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Abstract— The normalized difference vegetation index (NDVI)
can reflect the plant life cycle of growth and senescence and
has become a widely used tool for many applications related to
phenology, ecology, and environment. However, unwanted distur-
bance from cloud, snow, and other atmospheric effects greatly
lowers the NDVI quality and hinders its further application.
In this article, differing from the previous research attempting
to approach the upper NDVI envelope by local adjustment or
threshold-related iteration, a novel one-step global variational
reconstruction (OGVR) method for NDVI time series is pro-
posed via joint modeling of the gradual vegetation change and
negatively biased atmospheric contamination. Two versions of the
proposed method are designed for processing NDVI data with or
without auxiliary flag information. Long-term and global-scale
Advanced Very High Resolution Radiometer (AVHRR) global
inventory monitoring and modeling system (GIMMS) data were
applied in simulated and real-data experiments to verify the
proposed method. The results show that the proposed method can
successfully estimate the natural vegetation change from seriously
contaminated NDVI time series and can conquer the problem
of continuous low-value gaps. The qualitative and quantitative
comparisons with five other widely used methods indicate that
the proposed method has significant advantages in terms of both
effectiveness and stability.
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I. INTRODUCTION

REMOTELY sensed normalized difference vegetation
index (NDVI) characterizes vegetation coverage con-

ditions and vegetation growth status. The large-scale and
long-term use of the NDVI plays an essential role in many
applications, including monitoring of vegetation phenological
dynamics [1]–[3], detection of land-cover change [4]–[6],
analysis of regional drought characteristics [7], [8], and inves-
tigation of climate response to vegetation activities [9]–[11].
Accordingly, access to high-quality NDVI time series is of
great importance. However, the accuracy of NDVI time series
is easily affected by the unwanted disturbance stemming
from cloud, snow, dust, ozone, and some other factors. This
disturbance shows up as negatively biased noise, which can
cause sudden drops in NDVI values. To offset the bias, most
of the remote sensing vegetation products are preprocessed
via the maximum-value composite (MVC) technique [12].
Examples of such products are the National Oceanic and
Atmospheric Administration (NOAA) Advanced Very High
Resolution Radiometer (AVHRR) global vegetation index data,
Aqua/Terra Moderate Resolution Imaging Spectroradiometer
(MODIS) vegetation index products, and SPOT VEGETA-
TION products. Although a considerable amount of noise has
been eliminated in these products, the residual noise related
to continuous cloudy days, snow coverage, and bidirectional
effects still need to be handled. Hence, it is of critical
importance to develop an effective reconstruction method to
obtain high-quality NDVI time series for reliable analysis in
further applications.

Over the past few decades, a number of noise removal
methods have been proposed for NDVI data. Under the similar
assumption that the noise in NDVI data is mainly negatively
biased, the existing methods are generally characterized by
the use of an iterative operation to approach the upper NDVI

1558-0644 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Wuhan University. Downloaded on May 01,2022 at 08:46:27 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-2739-2334
https://orcid.org/0000-0002-4140-1869
https://orcid.org/0000-0001-7140-2224
https://orcid.org/0000-0002-7592-5994
https://orcid.org/0000-0002-0585-9848


4407017 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

envelope and can be broadly divided into three groups. The
first group is the function-based fitting methods, where math-
ematical functions are utilized to shape the seasonal cycle of
vegetation growth. The double logistic (DL) function [13],
asymmetric Gaussian (AG) function [14], cubic spline func-
tion [15], and Fourier series [16]–[18] are the commonly
used fitting techniques for NDVI time series. These methods
perform well when the NDVI time series conforms to the law
of natural change with regular seasonal cycles. However, low-
quality results are sometimes unavoidable for those irregular
NDVI profiles caused by abnormal climate, natural disasters,
or human activity. For instance, the Fourier-based methods
provide periodic sine and cosine functions to fit the cycles
of vegetation growth, but difficulties remain in capturing the
nonperiodic vegetation response to the abrupt phenomena in
certain years. Adaptations combining local adjustments [19]
alleviate the problem by using more parameters. Unfortunately,
the complexity of the parameter settings increases at the same
time, especially when processing heterogeneous land surface
vegetation cover.

