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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Compared with the Himawari-8 satel
lite, Fengyun-4A satellite is more suit
able for estimating PM2.5 concentrations 
in China. 

• Three different ten-fold cross-validation 
approaches are introduced for a 
comprehensive evaluation of two 
satellites. 

• The spatial resolution and training data 
bring effects on the mappings, the effect 
of the platforms and retrieval algorithms 
can be ignored.  
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A B S T R A C T   

The increase in the PM2.5 concentration has become the focus of public concern due to the health risks it poses. In 
contrast to the sparsely distributed ground stations, geostationary satellites can provide a unique method of 
frequently monitoring national-scale PM2.5 concentrations. The Himawari-8 and Fengyun-4A (FY-4A) satellites 
have both been used to monitor PM2.5 concentrations due to their high spatial (5 km and 4 km, respectively) and 
temporal resolutions (hourly), but it is still not clear which satellite is more suitable for such studies. In this 
study, the hourly PM2.5 concentrations were estimated based on a deep belief network using top-of-atmosphere 
(TOA) reflectance data and other auxiliary variables from April 2018 to March 2019. To comprehensively and 
effectively verify the accuracy of the results, three cross-validation methods were applied. The evaluation indexes 
of FY-4A were slightly higher than those of Himawari-8. The distributions of their estimated PM2.5 concentration 
mappings were consistent in terms of the overall trend, but they exhibit regional inconsistencies. In-depth 
analysis of the results revealed that the main reasons for these inconsistencies are the differences in the 
spatial resolution, training data, satellite platforms, and retrieval algorithms. Through comparative analysis, the 
effects of the satellite platforms and retrieval algorithms were determined to be negligible. In general, the FY-4A 
satellite was found to be more adaptable to PM2.5 concentration estimation in China due to its wide coverage and 
high estimation accuracy.   
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1. Introduction 

Fine particulate matter (PM2.5) is an important index reflecting the 
degree of air pollution (Ma et al., 2016; Yu et al., 2017). In the past 10 
years, with the rapid development of industrialization and urbanization, 
China has faced very serious air pollution problems (Sun et al., 2016; 
Guo et al., 2017; Song et al., 2019a). Many studies have shown that 
PM2.5 concentrations can exacerbate respiratory diseases and signifi
cantly damage human health (Peng et al., 2009; Brauer et al., 2012; 
Bartell et al., 2013; Cohen et al., 2017; Xue et al., 2019). PM2.5 also has 
serious negative impacts on the atmospheric environment (Koren et al., 
2014; Seinfeld et al., 2016; Vu et al., 2019). Therefore, it is necessary to 
monitor the ground-level PM2.5 concentrations to support the formula
tion of environmental governance policies. 

The traditional PM2.5 monitoring method directly obtains the PM2.5 
concentration values through ground monitoring stations with a high 
accuracy. However, sparse and uneven ground-level PM2.5 concentra
tion monitoring networks have limitations in terms of obtaining spatial 
information (Kloog et al., 2012; Yang et al., 2019). With the develop
ment of remote sensing technology, satellite data have been increasingly 
used to estimate surface PM2.5 concentrations due to the wide coverage 
of the satellites (Zou et al., 2016; Li et al., 2017a). These satellites can be 
specifically divided into polar orbiting and geostationary satellites. 
Polar orbiting satellites have been most commonly used in previous 
studies. The results of these studies generally have a coarse temporal 
resolution (daily), which limits their application to air pollution 
research (Hu et al., 2014b; Liu et al., 2019b). A PM2.5 concentration 
distribution with a fine temporal resolution is difficult to obtain (Hu 
et al., 2014a; Lary et al., 2015; Li et al., 2016; Singh et al., 2017; Sor
ek-Hamer et al., 2017). Therefore, geostationary satellites have become 
an indispensable tool for meteorological and land observations. For 
example, the Japan Meteorological Agency successfully launched an 
advanced geostationary satellite named Himawari-8 on October 7, 
2014. As an important sensor on Himawari-8, the Advanced Himawari 
Imager (AHI) provides a spectral reflectance measurement every 10 min 
(Gupta et al., 2019). Fengyun-4A (FY-4A), which is the new generation 
of geostationary meteorological satellite developed by China, was 
launched on December 11, 2016. The FY-4A imager provides a full-disk 
scan every 15 min (Yang et al., 2017). These satellites provide a unique 
opportunity for high frequency PM2.5 concentration retrieval. 

