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Abstract— Pansharpening aims to sharpen a low spatial res-
olution (LR) multispectral (MS) image using a high spatial
resolution (HR) panchromatic (PAN) image to obtain the HR MS
image. Though large numbers of pansharpening methods have
been proposed, and many advanced methods have shown high
quantitative results, few of them are widely used in real appli-
cations. This may be attributed to their instability for different
images with different ground surface features, or the complexity
to be implemented and the time-consuming process for some
state-of-the-art methods. In this letter, we proposed a simple,
adjustable, and robust fusion (SARF) method. In the proposed
method, a spatial-spectral coenhanced strategy was proposed, and
several details of the proposed fusion model were specifically
designed for the “simple, adjustable, robust” features. It was
tested and verified by four-band and eight-band MS images based
on reduced resolution (RR) and full resolution (FR) experiments.
The experimental results demonstrated the promising spatial
visuality of the proposed method, and the spectral fidelity was
more robust than most of component substitution (CS)-based and
multiresolution analysis (MRA)-based methods.

Index Terms— Fusion, multispectral (MS), panchromatic
(PAN), pansharpening, remote sensing.

I. INTRODUCTION

DUE to the technical limitations of sensors and other fac-
tors, the existing remote sensing observations generally

feature a tradeoff between spatial and spectral resolutions [1].
For example, most of remote sensing satellites provide bundled
high spatial resolution (HR) panchromatic (PAN) image with
a low spectral resolution, and low spatial resolution (LR)
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multispectral (MS) image with a relatively higher spectral
resolution, rather than an HR MS image. Fortunately, pan-
sharpening, i.e., PAN/MS fusion, can overcome this limitation
to obtain the images with both high spatial and spectral
resolutions.

Pansharpening originated during the 1980s, and it has been
developed for 40 years. The development of pansharpening
methods can be divided into three major stages [2]: the initial
stage in the 1980s; the rapid development stage in the 1990s;
and the blowout development stage after 2000. To date, there
have proposed large numbers of pansharpening methods, and
these methods have been classified in several different ways.
They were classified into two major categories in [3], i.e., the
component substitution (CS)-based and the multiresolution
analysis (MRA)-based methods. Kwan et al. [4], [5] classified
existing pansharpening methods based on whether the point
spread function (PSF) was used or not. Meng et al. [1], [2]
summarized them into four family: CS-, MRA-, variational
optimization (VO)-, and deep learning (DL)-based methods.
Among them, the VO-based methods [6], [7] are based on
the iterative optimization solution of a variational energy
functional. They generally show higher quantitative evalu-
ation results; however, they are time-consuming, especially
for images in large dimensions. This has seriously hindered
their engineering applications. The DL-based methods [8], [9]
are regarded as a new generation of pansharpening methods,
and they have attracted ever-increasing attention in recent
years. The basic idea is to learn a network between the
fused image and the observations based on DL theory,
with all parameters automatically learned under the super-
vision of large-scale training samples. However, the perfor-
mance of DL-based methods depends on the training data
set, and the network training is also generally required to
be retrained for different tasks, such as different remote
sensing satellites or different thematic scenarios. The CS-
and MRA-based methods have been developed from tradi-
tional understanding with rigid three-step processing (“forward
projection transformation—CS—inverse projection transfor-
mation” for the CS-based methods, and “decomposition—
fusion—reconstruction” for the MRA-based methods), to the
current new general understanding featured by a unified fusion
framework without forward and backward transformation.
They are fast and easy to be implemented. Accordingly, some
methods, such as the principal component analysis (PCA)
method, the Brovey method, the Gram–Schmidt (GS) method,
and so on, have been commercialized and widely used in
real applications. However, most of the CS- and MRA-based
methods do not have a robust performance for different
data and scenarios. Besides, different applications may have
different requirements for more spectral fidelity or more spatial

1558-0571 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on November 15,2022 at 07:34:19 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-7405-3143
https://orcid.org/0000-0002-7001-2037
https://orcid.org/0000-0002-2495-9924
https://orcid.org/0000-0003-3399-7858
https://orcid.org/0000-0002-4140-1869
https://orcid.org/0000-0002-0585-9848


5000605 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

Fig. 1. Flowchart of the proposed method.

enhancement; hence, adjustable pansharpening methods are
necessary.

To solve these problems, we proposed a simple, adjustable,
and robust pansharpening method for remote sensing images.
There are two main contributions in this letter.

