakes are 

the main lakes suffering WL drops. Moreover, Hyargas Lake 

experienced the most significant WL drop, at ~4.4 m from 2003 

to 2018. On the other hand, Ulungu and Jili lakes in the 

southwestern part of the region are the main lakes showing an 

increase. From the trend analysis mapping in Fig. 11, eight of 

the lakes exhibited an insignificant change trend for 2003–2018, 

and six lakes showed significant changes, of either an increase 

or decrease in WL. 

It can be observed from Fig. 10 that lakes in the same 

category show similar WL trends of either increasing or 

decreasing WL. For example, both Ulungu and Jili lakes, which 

belong to Category 1, show a clear increasing trend, which 

indicates that these two large plain terminal lakes in 

southwestern Altai experienced expansion. As for the lakes of 

Category 2, the three lakes (i.e., Ureg, Markakol, and Achit 

lakes) maintained a steady WL and show slightly declining 

trends. Moreover, the lakes of Category 3 (such as Tolbo, 

Khoton, and Kurgan lakes) exhibited seasonal fluctuations, 

with the highest lake levels around September. As shown in Fig. 

6, precipitation in the central Altai area is at a relatively low 

level. Therefore, it can be inferred that the WL changes of these 

lakes can be mainly attributed to the amount of glacier melt 

runoff. This is consistent with the results of the environmental 

variable selection, where temperature and runoff were found to 

be the pivotal driving factors related to lake WL changes of 

Category 3. For those alpine closed lakes located in the western 

Mongolia Plateau with low precipitation, e.g., Uvs and Hyargas, 

evapotranspiration is the main means of discharge. Among 

these lakes, the continuous declining WL of Hyargas Lake can 

be related to the hydroelectric dam established in this area. 

Furthermore, Hala and Dorgon lakes distributed in the 

southeastern study area first suffered shrinkage and then 

showed a rising WL during the study period, where the lowest 

WL occurred around the middle of 2010. The regional 

meteorological changes (i.e., the rectangular region in Fig. 11) 

are analyzed in detail in Fig. 12. With the limited precipitation 

in the western Mongolian Plateau, the lake variations were 

closely related to the synergistic effects of the regional annual 

average temperature and evapotranspiration during 2003–2018 

(Fig. 12 (a)–(b)). Specifically, the monthly meteorological 

factors (Fig. 12 (c)–(d)) show that persistent high temperature 

and evapotranspiration started in April 2010, and lasted the 

whole of the summer. Thus, the extreme climate conditions 

caused significant lake storage deficiency in the late spring and 

summer of 2010. These findings could be easily missed without 

the consecutive high-accuracy monthly WL observations. 
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Fig. 10. Variation trends of the WLs of 14 lakes in the Altai Mountains region in 2003–2018. 

 

 
Fig. 11. WL changes of 14 lakes in the Altai Mountains region during 2003–2018. 

 

 
Fig. 12. The regional meteorological conditions in the rectangular sub-region shown in Fig. 12. (a) Annual temperature from 

2003 to 2018. (b) Annual evapotranspiration from 2003 to 2018. (c) Annual precipitation from 2003 to 2018. (d) Monthly 

temperature from 2008 to 2012. (e) Monthly evapotranspiration from 2008 to 2012. (f) Monthly precipitation from 2008 to 2012.

V. DISCUSSION 

The results and analysis in Section Ⅳ show that the spatio-

temporal reconstruction of missing lake WLs based on the 

proposed deep learning-based method is an effective way to 

obtain monthly consecutive WL records. However, the main 

uncertainties with regard to the model performance might come 

from three main aspects. Firstly, the number and distribution of 

the training samples is one of the main influencing factors. As 

shown in Table Ⅷ, the overall testing error for the Category 

3 lakes (i.e., MAE: 0.946 m) is larger than that for the other 

types. The main reason for this is that the areas of the lakes in 
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this category are small, and thus the tracks of ICESat-1 GLAS 

for 2003–2009 provide few valid observations covering the lake 

extent (as in Fig. 10). The uneven distribution of the training 

samples can result in model bias. Secondly, the quality of the 

reconstruction results relies on the input environmental datasets. 