Satellite observation data cannot be used to directly observe the at
mospheric composition, so it is necessary to establish a non-linear 
relationship between the influencing factors. Many previous studies 
have shown that the aerosol optical depth (AOD) can be used to retrieve 

the PM2.5 concentration. Satellite-derived AOD products have been 
extensively used for PM2.5 concentration estimation (Levy et al., 2013; 
Song et al., 2014; Fang et al., 2016; Li et al., 2017b; Sarafian et al., 2019; 
Guo et al., 2021; Sun et al., 2021). However, AOD products have limi
tations in terms of their spatial coverage and inversion algorithms (Song 
et al., 2019b; Wang et al., 2019). Shen et al. (2018) proposed that the 
PM2.5 concentration can be directly retrieved from top-of-atmosphere 
(TOA) reflectance data instead of AOD data (referred to as Ref-PM2.5 
modeling), which avoids intermediate errors, and they demonstrated 
that the Ref-PM2.5 model preformed slightly better than the AOD-PM2.5 
model. Therefore, many researchers have recently started to utilize the 
Ref-PM2.5 model to estimate and analyze PM2.5 concentrations. For 
example, Liu et al. (2019a) retrieved PM2.5 concentrations from the 
Himawari Imager satellite measured TOA reflectance data, and the 
performance was satisfactory on different temporal scales. Wang et al. 
(2021) set the Himawari-8 TOA reflectance, meteorological data, and 
NDVI as the input data to predict the hourly PM2.5 concentrations in the 
Wuhan Urban Agglomeration. The model also performed well in 
Ref-PM2.5 modeling. Comparing the two satellites, FY-4A’s spatial res
olution is higher than that of Himawari-8, and the coverage of FY-4A is 
larger than that of Himawari-8 in China. Many studies have used 
Himawari-8 reflectance data, but few have used FY-4A reflectance data. 

Therefore, in this study, FY-4A and Himawari-8 satellites’ TOA 
reflectance data were used in combination with auxiliary data to esti
mate the PM2.5 concentration in China. The study gave some suggestions 
about which one was more suitable for estimating PM2.5 concentration 
in China. Three cross-validation (CV) methods were introduced, 
including a new CV method that considers the uneven spatial distribu
tion of the monitoring stations (denoted as SDCV). The results reveal the 
changes in the hour-level spatial distribution of the PM2.5 concentration 
in China. The reasons for the differences in the maps of the estimated 
PM2.5 concentration obtained using the two satellites were also 
explored. 

2. Study area and data 

2.1. Study area and ground-level PM2.5 measurements 

The study area was China, and the study period was from April 2018 
to March 2019. The hourly PM2.5 concentration data for this study area 
during the study period were obtained from the China National Envi
ronmental Monitoring Station based on a cooperation agreement, and 
approximately 1500 measurement sites were used. The distribution of 
the PM2.5 concentration monitoring stations is shown in Fig. 1. Due to 
the number and distribution of monitoring stations, the monitoring of 
the PM2.5 concentration sites were relatively uneven. The density of the 
monitoring stations in Eastern China was greater than that in Western 
China due to the topography and the level of urbanization. We only used 
the data from 10:00 to 17:00 local time (LT), and we removed invalid 
concentrations of greater than 2000 μg/m3 and less than 1 μg/m3. 

2.2. Satellite data 

2.2.1. FY-4A 
FY-4A is equipped with an advanced geosynchronous radiation 

imager (AGRI) with 14 spectral bands. Table 1 shows the spectral bands 
and spatial resolution of the AGRI on board FY-4A. The 14 bands of AGRI 
are sampled at a nominal 0.5/1 km spatial resolution at a nadir in the 
visible bands, 2 km in the near-infrared bands, and 4 km in the infrared 
bands. As the AOD can be retrieved via an atmospheric radiative transfer 
model in which the TOA reflectance at three wavelengths (0.620–0.670 
μm, 0.459–0.479 μm, and 2.105–2.155 μm) and observation angles 
(satellite zenith angle, SAZ; satellite azimuth angle, SAA; solar zenith 
angle, SOZ; and solar azimuth angle, SOA) are utilized as model inputs 
(Kaufman et al., 1997; Hsu et al., 2004), the TOA reflectance and four 
observation angles were extracted in this study. 

Fig. 1. Study Area and spatial distribution of PM2.5 concentration stations.  
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Table 1 
Comparison of the bands for FY-4A/AGRI and Himawari-8/AHI. 
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In this study, the data collected by the FY-4A satellite were obtained 
from the National Meteorological Center (http://satellite.nsmc.org.cn), 
and the reflectance products with a spatial resolution of 4 km were 
selected. The TOA reflectance data for two bands (0.45–0.49 and 
2.1–2.35 μm) were acquired for this study due to the setting of the 
satellite bands. The 0.55–0.75 μm band data were not used because this 
band of the FY-4A was wider than that of MODIS (0.62–0.67 μm), 
including part of the green light band, which is not conducive to AOD 
retrieval. To eliminate the influence of clouds, the FY-4A cloud mask 
products with a resolution of 4 km were employed. The cloud mask 
products have four confidence levels: cloudy, probably cloudy, probably 
clear, and clear. In this study, only the highest confidence level data 
(clear) was used. 