1) We propose a simple, adjustable, and robust fusion
(SARF) model. In the method, a spatial-spectral coen-
hanced fusion strategy is proposed by comprehensively
considering “simple, adjustable, robust” features. A spa-
tial enhancement strategy by considering noise distur-
bance is proposed to satisfy the demands for sharper
spatial information in some real applications. In addi-
tion, a spectral compensation is further developed to
ensure the spectral robustness to different satellites and
scenarios.

2) The proposed SARF is simple yet effective. It has
better visual perception and robust performance than
most of CS- and MRA-based methods, and a higher
computational efficiency than VO- and DL-based meth-
ods. In addition, it has robust performance for different
scenarios and misregistration alignments.

II. SARF

In this letter, a simple, adjustable, and robust pansharpening
method is proposed. It consists of three major steps, i.e., 1)
radiometric normalization; 2) spatial detail extraction and
enhancement; and 3) fused image initialization and spectral
compensation. The flowchart of the proposed method is shown
in Fig. 1.

A. Radiometric Normalization
In this letter, considering possible radiometric difference

between PAN and MS, a moment matching is performed on

PAN for the radiometric normalization, represented as

P̂ =
�
M̃I

�
std

(P)std
× �

P − (P)mean

� + �
M̃I

�
mean (1)

where P denotes the original PAN, M̃I is the average intensity
component of the resampled MS image M̃, P̂ is the normalized
PAN, and the subscripts (·)std and (·)mean denote the standard
deviation and mean value, respectively.

B. Spatial Detail Extraction and Enhancement
High spatial details and adjustable spatial structures are

extracted. First, an optimal intensity of the MS is calculated

I=cbM̃b+cb+1M̃b+1+. . .+cQM̃Q with b≥1, Q ≤ B (2)

where I is the intensity image, cb is the coefficient for the bth
MS band, and B denotes the total number of MS bands. Most
of the existing solutions of the coefficients can be concluded
into the following several ways.

1) The coefficients are obtained by spectral transformation
or the correlation between PAN and MS. For example,
cb = cov(M̃b, M̃I )/var(M̃I ) for GS fusion, where cov(·)
and var(·) denote the covariance and variance, respec-
tively, M̃b is the bth band.

2) The coefficients are determined based on spectral
response function (SRF) of satellite sensors. However,
in fact, the SRF may be different from the responses
of the observed data sets due to atmospheric effects,
illumination conditions, and so on. Furthermore, if the
SRF is not obtained, then the method will not work.

3) The coefficients are calculated by regression
analysis. In our proposed method, the coefficients
{cb, cb+1, . . . , cQ} mainly contribute to the fitting
of the intensity image. Therefore, the coefficients are
calculated based on the unconstrained least square linear
regression. In addition, considering the computational
efficiency of the algorithm, the coefficients are
calculated on the spatial scale of LR MS M

argmin
{cb,cb+1,...,cQ}

����Pdown −
�

cbMb

���2

2

	
with 1 ≤ b ≤ Q (3)

where Pdown is the downsampled PAN image.
Second, the spatial details of HR PAN are extracted

D = f



P̂, I
�

− I (4)

where D is the extracted spatial details and f (·) denotes the
moment matching between P̂ obtained by (1) and I calculated
by (2).

Finally, the extracted spatial detail D is further enhanced,
to obtain the adjustable spatial structures of the fused image

Da = ge(gw(D)) − D (5)

where Da is the adjustable spatial structures and gw(·) denotes
the Wiener filter operation to avoid noise disturbance during
spatial enhancement. ge(·) is the enhancement filter, repre-
sented as

ge = 1

a + 1

⎡
⎣ −a a − 1 −a

a − 1 a + 5 a − 1
−a a − 1 −a

⎤
⎦. (6)

In this letter, the default parameter of a = 0.2 was utilized.
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C. Fused Image Initialization and Spectral Compensation

The preliminary fused image is obtained based on the
injection of the extracted basic and adjustable spatial details