The statistical-based filtering/smoothing approaches consti-
tute, to some extent, the most popular group. The main idea
behind these approaches is to fill the missing or seriously
contaminated pixels through valid observations in a local
moving window. Statistical calculation, usually combined with
a threshold, assists in different tasks to control the pixel
quality judgment, the filtering degree, or the step approach-
ing the upper envelope. Typical examples include the mean
value iteration (MVI) filter [20], the Savitzky–Golay (SG)
filter [21], [22], the Whittaker smoother (WS) [1], [23], [24],
iterative interpolation for data reconstruction (IDR) [25], the
running median, mean value, maximum operation, endpoint
processing, and hanning (RMMEH) smoothing method [26],
and the best index slope extraction (BISE) method [27].
However, due to the use of a local moving window, it is easy to
ignore the global property, such as seasonal cycles, of NDVI
time series in the filtering process, which can lead to some
underestimation or overestimation in local parts. Taking low
NDVI values as an example, when using only local judgment
and processing, it is impossible to distinguish whether a low
value is from a nongrowing or growing season, and the correct
low values in nongrowing seasons are very likely to be overes-
timated after the same degree of smoothing. As the thresholds
in these methods are always important (or even sensitive) but
not self-adaptive, it needs lots of experience to set different
thresholds properly for different types of vegetation cover.

Researchers have also tried to integrate some other tech-
niques into NDVI reconstruction [28]–[32]. For example,
Gu et al. [29] made use of a data assimilation method to
calculate NDVI time series by weighting the background
field (capturing the annual features of vegetation change)
and the observed NDVI data, Qiu et al. [30] drew sup-
port from continuous wavelet transform to smooth MODIS
enhanced vegetation index (EVI) time series, without any local
adjustments, and Cao et al. [31] designed a spatiotemporal
SG filter to fill the missing data under the assumption that
neighboring pixels within the same land-cover type exhibit
similar phenological behavior curves. However, drawbacks,

such as the high computational load, complex selection from
redundant wavelet coefficients, or dependency on the historical
data, leave room for further improvement.

Despite the considerable effort that has been made, the
universality of the existing methods is still limited, mainly
for the following reasons.

A. Strict Requirements for Input Data

Ancillary data or historical data are important in NDVI
reconstruction and are strictly embedded into the processing
flows of many of the existing methods. However, for the
case of insufficient or unavailable ancillary/historical data,
alternative strategies are rarely given.

B. Unstable Performance or Low Efficiency

The land surface vegetation index changes spatially by
the land-cover type and temporally by the season. Different
abrupt environmental factors diversify the shapes of NDVI
time series, which increases the difficulty of a stable filtering
performance. Strategies, such as local adjustment or spatial
information utilization, are commonly used improvements in
most of the previous methods, but they always sacrifice the
processing efficiency.

C. Complex Setting of Numerous Parameters

Parameter setting is generally closely related to the noise
level of each NDVI time series. Since pixels from different
land-cover types suffer varying degrees of temporal noise
levels, it is difficult to choose universal and suitable values
for the existing methods with sensitive parameters, and it is
far harder in the case of numerous sensitive parameters.

In this article, we propose a novel one-step global vari-
ational NDVI reconstruction model by taking the proper-
ties of both natural vegetation change and negatively biased
atmospheric contamination into consideration. Since the differ-
ent information is well utilized in the proposed optimization-
based model, NDVI reconstruction can be directly completed
with no more preprocessing or postprocessing steps. This,
on the one hand, accelerates the processing speed and, on the
other hand, avoids the adverse effects such as accumulated
errors. To increase the universality of the proposed model, a
version that uses ancillary data and a version that does not use
ancillary data are provided to adapt to different processing
cases involving various NDVI products and self-calculated
NDVI/EVI time series. There are as few parameters as possible
in the model, which can be set as fixed values for ease of use
in real applications. Experiments conducted on both simulated
and real NDVI time series at a global scale demonstrate the
effectiveness and robustness of the proposed model. Even
without ancillary data, the performance of the proposed model
is competitive when compared with the existing well-known
NDVI reconstruction approaches.