2.2.2. Himawari-8 
Himawari-8 is the world’s first stationary meteorological satellite 

that can acquire color images. The frequency of Himawari-8 observa
tions has been increased to once every 10 min to continuously observe 
cloud and storm movements (Okuyama et al., 2015). The satellite has a 
design life of more than 15 years and is used to monitor disaster pre
vention fields, such as storm clouds, typhoon trends, and continuously 
erupting volcanoes. Table 1 shows the spectral bands and spatial reso
lution of the AHI on board Himawari-8. 

For better comparison with the FY-4A data, we used the 5 km, Level 
1B, full-disk calibrated reflectance products obtained from the Japan 
Aerospace Exploration Agency P-Tree system (ftp://ftp.ptree.jaxa.jp/). 
We selected band 1, band 6, and four observation angles (SAZ, SAA, 

Fig. 2. The structure of the DBN model.  

Fig. 3. Experiment flowchart.  
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SOZ, and SOA) as part of the input data. Due to the limited observation 
range of 80–200◦E and 60◦S–60◦N and considering the data quality 
problems in the marginal areas, the SAZ data for >68◦ were eliminated 
to avoid a low estimation accuracy. The level 2 Cloud products were 
utilized to remove the cloud-contaminated TOA reflectance. 

2.3. Meteorological parameters 

The Goddard Earth Observing System Data Assimilation System 
GEOS-5 Forward Processing (GEOS 5-FP) meteorological data were used 
in this study. These GEOS 5-FP meteorological data have a spatial res
olution of 0.25◦ latitude × 0.3125◦ longitude. Meteorological factors, 
including the temperature at 2 m (TEMP, K), the wind speed components 
at 10 m (WS, m/s), the planetary boundary layer height (PBLH, m), 
surface pressure (PS, kPa), and relative humidity (RH, %), were also 
used as predictors to support the PM2.5 concentration mapping. To 
facilitate the subsequent modeling, all of the meteorological data were 
resampled to spatial resolutions of 4 and 5 km using the bilinear inter
polation method. 

3. Model and validation 

3.1. The Geoi-DBN model 

The PM2.5 concentration is affected by many factors, among which 
complex nonlinear relationships exist. Deep learning is a very effective 
mean of determining the relationships between complex variables. In 
this study, we used the Deep Belief Net (DBN) model, which is one of the 
most typical deep learning models, to predict the spatial and temporal 
distributions of the PM2.5 concentration (Hinton et al., 2006). It is 
composed of multiple restricted Boltzmann machine (RBM) layers and a 
back-propagation (BP) layer (Fig. 2). An RBM is composed of a visible 
layer (v) and a hidden layer (h), both of which are connected by weights 
(W), and the hidden layer of the previous RBM is the visible layer of the 
next RBM. We chose two RBM layers and one BP layer as our prediction 
model and defined the PM2.5 concentration as a response variable and 
the others as predictors in the DBN model. The structure is as follows: 

PM2.5 = f (TOA,Angles,Wea, S − PM2.5,T − PM2.5,DIS) (1)  

where Angles denotes the observation angles, including the SAZ, SAA, 
SOZ, and SOA; and Wea denotes the TEMP, WS, PBLH, PS, and RH. S −

PM2.5 T − PM2.5, and DIS are collectively referred to as the geographical 
correlation of the PM2.5 concentration (Li et al., 2017a). S-PM2.5 and 
T-PM2.5 consider the spatial and temporal autocorrelations of the PM2.5 
concentration, and DIS is incorporated to reflect the spatial heteroge
neity of the unevenly distributed stations. These three parameters are 
calculated by the nearby n grids of the PM2.5 concentration measure
ments and the PM2.5 concentration observation from the m prior days for 
the same grid, which can be expressed as follows: 

S − PM2.5 =

∑n

i=1
wsiPM2.5,i

∑n

i=1
wsi

​ wsi =
1

ds2
i

(2)  

T − PM2.5 =

∑m

j=1
wtjPM2.5,j

∑m

j=1
wtj

wtj =
1

dt2
j

(3)  

DIS=
1

min(dsi)
i= 1, 2, ..., n (4)  

where ds anddt refer to the spatial and temporal distances, respectively. 
In addition, we set n = 30 and m = 3 to ensure the computational ef
ficiency while guaranteeing the predictive accuracy. 