Although we aim to suppress the anomalies in the climate and 

hydrological datasets by extracting the inputs within a temporal 

window, the uncertainties of the simulated environmental 

elements are inevitable. However, the validation results show 

that the accuracy of the reconstructed WL values satisfies the 

demand for high-quality monitoring of lake WL changes. Lastly, 

the quantitative assessment of the influence of human activities 

on lake WL variations is rarely considered in the modeling 

described in this paper. The Altai Mountains stretch across four 

countries, and are located in a high-altitude region with a harsh 

natural environment. The materials related to social activities in 

this region are difficult to access. Fortunately, the strength of 

the human activities in mountainous regions with relatively low 

population is much weaker than that in urban areas. Moreover, 

the influence of water diversion and reservoir storage and 

release is partly reflected in the runoff variations.  

From Fig. 10, it is apparent that the coverage of the original 

WL observations has different temporal deficiency. The lake 

WL variations could be monitored at an annual scale for only 

seven large lakes in our previous work [39]. Furthermore, the 

correlation between the climate factors and lake changes could 

only be analyzed using annual average data. As a result, it was 

difficult to obtain a comprehensive analysis of the dynamics of 

the lakes with only the limited measured samples. In this study, 

the monthly variations of 14 lakes in the Altai Mountains are 

established through the incorporation of reconstructed values. 

As presented in Section Ⅳ-C, the seasonal fluctuations of lake 

WLs can reveal the potential change mechanism behind the 

variations. This will help researchers to further explore the 

impact of climate change or human activities on the changes of 

water resources. 

VI. CONCLUSION 

In this study, we proposed a deep learning-based WL 

reconstruction method to fill the temporal gaps in satellite 

altimetry observations for lakes and reservoirs. A 192-month 

consecutive WL dataset for the 14 lakes larger than 20 km2 in 

the Altai Mountains for 2003–2018 was generated. Based on 

the proposed framework, the related climate and hydrological 

variables were used as the model input, and the measured WLs 

were used as the output reference to train the model. The lakes 

were clustered into several categories for the model training. 

Moreover, the training samples were augmented using the L-A 

empirical model, and a two-step pretraining and fine-tuning 

strategy was proposed to improve the accuracy of the deep 

learning model simulation. The validation results obtained 

using the testing dataset (overall RMSE = 0.941 m for MLP, 

RMSE = 0.912 m for DBN) and the HydroWeb dataset 

indicated that the proposed method showed a robust 

performance in WL reconstruction in the case of a large 

proportion of missing data, while DBN slightly outperformed 

MLP with more efficient model structure. Moreover, we 

showed that the performance of a deep learning model can be 

greatly improved by introducing the idea of spatial clustering 

and pretraining. The comparative experiments also showed that 

the proposed method can outperform the L-A fitting methods. 

Overall, the reconstructed WL datasets can obtain the fine-scale 

(i.e., monthly or sub-monthly) spatial and temporal variation of 

lake WL changes at a basin scale. The WL data could be 

combined with lake bathymetry data to construct quantitative 

lake water storage changes. 

In terms of the limitations of this work, more comprehensive 

studies are needed to further explore the response of lake WLs 

to environmental factors and human activities. To adapt the 

proposed method for use in other study areas with intensive 

human activities, social and economic variables (e.g., 

population data, regional gross domestic product) would need 

to be integrated into the proposed deep learning framework. 

Moreover, the uncertainty of the regional environmental data 

derived from the model simulation needs to be considered, and 

the potential uncertainty could be tackled with multi-source 

data fusion techniques.   