Fb = M̃b + wb(D + λDa) (7)

where Fb denotes the bth band of the fused image, λ is the
parameter, and wb indicates the injection weight. On the one
hand, in the spectral dimension, the weight wb may be equal
for all spectral bands, or determined by a band-dependent
solution, such as the popular high-pass modulation (HPM)
injection scheme applied in the additive wavelet luminance
proportional (AWLP) [10] and Generalized Laplacian pyra-
mid (GLP) using modulation transfer function (MTF), namely
MTF-GLP-HPM [11] and so on. On the other hand, in the
spatial dimension, it is determined by a global model, which is
applied in most of the commercial methods, or a local model,
such as the context-based decision (CBD) model [12], and
the local model proposed by the band-dependent spatial detail
(BDSD) [13], partial replacement adaptive CS (PRACS) [14],
and so on. In a nutshell, the spatially local model gener-
ally shows relatively better performance on spectral fidelity;
however, the robustness to spatial enhancement is somewhat
discount, such as the PRACS [14], and it is also slightly
time-consuming compared with a global model. Therefore,
a simple yet effective band-dependent global injection model
is proposed. Considering that the injected spatial details
should be proportional to the spatial structures of original
MS bands, i.e., the less of the quantity of spatial gradients
of MS band, the less of the demands for the injected spa-
tial details. The proposed weight is represented as: wb =
(Mb)gra/(

�B
b=1 Mb/B)gra, where the subscript (·)gra denotes

the average gradient.
Then, spectral compensation is proposed to improve the

spectral fidelity and robustness, represented as

F̂ = F + F̂res (8)

where F̂ is the final fused image and F̂res denotes the ideal
spectral residual. It is obtained based on the original LR MS,
due to inherent unavailable of the ideal fused image.

First, the spectral difference is calculated by original LR
MS and the preliminary fused image, represented as

F̂�
res = M − fdown( fMTF(F)) (9)

where fMTF(·) and fdown(·) denote the MTF blurring and
downsampling, respectively. F̂�

res denotes the spectral differ-
ence between the original LR MS and fused images.

Then, F̂�
res is upsampled to the spatial dimension of fused

image for spectral compensation, represented as

F̂ = F +



F̂�
res

�
up

(10)

where the subscript (·)up denotes the upsampling operation,
including MTF blurring and resampling.

III. EXPERIMENTS

The reduced resolution (RR) and full resolution (FR) exper-
iments were implemented on QuickBird and WorldView-2
images, respectively. The RR experiment was based on the
Wald’s protocol. To date, there are many quantitative indices,
such as the radiometric and geometric index (RG index) [15],
correlation coefficient (CC), relative dimensionless global
error in synthesis (ERGAS), spectral angle mapper (SAM),

TABLE I

QUANTITATIVE EVALUATION RESULTS IN THE RR EXPERIMENT

and Q2n [16] (an extension of Q4 [17]). In this RR experi-
ment, the ERGAS, SAM, and Q2n were employed. The FR
experiment was directly performed by original HR PAN and
LR MS images, and the popular nonreference quantitative
evaluation indices of the quality with no reference (QNR) [18]
and generalized QNR (GQNR) [19] were utilized.

The SARF was compared with several state-of-the-art
pansharpening methods in [3], including the GS, à trous
wavelet transform (ATWT) using Model 2 (ATWT-M2),
AWLP, MTF-GLP, convolutional neural network (CNN)-based
pansharpening neural network (PNN) [20], two-stream fusion
network (TFNet) [21], super-resolution CNN (SRCNN) [22],
and the multiscale and multidepth convolutional neural net-
work (MSDCNN) [23]. To ensure the consistency and compa-
rability, all the DL-based methods were trained based on the
Wald’s protocol by the same data set [2] in the RR and FR
experiments, respectively. In the RR experiment, 5000, 2000,
and 1000 pairs of QuickBird PAN (64 × 64) and MS (16 ×
16 × 4) were employed as the training, validation, and testing
data sets, respectively. In the FR experiment, 5000, 2000, and
1000 pairs of WorldView-2 PAN (64 × 64) and MS (16 × 16
× 8) images were used, respectively. The parameter is λ = 0.

A. RR Experiment
The RR experimental results based on QuickBird data are

shown in Fig. 2. It is shown that GS fusion result has sharp
spatial details; however, it has slight spectral distortion. The
ATWT-M2 and the DL-based PNN, TFNet, SRCNN, and
MSDCNN methods show good spectral fidelity; however, they
are slightly blurring. The proposed fusion result has both
high spectral fidelity and spatial enhancement. The quantitative
evaluation results are shown in Table I. The best results
are marked in bold, and the second is marked in underline.
It shows that the SARF has the best spectral fidelity in terms
of most of quantitative evaluation indices.

B. FR Experiment
The FR experimental results based on WorldView-2 are

shown in Fig. 3. It shows that the GS fusion result has slightly
spectral distortions. The DL-based PNN, TFNet, SRCNN,
and MSDCNN methods show overall good performance. The
proposed SARF shows competitive performance. The quan-
titative evaluation indices of D_λ (spectral evaluation), D_s
(spatial evaluation), QNR (overall evaluation), and GQNR
in Table II shows that the proposed SARF achieves competitive
performance compared with the CS- and MRA-based methods,
and it has similar performance with the DL-based methods.