Fig. 3 shows the data pre-processing and modeling processes. First, 
all of the data were collected, resampled, and converted into the same 
coordinate system. Then, the grids of the multiple variables were 
matched on a specific hourly scale. A multivariate vector was obtained 
for each labeled grid, which is the form of the model input sample. 
Second, this multi-dimensional vector was input into the DBN model. 
During the modeling, the model extracted the basic features associated 
with the PM2.5 concentration and transferred them from the previous 
RBM to the next RBM layer. The initial weights of the DBN were 
generated through pre-training of the RBM. Then, we were able to 
calculate the estimated error between the estimated PM2.5 concentration 
and the ground-based PM2.5 measurement. The estimation error was 
sent back to the BP layer until the error reached a satisfactory level. 
Finally, to evaluate whether the model experienced over-fitting, 10-fold 
cross validation was performed on the model. The details are presented 
in Section 3.2. 

3.2. Model validation 

For the 10-fold cross validation, the entire training dataset was 
randomly and averagely divided into 10 subsets, and nine of the subsets 
were used for the model training. The remaining dataset was used for the 
model validation. The abovementioned process was repeated until each 
subset had been used for the model validation. In this study, three 10- 
fold cross-validation (CV) methods were used to test the independence 
of the training data: the sample-based CV, site-based CV, and a CV-based 
validation approach, which considers the uneven spatial distribution of 
the monitoring stations (denoted as SDCV) (Li et al., 2020). 

The sample-based CV is the most commonly used CV-based valida
tion approach. Thus, the sample-based CV involves conducting the 
validation with integrated samples from both the spatial and temporal 
dimensions, and it is often employed to reflect the overall predictive 
ability of PM2.5 estimation models. For a certain monitoring station, the 
samples at a certain time for this station can be used for the model 
fitting, while the samples at the other times are used for the model 
validation. Consequently, the sample-based CV has limitations, which 
introduces some bias when assessing the predictive ability of a model. 

Different from the sample-based CV, the site-based CV randomly 
selects monitoring sites for the model validation. For the site-based CV, 
the validation sites are never involved in the model fitting, and thus, it 
can suitably reflect the spatial prediction capability of the model. In 
addition, the monitoring sites are often located in central urban areas, so 
the validation sites are very close to the modeling sites. Therefore, the 
site-based CV generally only reflects the model’s performance at loca
tions closer to the monitoring sites, and it cannot assess the estimation 
accuracy at locations farther away from the monitoring sites. 

To more comprehensively and effectively evaluate and the predic
tion model, Li et al. (2020) proposed the SDCV, which considers the 
uneven spatial distribution of the monitoring stations. The SDCV in
troduces the spatial distance between the validation station and the 
modeling station into the CV process, and it evaluates the spatial per
formance by excluding modeling stations within a specific distance. The 
SDCV can yield a more effective evaluation of the popular PM2.5 esti
mation models than the traditional validation approaches. This method 
requires setting a distance (d) and removing the modeling stations with a 
distance to any validation station of less than d. It can reflect the esti
mated accuracy of the region far away from the monitoring sites better. 
In this study, we set d = 90 km as the optimal distance in China. The 
coefficient of determination (R2), the root-mean-square error (RMSE, 
μg/m3), the mean prediction error (MPE, μg/m3), and the relative pre
diction error (RPE, %) were used for the quantitative evaluation. The 
closer R2 is to 1, the stronger the estimation ability is. The smaller the 
RMSE, MPE, and RPE values are, the better the model is. 

Y. Hu et al.                                                                                                                                                                                                                                       
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4. Results and discussion 

4.1. Overall evaluation 

The sample size of the FY-4A modeling dataset (N = 914380) was 
slightly larger than that of the Himawari-8 modeling dataset (N =
838818) due to their different spatial resolutions and cloud mask 
products. From the perspective of the quantitative evaluation presented 
on Table 2, by using the sample-based CV to evaluate the DBN model, 
FY-4A was found to have the superior performance (R2 of 0.93 and 
RMSE of 8.18). The R2 values of FY-4A and Himawari-8 were the same, 
but the RMSE, MPE, and RPE values of FY-4A were smaller than those of 
Himawari-8. For the site-based CV, the R2 value was 0.84 for FY-4A, 
which was lower than that of the Himawari-8 model (0.86). The 
RMSE and MPE for FY-4A were 12.61 and 7.59 μg/m3, respectively, 
which were lower than those for Himawari-8 (13.59 and 8.00 μg/m3, 
respectively). In addition, for the SDCV, the R2 of FY-4A was lower than 
that of Himawari-8, and the RMSE and RPE of FY-4A were lower than 
those of Himawari-8. The evaluation results of the site-based and SDCV 
validations were similar. The results indicate that FY-4Y performed 
better in terms of the overall prediction ability of the PM2.5 estimation 
model, but from the perspective of the spatial prediction ability, the 
Himawari-8 model had a superior predictive power. In addition, it 