The rest of this article is organized as follows. Section II
introduces the proposed one-step global variational NDVI
reconstruction model and its numerical solution. The exper-
imental results and the comparisons with other methods are
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provided in Section III. A further discussion and our conclu-
sions are, respectively, provided in Sections IV and V.

II. METHODOLOGY

NDVI time-series data reflect the vegetation change related
to the phenological characteristics. As such, an NDVI time
series usually shows the plant life cycle of growth and senes-
cence or a more stable growth state for the evergreen species.
However, except for the normal vegetation changes, the neg-
ative bias (caused by cloud, snow, and other atmospheric
effects) and the minor technical errors coexisting in the NDVI
time-series products can greatly lower the NDVI data quality
and should thus be removed. In this article, differing from
the previous research utilizing comparisons followed by local
adjustment or threshold-related iteration to approach the upper
NDVI envelope, a one-step global optimization-based method
is proposed to effectively and efficiently estimate high-quality
NDVI time series by taking the properties of both latent NDVI
data and atmospheric contamination into consideration. The
method can be applied to different input conditions, both
with or without an ancillary data quality flag. Furthermore,
very few parameters are required in the calculation and,
most importantly, they can be assigned as fixed values at the
expense of very little accuracy loss. Moreover, there are no
restrictions with regard to the sensor type, i.e., the proposed
method is valid for use with various NDVI products and even
self-calculated NDVI or EVI time series. In the following,
we first describe how the observation model is constructed for
NDVI data and then introduce the proposed method in detail.

A. Problem Formulation

Supposing that the atmospheric contamination in the
observed NDVI time series can be regarded as additive noise,
then the relationship between the noisy series y and its latent
ideal series x can be described as

y = x + z (1)

where y = (y1, . . . , yn), x = (x1, . . . , xn), and z =
(z1, . . . , zn) denote the remotely sensed NDVI series, the ideal
smooth time series, and the noise part, respectively.

B. Universal Optimization Framework for Curve Smoothing

According to the requirements and characteristics of curve
smoothing, the task can be summarized as an optimization
problem with two competing aspects. One is to minimize the
residual between x and y, and the other is to alleviate the
unnatural disturbance to ensure a smooth x. Hence, a universal
optimization framework to estimate the smooth curve x or,
equivalently, the noise component z (z = y − x) can be built
as

min
1

p
||x − y||p

p + λ

q
||Dkx||qq (2)

where p ∈ (0, 2] and q ∈ (0, 2], and the first term in the
above objective function measures the fitting error, while the
second term penalizes the roughness of the estimated curve.
λ ≥ 0 is the regularization parameter used to balance the

functioning degree of these two terms. Dk denotes the k-order
difference matrix, which is constructed as a Toeplitz matrix (in
which each descending diagonal from left to right is constant)
with n − k rows and n columns. Each row of Dk contains the
pattern of the k-order difference operator with the first row
equaling to, for example, [1 − 1 0 · · · 0] when k = 1 and
[1 − 2 1 0 · · · 0] when k = 2. In general, the choice of
a specific combination of the �p-norm and �q -norm mainly
depends on the property of the noise component z and the
ideal series x. For example, p = 1 fits better than p = 2 for
capturing z when the noise component is in accordance with
an impulse noise distribution but fits worse than p = 2 when
it conforms to a Gaussian distribution.

At the time, when p = 2, q = 2, and k = 2, the
�p-norm and �q -norm in (2) then become an �2-norm or
Euclidean norm, while D2 is the second-order difference
matrix. Namely, the universal curve smoothing framework
concretes into the well-known WS (which is also known as
the Hodrick–Prescott filter [33], [34]), which has been widely
used in biology and economics analysis [35] and has also been
modified for use in remote sensing-based vegetation index
reconstruction [1], [24]. In order to recover the negative bias
in the NDVI time series, an iterative process is employed to
gradually approach the upper envelope of the data by choosing
and integrating those higher values from the curves before and
after Whittaker smoothing. Unfortunately, this modification
inherits the sensitivity to the regularization parameter λ and
lacks the constraint of the noise property in the optimization
modeling, so can sometimes cause oversmoothing. Compara-
tively speaking, the NDVI property tailored modeling shows
more potential for high-quality time-series reconstruction.