APPENDIX 

A. Partial Least Squares Regression (PLSR) 

The environmental variables considered in this study were 

temperature (T), precipitation (P), evapotranspiration (E), 

surface runoff (QS), and underground runoff (QU). The WL data 

and the environmental variables can be normalized as follows: 

𝑥̃𝑖𝑗 =
𝑥𝑖𝑗−𝑥̅𝑗

𝑠𝑥𝑗
,𝑖 = 1,2, … , 𝑛; 𝑗 = 1,2, … , 𝑝                 (A1) 

𝑦̃𝑖1 =
𝑦𝑖1−𝑌̅

𝑠𝑌
,𝑖 = 1,2, … , 𝑛;                       (A2) 

𝑋̃0 = (

𝑥̃11 ⋯ 𝑥̃1𝑝
⋮ ⋱ ⋮
𝑥̃𝑛1 ⋯ 𝑥̃𝑛𝑝

) ，𝑌̃0 = (
𝑦̃11
⋮
𝑦̃𝑛1

)                 (A3) 

where 𝑋 means the input matrix composed of the five time-

series meteorological factors (i.e., 𝑝 = 5), and 𝑛 is the number 

of samples corresponding to the effective WL observations. 𝑌 

indicates the output WLs. Thus, 𝑥𝑖𝑗 and 𝑦𝑖1 denote the elements 

in the 𝑖𝑡ℎ  row and 𝑗𝑡ℎ  column of 𝑋  and 𝑌 , respectively. 

Moreover, 𝑥̅𝑗 is the average value of the 𝑗𝑡ℎ column vector of 

𝑋 , and 𝑌̅  is the average of 𝑌 . Similarly, 𝑠𝑥𝑗  and 𝑠𝑌  are the 

standard deviations. Subsequently, the principal components 

𝑢1 were extracted from the normalized data matrices 𝑋̃0 and 𝑌̃0: 

𝑢1 = 𝑋̃0𝜔                             (A4) 

where 𝜔  denotes the eigenvectors corresponding to the 

maximum eigenvalues of 𝑋̃0
𝑇
𝑌̃0𝑌̃0

𝑇
𝑋̃0 . The extracted results 

represent the decorrelated components, and their covariance 

with the target variable 𝑌0 is maximized. The expression of 𝑋̃0 

and 𝑌̃0 can then be written as [52]: 

𝑋̃0 = 𝑢1𝑝1
𝑇 + 𝑋̃1, 𝑌̃0 = 𝑢1𝑟1

𝑇 + 𝑌̃1                 (A5) 

𝑝1 =
𝑋̃0

𝑇
𝑢1

‖𝑢1‖
2  , 𝑟1 =

𝑌̃0
𝑇
𝑢1

‖𝑢1‖
2                      (A6) 

where 𝑝1 and 𝑟1 are the regression coefficient vectors derived 

from the least squares regression, and 𝑋̃1  and 𝑌̃1  are the 

residuals of the regression equation for 𝑋̃0 and 𝑌̃0, respectively. 
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In the same way, the component 𝑢2 of the residual matrices can 

be extracted. The iteration is stopped when the residual contains 

little information. Finally, the 𝑘  components 

{𝑢1, 𝑢2, … , 𝑢𝑘} construct the regression equation of 𝑋̃0 and 𝑌̃0: 

𝑋̃0 = 𝑢1𝑝1
𝑇 + 𝑢2𝑝2

𝑇 +⋯+ 𝑢𝑘𝑝𝑘
𝑇 + 𝑋̃𝑘        (A7) 

  𝑌̃0 = 𝑢1𝑟1
𝑇 + 𝑢2𝑟2

𝑇 +⋯+ 𝑢𝑘𝑟𝑘
𝑇 + 𝑌̃𝑘         (A8) 

With ignorable residuals at the 𝑘𝑡ℎ iteration, we convert the 

above equation to the matrix form of:  

𝑌̃0 = 𝑈𝑅
𝑇 + 𝑌̃𝑘 ≈ 𝑋̃0𝑊𝑅

𝑇                    (A9) 

Therefore, the PLSR equation for the dependent variables 

can be correspondingly constructed as: 

𝑌̃ = 𝑎1𝑥̃1 + 𝑎2𝑥̃2 +⋯+ 𝑎𝑝𝑥̃𝑝              (A10) 

B. Mann-Kendall Trend Analysis 

The Mann-Kendall (M-K) trend analysis [62] has 

outstanding applicability in the non-normal distribution of 

meteorological and hydrological data, and the trend analysis of 

long-term time series is not easily affected by a few outliers. 