should be noted that the PM2.5 concentration retrieved from the 
Himawari-8 data was more consistent with the trend of the ground PM2.5 
concentration, but the error evaluation indexes (RMSE, MPE, and RPE) 
were slightly larger than those of FY-4A based on the results of the two 
spatial CV methods. One reason for this is that Himawari-8 cannot cover 
the western region of China due to the limitation of its observation 
range. Therefore, the coverage of the two satellite-based training sam
ples was inconsistent. The lack of ground stations in the western region 
resulted in too few sample points, so the model had difficultly fully 
explaining the relationship between the PM2.5 concentration and the 
influencing factors, and the accuracy of the PM2.5 estimation was 
significantly lower in the western region than the region with more 
stations. This means that the higher R2 values of Himawari-8 for both 
validation methods could be due to inconsistent data. 

Fig. 4 shows the annual mean distributions of the estimated PM2.5 
concentrations obtained using the FY-4A satellite data and the 
Himawari-8 satellite data and the ground-level measured PM2.5 con
centrations in China. The different scanning ranges of FY-4A and 
Himawari-8 led to a lack of observation data in most parts of Xinjiang 
and Tibet. High-value regions were observed in the inland regions (the 
Beijing-Tianjin-Hebei region, Shanxi, Henan, Anhui, Shandong, Jiangsu, 
Shanxi, and Hubei provinces), which are enclosed by the red frame. In 
contrast, low-value areas were observed in the regions enclosed by the 

Table 2 
The cross-validation performances of FY-4A (4 km) and Himawari-8 (5 km).  

Data Sample-based CV Site-based CV SDCV 

R2 RMSE MPE RPE R2 RMSE MPE RPE R2 RMSE MPE RPE 

FY-4A (914380) 0.93 8.18 4.97 0.23 0.84 12.61 7.59 0.35 0.53 21.80 13.46 0.61 
Himawari-8 (838818) 0.93 9.49 5.60 0.24 0.86 13.59 8.00 0.34 0.57 24.22 14.83 0.61  

Fig. 4. Yearly average PM2.5 concentration estimation results obtained using the (a) FY-4A and (b) Himawari-8 data and (c) ground-level measured PM2.5 con
centrations in China. (d) and (e) show the details of the areas enclosed by the red frame. The points indicate PM2.5 concentrations measured by the monitoring 
stations. (f) shows the difference between the annual average results of FY-4A and the average annual results of Himawari-8. The pie charts in (a) and (b) show the 
distributions of the PM2.5 concentrations of the training data. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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blue frame. The high PM2.5 values were mainly due to intensive human 
activities, industrial factories, and frequent dust events. In addition, the 
details of the PM2.5 concentration compared with the ground station 
values are shown in Fig. 4(d) and (e). For the high-value regions, the 
yearly average estimated concentrations of FY-4A and Himawari-8 were 
42.77 μg/m3 and 49.17 μg/m3, respectively. The yearly average con
centration of the ground stations was 49.54 μg/m3, and thus, FY-4A 
provided an obvious underestimation, while Himawari-8 provided re
sults close to the values measured by the monitoring stations. A high 

level of PM2.5 pollution was found in the northern part of Xinjiang due to 
the effect of dust particles from the desert region. To further discuss the 
differences in the distribution of the PM2.5 concentration estimated 
using data from the two satellites, Fig. 4(f) presents the differences be
tween the two mapping results (Fig. 4 (a) and (b)). Most of the areas 
were in the range of − 5–0 μg/m3, and large errors of less than − 15 μg/ 
m3 occurred in the area surrounded by the dark green box in Fig. 4(f). 
Most of the areas in China showed higher estimated PM2.5 concentra
tions based on the Himwari-8 data than based on the FY-4A data. 

Fig. 5. Yearly average PM2.5 concentration estimation results for a 5-km resolution using the (a) FY-4A and (b) Himawari-8 data; and (c) difference between the 
annual average result of FY-4A and the average annual result of Himawari-8 for a 5-km resolution. The pie charts in (a) and (b) represent the distributions of the 
PM2.5 concentration in the training data. 

Table 3 
The cross-validation performances of FY-4A (5 km) and Himawari-8 (5 km).  

Data Sample-based CV Site-based CV SDCV 

R2 RMSE MPE RPE R2 RMSE MPE RPE R2 RMSE MPE RPE 

FY-4A 0.93 8.25 5.10 0.22 0.85 12.22 7.65 0.33 0.53 21.60 13.95 0.57 
(633442) 

Himawari-8 0.93 8.27 5.12 0.22 0.85 12.12 7.58 0.32 0.52 21.54 14.10 0.57 
(633442)  

Table 4 
The cross-validation performances of FY-4A and Himawari-8 with the original spatial resolution.  