C. Proposed Variational NDVI Reconstruction Method

1) Negatively Biased Atmospheric Contamination Con-
straint: In line with the assumption that the noise component
z in an NDVI time series is almost negative (due to the
poor atmospheric conditions, such as clouds), the relationship
between x and y then satisfies the inequality

z = y − x ≤ 0. (3)

It is easy to understand that y − x < 0 only occurs when
the observed series is contaminated by negative noise, while
y−x = 0 is always kept in a normal case. Inspired by the pop-
ular rectified linear unit (ReLU) activation function [36], [37],
we rewrite (3) as

(y − x)+ = 0 (4)

where (·)+ represents the operation to take the higher value
between 0 and y−x. Clearly, the output of (y − x)+ is always
nonnegative, so the minimization of (y − x)+ aims to penalize
the case of y > x. In other words, it encourages x to approach
the upper envelope of y, which exactly corresponds with the
requirement in NDVI filter design.

2) Joint Modeling of Gradual Vegetation Change and Neg-
atively Biased Atmospheric Contamination: Note that the
measure (y − x)+ alone is not functional. It is thus combined
in the proposed method with the universal curve smoothing
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optimization framework, and the objective function is given
as

min
1

p
||x − y||p

p + λ

q
||Dkx||qq subject to (y−x)+ = 0. (5)

Since the natural vegetation change possesses a gradual
process profile, we choose the �2-norm to minimize the
second-order difference of x (q = 2 and k = 2) to penalize
the roughness of x. As for the noise component modeling,
we then use the �1-norm (p = 1) to penalize the differences
between x and y. As the noise in NDVI time series appears
as sudden drops with large bias, p = 1 rather than p = 2
(as used in the WS) is finally chosen. This is because the
�1-norm can not only accept huge jumps to deal with the
abrupt changes similar to impulse noise, but it can also
lead to sparsity (i.e., with many zero elements) for better
preservation of the phenology-related key points in NDVI
reconstruction [34], [38].

From the optimization point of view, the problem (5) is
a constrained optimization problem, and a penalized method
can be applied, i.e., we solve the following unconstraint
optimization problem:

min ||x − y||1 + λ

2
||D2x||22 + μ

2
(y − x)2

+. (6)

If the penalty parameter μ is chosen to be large enough,
(6) is a good approximation of (5). However, from the practical
point of view, the constraint condition of (y − x)+ = 0 holds
true only in ideal cases, which means that problem (5) imposes
quite strict constraints in real NDVI reconstruction. To obtain
a more effective and flexible model, we convert μ ≥ 0 into
another regularization parameter in (6). Thus, problem (6) can
also be considered as a relaxation of (5).

In model (6), the larger the value of parameter μ, the
stronger the influence of (y − x)2

+, and the closer to the upper
envelope that x can be estimated. Above all, the proposed
method takes full consideration of the fidelity of the data (espe-
cially those phenology-related key points), the smoothness of
natural vegetation change, and the negatively biased prop-
erty of atmospheric contamination. As a result, the proposed
method is well suited to NDVI time-series reconstruction and
similar tasks such as EVI time-series reconstruction.

3) More General Version With Quality Assurance Informa-
tion: Quality assurance/control information [1], [19], [22],
[39]–[41] is used to assess the quality of each pixel, and
cloud, water, shadow, and ice/snow flags are provided along
with the remote sensing product. These ancillary data can
help to control the reconstruction process to make the results
more reliable. Hence, when the ancillary quality information
is available, a more precise model is as follows:

min ||C(x − y)||1 + λ

2
||D2x||22 + μ

2
(C(y − x))2

+ (7)

where C denotes the diagonal matrix with diagonal ele-
ments ci,i ∈ [0, 1] related to the corresponding quality of
the observed pixel yi . According to the quality assurance
information, all the observed pixels can be divided into five
groups: good, uncertain, marginal, missing, and seriously
contaminated. In practice, for simplicity, good pixels are set