C. Discussions
1) Advantage and Drawback: This letter has presented

a simple, adjustable, and robust pansharpening method.
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Fig. 2. RR experimental results based on QuickBird images. (a) Upsampling MS. (b) HR PAN. (c) GS. (d) ATWT-M2. (e) AWLP. (f) MTF-GLP. (g) PNN.
(h) TFNet. (i) SRCNN. (j) MSDCNN. (k) Proposed SARF. (l) Original MS.

Fig. 3. FR experimental results based on WorldView-2 images. (a) Upsampling MS. (b) HR PAN. (c) GS. (d) ATWT-M2. (e) AWLP. (f) MTF-GLP. (g) PNN.
(h) TFNet. (i) SRCNN. (j) MSDCNN. (k) Proposed SARF.

Fig. 4. Proposed method performs better for moving targets. (a) Resampled LR MS. (b) HR PAN. (c) GS. (d) ATWT-M2. (e) AWLP. (f) MTF-GLP.
(g) Proposed SARF with λ = 0. (h) Proposed SARF with λ = 0.3.

TABLE II

QUANTITATIVE EVALUATION RESULTS IN THE FR EXPERIMENT

The “simple” indicates the easy implement. The proposed
SARF, CS-, and MRA-based methods have approximate com-
putational efficiency, such as a subsecond computational time
for the QuickBird HR PAN (100 × 100) and LR MS (25 ×
25 × 4) images in the RR experiment. The DL-based methods
have competitive advantage on spectral fidelity; however,
they are generally time-consuming in the network training.
In addition, existing methods generally require retraining for
different tasks. The “adjustable” denotes the characteristics

of additional adjustable spatial details according to different
demands for more spectral fidelity or spatial sharpness. The
“robust” represents the advantage of robust performance for
different ground surface features. Although the SARF may
not achieve the best performance in some cases, such as
in terms of some quantitative evaluation indices. It shows
more robustness for different surface features. For example,
as shown in Fig. 4, based on IKONOS images, the GS,
ATWT-M2, AWLP, and MTF-GLP methods perform poorly
for moving objects, despite their possible better quantitative
evaluation results. The proposed fusion results in Fig. 4(g)
and (h) show more robust performance. This is because, on the
one hand, the proposed SARF is established on the CS-based
fusion framework that is generally robust to the misregistration
errors; on the other hand, the proposed spatial detail injection
weight has competitive advantage on the spatial enhancement.

In addition, there are some limitations to be further solved.
Though the proposed method achieves acceptable and robust
spectral information preservation, the spectral fidelity should
be further tested and verified for some quantitative remote
sensing applications, such as fused images for water parameter
inversions, and so on. Besides, the proposed SARF can be
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Fig. 5. Influence of the parameter λ on the fused result. (a) Resampled LR
MS. (b) HR PAN. (c) Proposed SARF with λ = 0. (d) Proposed SARF with
λ = 0.8.

Fig. 6. Influence of the parameter λ on spectral fidelity.

further improved by combining the parallel computing to
improve computational efficiency, especially for images with
large dimensions.

2) Parameter Analysis: The sole parameter λ is analyzed
and discussed. The experiment was implemented on real
QuickBird images. Fig. 5 shows the results. It is shown
that with the increasing of λ, the fused image is sharper.
In addition, the quantitative evaluation results with different
λ are shown in Fig. 6. It is shown that with the increasing of
the parameter λ, the spectral fidelity is decreasing. Therefore,
the adjustable parameter λ should be selected according to
different demands for more spectral fidelity or more spatial
sharpness. In most cases, the parameter λ can be set between
0 and 0.3.

IV. CONCLUSION

This letter has presented a simple, adjustable, and robust
fusion method. The proposed SARF is based on the CS-
based framework, and a spatial-spectral coenhanced strategy
is proposed. On the one hand, a spatial enhancement strat-
egy by considering noise disturbance is proposed to provide
adjustable details for different applications. On the other hand,
a spectral compensation based on the residual of original MS is
further proposed to ensure the robustness to different satellites
and scenarios. The proposed SARF was tested and verified
by both four-band and eight-based satellite images based on
RR and FR experiments. The experimental results show the
competitive performance of the proposed SARF.
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