Data Sample-based CV Site-based CV SDCV 

R2 RMSE MPE RPE R2 RMSE MPE RPE R2 RMSE MPE RPE 

FY-4A 0.93 8.22 5.10 0.23 0.85 12.19 7.69 0.33 0.52 21.71 14.01 0.58 
(4KM) 

Himawari-8 0.93 8.27 5.12 0.22 0.85 12.12 7.58 0.32 0.52 21.54 14.10 0.57 
(5KM)  
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Fig. 6. Yearly average PM2.5 estimation results obtained using the (a) FY-4A (4 km) and (b) Himawari-8 (5 km) common data.  

Fig. 7. Hourly distribution of the estimated PM2.5 concentration.  
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Taking these phenomena into consideration, we tentatively identi
fied the main reasons for the differences in the estimations.  

1) Difference in spatial resolution. The resolution of FY-4A was 4 km, 
whereas that of Himawari-8 was 5 km, resulting in different levels of 
mapping details.  

2) Differences of training sets. The differences in the training sets can be 
divided into number differences and regional differences. The 
number differences were caused by the different cloud masks, and 
the regional differences were caused by the coverages of the satellite 
platforms. 

3) Differences in the platforms and the retrieval algorithms. The plat
form differences include the observation angles, imaging quality, 
and platform movement. The influence of the retrieval algorithm was 
reflected in the training process, and the model was built using the 
TOA data and the ground PM2.5 concentrations. The influence of the 
platform variability that was eliminated using the model training 
was difficult to assess, so we considered them as one influencing 
factor here. 

To explore which factors affected the mapping results, we thor
oughly investigated the causes (see Sections 4.2 and 4.3). 

4.2. Influence of the differences in the satellite platforms and retrieval 
algorithms 

To further determine which of the two satellites is more advanta
geous, the influences of the satellites’ platforms and retrieval algorithms 
were investigated. The common monitoring stations used for the FY-4A 
and Himawari-8 data training were selected, and the FY-4A satellite data 
were resampled to 5 km. The number of the new common datasets was 
633442, and the common datasets were input into the models for 
training. The distributions of the estimated PM2.5 concentrations with a 
5-km resolution are shown in Fig. 5. The differences between the two 
results are not significant. Compared with Fig. 4, the overall concen
tration from FY-4A increased. The PM2.5 concentration values in the red 
frame are higher than those in Fig. 4(a) and are close to the results from 
Himawari-8. The yearly average estimated PM2.5 concentration of FY-4A 
was 38.65 μg/m3, which is 6 μg/m3 higher than the previous result. The 

yearly estimated PM2.5 concentration of Himawari-8 was 32.00 μg/m3, 
which is not much smaller than the previous result (35.64 μg/m3). In 
addition, we also estimated the yearly average PM2.5 result of FY-4A 
minus the result of Himawari-8, and the difference is shown in Fig. 5 
(c). Compared with Fig. 4(f), obvious positive number regions occur in 
southwestern and northeastern China, demonstrating that the annual 
average estimated values of FY-4A in these areas were higher than the 
annual average estimated values of Himawari-8. The area in the range of 
− 10 to − 5 μg/m3 was smaller than that in Fig. 4(f), and most of the 
regions were in the area of − 5–0 μg/m3. In northeastern China and 
northern China, they were still <− 10 μg/m3, but the coverage area and 
the value of the differences decreased. The estimated values of 
Himawari-8 were lower than before, but they were still higher than 
those of FY-4A. 

To further analyze the differences between Figs. 4 and 5, the per
centage of the ground PM2.5 concentration participating in the model 
training was calculated. The results are shown in Figs. 4 and 5. Among 
the training sample sets for FY-4A (Fig. 4(a)), the low values accounted 
for a large proportion (61.75%), and the percentage of low values for 
Himawari-8 in the training (Fig. 4(b)) was lower, reaching 57.51%. In 
this experiment, the low value of the common sample set (Fig. 5(a)) was 
58.59%. For the FY-4A training data, the proportion of low values 
decreased, and the proportion of high values participating in the 
training increased. Thus, the common mapping result showed an 
increasing trend in the PM2.5 concentration compared to Fig. 4(a). For 
the Himawari-8 training data, the proportion of low values did not 
change much. Compared to the proportion of low values in the Himwari- 
8 training set described in Section 4.1, the proportion of low values only 
increased by 1.08%. Therefore, there was a slight reduction in the 
mapping result of the Himawari-8 based on the common dataset. 