with the maximum weight of 1, and uncertain or marginal
pixels are given a moderate weight of 0.5. The minimum
weight of 0 is used for the missing or seriously contaminated
pixels. If part of the quality assurance information is missing,
those pixels can be regarded as good, with a weight of 1. When
no ancillary quality data are provided, Q becomes an identity
matrix, and in such a case, (7) is equal to (6). Since the model
in (6) is just a special case of (7), a more general description
of the proposed model, i.e., (7), is used throughout.

D. Numerical Solution

Before analyzing the optimization of the proposed NDVI
reconstruction method, we first discuss the upper envelope
measure and expand it as

(y − x)2
+ =

{
(yi − xi)

2, i ∈ A
0, i ∈ Ac (8)

where A � {i : xi < yi} and Ac denotes the complement set
of A. By introducing a diagonal matrix U with diagonal values
ui,i = 1 for i ∈ A and ui,i = 0 for i ∈ Ac, (8) can be rewritten
in a matrix form as

(y − x)2
+ = U(y − x)2. (9)

Then, to solve the whole problem, the iteratively reweighted
least-squares (IRLS) method [42]–[44] is employed due to its
efficiency in the �p-norm (p ∈ (0, 2]) minimization. At each
iteration, the solution is equal to weighted least-squares min-
imization of

x̂(k+1) = arg min

{
1

2
|| W (k)1/2C(x − y) ||22 + λ

2
|| D2x ||22

+μ

2
U (k)(C(y − x))2

}
(10)

with weighting matrix

W (k) = diag
(
T

(
C

(
x(k) − y

)))
(11)

where

T (s) =
{

| s |−1, if | s | > ε

ε−1, if | s | ≤ ε
(12)

and ε is a small positive number.
Thus, the closed-form solution of x̂(k+1) is

x̂(k+1) = (
CT W (k)C + λDT

2 D2 + μU (k)CT C
)−1

×(
CT W (k)C + μU (k)CT C

)
y. (13)

As the boundary processing technique has an influence on
the reconstruction results of the endpoints, we can expand
the original data based on the Neumann boundary condi-
tion (setting the data outside the domain as a reflection of
the data inside) [45] to alleviate the possible adverse edge
effect. More specifically, by denoting the expanded data as
(y−m+1, . . . , y0, y1, . . . , yn, yn+1, . . . , yn+m), the data outside
y then satisfy{

y0 = y1

y−m+1 = ym
and

{
yn+1 = yn

yn+m = yn−m+1.
(14)
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III. RESULTS

A. Data

To evaluate the proposed variational NDVI reconstruction
method, the global inventory monitoring and modeling sys-
tem (GIMMS) dataset (version number 3g.v1) generated from
data obtained by the AVHRR sensor on the NOAA satellites
was used in this study. The GIMMS NDVI3g.v1 product
has a temporal resolution of twice a month (composited by
the MVC technique) and a spatial resolution of 1/12 of a
degree [25], [46]. The temporal coverage of the dataset ranges
from July 1981 to December 2015. The flags provided along
with the GIMMS data marked by values of 0, 1, or 2 separately
indicate that the NDVI values are calculated from the raw
data, processed by spline interpolation, or may correspond
to snow/cloud cover. In the experiments, the NDVI values
calculated from the raw data were regarded as good (with a
weight of 1), and the spline interpolated values were regarded
as uncertain (with a moderate weight of 0.5), while the
possible snow/cloud covered values were considered as bad
(with a weight of 0).

The International Geosphere–Biosphere Program (IGBP)
classification maps [5] in the MODIS Land Cover Climate
Modeling Grid Product (MCD12C1) were exploited to test and
compare the NDVI reconstruction performance over different
land-cover types. The MCD12C1 data at a spatial resolution of
0.05◦ have been released year by year since 2001. For spatial
and temporal consistency, the IGBP maps were resampled to
the GIMMS spatial resolution and selected from 2001 to 2015.