For a time sequence {𝑥𝑖 | i = 1, 2, ... , n}, the MK trend test 

statistic 𝑆 is calculated as follows: 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1                       (A11) 

where 𝑥𝑗 is the 𝑗𝑡ℎ data value of the time series; 𝑛 is the length 

of the data sample; and 𝑠𝑔𝑛 is a sign function, which is defined 

as: 

  𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

1, (𝑥𝑗 − 𝑥𝑖) > 0

0, (𝑥𝑗 − 𝑥𝑖) = 0

−1, (𝑥𝑗 − 𝑥𝑖) < 0

                    (A12) 

When 𝑛 is greater than 8, the 𝑆 statistic roughly follows a 

normal distribution, and its mean value is 0. The variance is 

then: 

𝑣𝑎𝑟(𝑆) =
𝑛(𝑛−1)（2𝑛+5）

18
                      (A13) 

When 𝑛  is greater than 10, the standardized statistics are 

calculated as follows: 

  𝑍 =

{
 

 
𝑆−1

√𝑉𝑎𝑟(𝑆)
, 𝑆 > 0

0           , 𝑆 = 0
𝑆+1

√𝑉𝑎𝑟(𝑆)
, 𝑆 < 0

                         (A14) 

In this paper, the time series of the reconstructed lake WL 

data from 2003 to 2018 was used to analyze the corresponding 

significance levels. In general, when the 𝑍 statistic is greater 

than 1.96, there is a significant trend change existing in the 

series. 

 

TABLE A-Ⅰ  

THE PARAMETERS EMPLOYED FOR IMPLEMENTING MLP AND DBN MODELS IN THIS STUDY 

Parameters MLP DBN 

Layers 1 input layer, 5 hidden layers, 1 output layer; 1 input layer, 2 hidden layers, 1 output layer; 

Hidden neurons 10 6 

Activation logsig 

Training method trainlm 

Training epoch 500 

Learning rate 0.05 

Training goal 0.00001 (MSE) 

 

TABLE A-II  

THE DETAILED COMPARISON OF MODEL PERFORMANCE WITH DIFFERENT TRAINING STRATEGIES 

Lake 

Number of points RMSE_Testing (m) 

Pre-

training 
Training Testing P-DBN-X 

P-DBN-

SINGLE 

DBN-

SINGLE 

P-DBN-

ALL 

DBN-ALL 

1 Jili 102 36 4 0.373 0.525 0.797 0.604 0.601 

2 Ulungu 120 97 29 0.927 0.859 0.927 0.867 0.903 

3 Markakol 92 81 14 0.334 0.336 0.366 0.360 0.380 

4 Achit 101 54 17 0.482 0.621 0.793 0.582 0.640 

5 Ureg 87 51 16 0.411 0.443 0.447 0.599 0.453 

6 Kurgan 64 49 8 1.008 1.083 1.875 1.046 1.017 

7 Tolbo 84 47 10 1.227 1.173 1.280 1.264 1.260 

8 Khoton 58 34 12 0.853 0.933 0.952 0.931 0.946 

9 Kendlkty 58 37 11 0.824 0.855 0.886 0.858 0.864 

10 Dorgon 108 66 15 0.878 0.733 1.132 1.122 1.155 

11 Hala 124 90 23 0.534 0.708 0.739 0.563 0.689 

12 Har us 117 95 24 0.521 0.558 0.583 0.589 0.561 

13 Hyargas 104 96 23 0.983 1.032 1.392 1.345 1.356 

14 Uvs 105 95 20 0.534 0.520 0.555 0.543 0.631 

overall 1324 928 226 0.912 0.956 1.102 1.022 1.084 

This article has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3182646

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



19 

 

 
Fig. A1. The linear fitting results (lake level and area) for the training data augmentation. 
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Fig. A2. Comparative variation trends of the reconstructed monthly WLs of Ulungu, Khoton, and Dorgon lakes obtained with 

single-lake DBN models (DBN-SINGLE, left column) and the proposed method (P-DBN-X, right column). 
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