The evaluation results of the experiment are shown in Table 3. For 
the sample-based CV and the site-based CV, the R2 values of FY-4A (0.93 
and 0.85, respectively) were the same as those of Himawari-8 (0.93 and 
0.85, respectively); while the RMSE values for FY-4A were 8.25 and 
12.22, respectively, and those of Himawari-8 were 8.27 and 12.12 μg/ 
m3, respectively. For FY-4A and Himawari-8, the SDCV R2 values were 
0.53 and 0.52, respectively; the RMSE values were 21.60 and 21.54 μg/ 
m3, respectively; the MPE values were 13.95 and 14.10 μg/m3, respec
tively; and the RPE values were 0.57 and 0.57, respectively. From the 
point of view of the quantitative indicators, the results obtained using 
the two satellites were similar, but FY-4A exhibited a resampling error. 
According to the resampling evaluation experiment, the performance of 
the Geoi-DBN model was not sensitive to the resampling error (Table S). 
Exclude the resampling error, the accuracy evaluation and mapping of 
FY-4A were not significantly different from those of Himawari-8. Thus, 
we conclude that the estimated differences were caused by the differ
ences in the training data and the spatial resolution, excluding the dif
ferences in the platforms and retrieval algorithms. 

4.3. Influence of the differences in spatial resolutions 

According to the analysis presented in Section 4.2, the current dif
ference was caused by the spatial resolution or the number and the 

Table 5 
The proportion of high (>35 μg/m3) and low (≤35 μg/m3) values for each 
hourly training dataset.  

Time FY-4A Himawari-8 

High (%) Low (%) High (%) Low (%) 

10:00LT 46.98 53.02 52.80 47.20 
11:00LT 43.67 56.33 50.09 49.91 
12:00LT 39.89 60.11 45.61 54.39 
13:00LT 36.63 63.37 41.45 58.55 
14:00LT 33.74 66.26 37.83 62.17 
15:00LT 31.63 68.37 34.95 65.05 
16:00LT 31.36 68.64 30.84 69.16 
17:00LT 31.67 68.33 23.21 76.79  

Table 6 
Hourly averaged PM2.5 concentration estimation results obtained using FY-4A and Himawari-8.  

Data FY-4A Himawari-8 

Time N R2 RMSE MPE RPE N R2 RMSE MPE RPE 
10:00LT 134059 0.93 9.19 5.77 0.22 125465 0.93 10.76 6.49 0.23 
11:00LT 112690 0.92 9.02 5.66 0.23 120552 0.92 11.32 6.71 0.24 
12:00LT 97340 0.92 8.50 5.36 0.23 114797 0.93 10.31 6.26 0.24 
13:00LT 84707 0.91 8.45 5.17 0.24 110362 0.93 9.52 5.81 0.24 
14:00LT 95837 0.92 7.72 4.73 0.23 111022 0.94 8.92 5.29 0.24 
15:00LT 114153 0.93 7.71 4.62 0.24 104744 0.94 8.27 4.88 0.23 
16:00LT 132324 0.94 7.83 4.59 0.23 93197 0.94 7.41 4.40 0.23 
17:00LT 143270 0.95 7.50 4.38 0.22 58679 0.91 5.94 3.67 0.22  
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region of the training dataset. Therefore, we selected the common 
regionally ground-based stations used for the FY-4A and Himawari-8 
data training based on the original spatial resolution. 

For the sample-based CV (Table 4), the R2 and RMSE values of FY-4A 
were 0.93 and 8.22 μg/m3, respectively, and those of Himawari-8 were 
0.93 and 8.27 μg/m3, respectively. For the site-based CV, values of the 
four evaluation indicators (R2, RMSE, MPE, and RPE) were similar, but 
the FY-4A results had slightly larger errors. A similar situation was found 
for the results of the SDCV. Based on the quantitative evaluation results, 
it was not obvious which satellite data had a higher accuracy. By 
comparing the mapping results presented in Fig. 6, the mapping results 
of FY-4A were found to be similar to the original results (Fig. 4(a)), but 
they are still different from the high value area of Himawari-8. Thus, the 
differences in the mapping were due to the spatial resolution and the 
number of training sets caused by the different spatial resolutions, 
excluding the influence of the training set regional differences. 