B. Implementation of the Comparison Methods

Five widely used NDVI reconstruction methods were
selected for comparison: 1) the RMMEH method [26];
2) the IDR method [25]; 3) the SG method [22]; 4) the
WS method [1]; and 5) the Fourier-based moving weighted
harmonic analysis (MWHA) method [19]. The different ver-
sions of the proposed one-step global variational reconstruc-
tion (OGVR) method (with and without ancillary data) named
OGVR and OGVR_nw (OGVR with no weight) were both
tested and compared. Among the different methods, only
RMMEH, IDR, and OGVR_nw are methods that are inde-
pendent of ancillary flag information.

The parameters in the five comparison methods were set
based on the advice given by the respective authors. In detail,
RMMEH can be implemented easily as neither ancillary data
nor parameters are required in the procedure. For the IDR
method, only one threshold parameter needs to be set. Here,
the value of 0.02 was used, as in [25]. Due to the embedded
least-squares fitting [22] and the cross-validated optimiza-
tion [1] techniques introduced in the SG and WS methods,
the two parameters (the half-width of the smoothing window
and the degree of the polynomial) in the SG processing flow
and the one smoothing parameter in the WS method were
calculated automatically in this study, at the cost of increased
time. There are two main parameters, i.e., the support domain
radius rd and the frequency number n f , in the MWHA method.
After multiple tests, rd and n f were, respectively, set as
5 and 1, which were the same as the values used in [19].

The parameters of the proposed model were fixed as λ =
100 and μ = 100 in all the experiments. More details of the
parameter setting of the proposed method can be found in
Section IV.

C. Simulated Data Experiments

In the simulated experiments, the reference NDVI curve
was synthesized to represent a basic pattern of the vege-
tation coverage at each pixel, which was then used as the
ground truth to evaluate the reconstruction methods quantita-
tively [40], [47], [48]. Specifically, for the AVHRR GIMMS
data, the NDVI values calculated by spline interpolation or
corresponding to snow/cloud cover were first regarded as the
poor-quality points to be discarded. The other valid NDVI
values in the same day of year (DOY) from July 1981 to
December 2015 were then averaged to generate the reference
NDVI. There were a total of 24 composites in the reference
NDVI. If the good points from the same DOY numbered
less than nine (approximately 1/4 of the total points), the
corresponding mean value had much less chance of reflecting
the essential state of the vegetation. Thus, cubic interpolation
was performed on the reference NDVI to compute a more
reliable value from the neighboring representative composites.
As each composite in the reference NDVI was calculated from
different years over a long period of time, the disturbances
related to annual variations were further suppressed by the
IDR method. Through the procedures introduced above, the
reference NDVI curves were obtained in which most of the
noise and interannual disturbances were alleviated.

The next step was to add gaps and noise into the reference
NDVI. In this study, three types of gaps/noise were added
simultaneously.

1) Random Gaps, where 20% of the composites were ran-
domly chosen and reduced by a random value between
the range of [0.2, 0.4] to simulate the case of random
cloudy days.

2) Continuous Gap, where no more than five consecutive
composites, i.e., no more than 75 days, were randomly
chosen to simulate the case of long-term cloud cover.
These chosen composites were reduced by a random
value within the same range used for the Random Gaps.

3) Gaussian Noise, where 15% of the composites were ran-
domly chosen by adding a normally distributed random
value with mean 0 and standard deviation 0.05. This
kind of noise was added as the simulation of uncertain
data points in the real NDVI curve.

Meanwhile, the corresponding flag information was also
generated. All the untouched composites in the reference
NDVI were marked as good with a weight of 1. The
gap-related composites and Gaussian noise composites were
separately marked as bad and uncertain with weights of
0 and 0.5, respectively, in the proposed method, and 0 and 1
in the comparison methods [1], [19], [22].

The quantitative assessment was based on three full-
reference indices: the correlation coefficient (CC), the mean
absolute error (MeanAE, also known as the mean bias), and
the maximum absolute error (MaxAE). The CC was used to

Authorized licensed use limited to: Wuhan University. Downloaded on May 01,2022 at 08:46:27 UTC from IEEE Xplore.  Restrictions apply. 