4.4. Mapping the hourly spatiotemporal distribution of PM2.5 

To further compare the temporal changes in the PM2.5 concentration 
obtained from the two satellites, the hourly PM2.5 concentration data 
were modeled. The results of the hourly mapping are shown in Fig. 7. 
For the mapping based on the FY-4A data, the PM2.5 concentration was 
generally high at 10:00 LT. As time progressed, the PM2.5 pollution was 
alleviated from 11:00 LT to 15:00 LT. Later, the PM2.5 concentration 
started to increase again at 16:00 LT due to the increased traffic at the 
end of the work day. In addition, from 10:00 LT to 17:00 LT, the PM2.5 
concentration slightly changed in the western part of Xinjiang Province. 
The mapping result for Himawari-8 is similar to the above trends, but 
the PM2.5concentration did not increase at 17:00 LT because more data 
were missing at 16:00 LT (N = 93197) and 17:00 LT (N = 58679). There 
were some differences in the hourly details of the FY-4A and the 
Himawari-8 mappings. For example, the PM2.5 concentrations in central 
China were higher for Himwari-8 than FY-4A, especially in the Beijing- 
Tianjin-Hebei region and Shanxi, Henan, and Shandong provinces. The 
mean PM2.5 concentration for Himawari-8 in the above provinces at 
10:00 LT was 64.43 μg/m3, which was approximately 12 μg/m3 higher 
than the average concentration for FY-4A. From 10:00 LT to 12:00 LT, 
the rate of decrease of the PM2.5 concentration was slower than that for 
FY-4A. This occurred because the hourly mapping results were obtained 
by training all of the samples, and based on the analysis of the PM2.5 
concentration distribution of the sample data presented in Section 4.1, 
the proportion of low values for FY-4A was higher and the proportion of 
high values was lower compared with those for Himawari-8. Thus, the 
performances of the model in terms of fitting the high and low values 
were different for the Himawari-8 and FY-4A satellite datasets. Based on 
this, Table 5 summarizes the statistical results of the proportions of high 
and low values for each hourly training dataset. Here, the high and low 
values were set according to the environmental control quality stan
dards in China. The PM2.5 index was less than 35 μg/m3, which is 
considered to be an excellent air quality level. On a given day, from 
10:00 LT to 15:00 LT, the proportion of high values was higher for 
Himawari-8 than for FY-4A, and the magnitude of the differences 
decreased with time. After 16:00 LT, the percentage of high values for 
FY-4A gradually became higher than that for Himawari-8. This could 
explain why the PM2.5 concentration of Himwari-8 was higher at the 
beginning of the day, but lower than that of FY-4A at 17:00 LT. 

Table 6 shows the evaluation results of the accuracy of the hourly 
averaged PM2.5 concentration estimation (from 10:00 LT to 17:00 LT). 
The R2 values were all higher than 0.91 for FY-4A and Himawari-8, and 
the maximum value was 0.95, which suggests that the model was rela
tively stable in each hour and had a high performance. Except for 17:00 
LT, the RMSE values of Himawari-8 for each hour were higher than 
those of FY-4A. The most data FY-4A were missing at 13:00, and the R2 

value was the lowest. The most Himawari-8 data were missing at 17:00, 
and its R2 value was also the lowest, thereby indicating that the amount 

of data affected the R2. At 17:00 LT, 58679 samples were found, and this 
number was lower than the 10:00 LT samples by more than half. The 
Himawari-8 satellite’s observation position made it difficult to obtain 
high-quality data at 17:00 LT in China. 

In general, geostationary satellites with high temporal resolutions 
need to be used so that we can identify the dynamic changes in the PM2.5 
contribution and contribute to environmental monitoring and health 
impact assessment. 

5. Conclusions 

Using geostationary satellites to estimate the continuously distrib
uted PM2.5 concentration is significant for environmental governance 
and health risk research. In this study, FY-4A and Himawari-8 TOA 
reflectance data combined with auxiliary data were used as the model 
training datasets. The Geoi-DBN model was introduced to investigate the 
complex relationships among the input datasets. The conclusions of this 
study are as follows.  

1) By comparing the quantitative evaluation and mapping results of FY- 
4A and Himawari-8, FY-4A was found to be more suitable for pre
dicting the PM2.5 concentration in China than Himawari-8 because 
FY-4A has a more comprehensive spatial coverage and higher 
accuracy. 

2) The mapping differences between the PM2.5 concentrations esti
mated using FY-4A and Himawari-8 data were due to the differences 
in their platforms, retrieval algorithms, and spatial resolutions and 
the training datasets used for the model. Among them, the platform 
and retrieval algorithms had the least influence.  

3) The predictive performances of the Geoi-DBN were robust during the 
day-time hours, and the R2 values were all >0.9, but differences were 
observed. These differences were related to the sizes of the training 
datasets. 

This study is of great significance for improving the use of geosta
tionary satellites in atmospheric environment remote sensing research. 
The Fengyun-4B satellite was successfully launched from Xichang City 
on June 3, 2021. Its successful launch marked the official beginning of 
the operational development stage of China’s new generation of geo
stationary orbit satellite observation systems. Thus, future work should 
focus on using domestic satellite data to monitor PM2.5 concentrations in 
real time. 
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