4407017 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Fig. 1. Global distribution of the NDVI reconstruction under CC evaluation. The corresponding percentage distribution is shown in the bar graph. (a) RMMEH.
(b) IDR. (c) OGVR_nw. (d) SG. (e) WS. (f) MWHA. (g) OGVR.

evaluate the similarity between the reference and reconstructed
NDVI curves. The MeanAE was taken as the indicator to
measure the model error, whereas the MaxAE was employed
to reflect the model stability. Their numerical definitions are
given as follows:

CC =
∑n

i=1 (xi − μx)(x̂i − μx̂)√∑n
i=1 (xi − μx)2

√∑n
i=1 (x̂i − μx̂)2

(15)

MeanAE =
∑n

i=1 |x̂i − xi |
n

(16)

MaxAE = max
1≤i≤n

|x̂i − xi | (17)

where μx and μx̂, respectively, denote the mean values of
the whole reference NDVI curve x = (x1, . . . , xn) and the

reconstructed NDVI curve x̂ = (x̂1, . . . , x̂n). A better perfor-
mance can be reflected by higher CC and lower MeanAE and
MaxAE.

Figs. 1–3 show the visualized quantitative evaluation of the
different NDVI reconstruction methods at a global scale. Since
two groups of methods (using ancillary data or not) were both
tested, the comparison within the group requiring no auxiliary
information is first introduced for the sake of fairness. Among
the methods of RMMEH, IDR, and OGVR_nw, RMMEH
achieves the lowest curve similarity [Fig. 1(a)] and the highest
data error [Figs. 2(a) and 3(a)] over the entire region, which
indicates that its sensitivity to noise is relatively high. IDR
and OGVR_nw exhibit obvious advantages over the RMMEH
method in the visualized quantitative global evaluation, but
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Fig. 2. Global distribution of the NDVI reconstruction under MaxAE evaluation. The corresponding percentage distribution is shown in the bar graph.
(a) RMMEH. (b) IDR. (c) OGVR_nw. (d) SG. (e) WS. (f) MWHA. (g) OGVR.

the differences between each method are much less clear.
Based on the statistical results shown in the bar graphs, the
proposed OGVR_nw method outperforms the IDR method
as it obtains a superior performance in two of the three
index evaluations. Given that the reference NDVI in this
work was calculated from the IDR method, more significant
advantages of OGVR_nw over IDR can be expected in other
tasks.

By adding the flag information into the NDVI reconstruc-
tion, the SG, WS, MWHA, and OGVR methods perform bet-
ter, overall, than the RMMEH, IDR, and OGVR_nw methods.
For the SG, WS, and MWHA methods, although a slightly
higher point percentage with CC ≥ 0.9 can be found in the
bar graph (from Fig. 1) compared to all the methods requiring
no auxiliary information, their advantages decrease in different
degrees under the MaxAE and MeanAE measurements. For

example, the point percentage of MaxAE ≤ 0.04 in the SG
and MWHA methods is nearly equal to the value in the
OGVR_nw method, as shown in Fig. 2. A similar example can
be seen in Fig. 3, in which the percentage distribution of the
WS method under MeanAE evaluation is almost the same as
that of the IDR method. Unlike the methods described above,
the proposed OGVR model recovers the noisy NDVI curves
well, with the most widely distributed points of the highest
CC and the lowest MaxAE and MeanAE values. Namely, the
proposed method can not only recover the correct curve trend
(the vegetation growth trend) under noise interference but also
preserve most of the useful information in the time series.

It is worth noting that points in rain forest and desert
show much smaller greenness changes within a year, and
thus, larger errors are more easily generated after removing
the corresponding added noise from the reference NDVI time
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Fig. 3. Global distribution of the NDVI reconstruction under MeanAE evaluation. The corresponding percentage distribution is shown in the bar graph.
(a) RMMEH. (b) IDR. (c) OGVR_nw. (d) SG. (e) WS. (f) MWHA. (g) OGVR.

series. These points can be used to test the stability of the
NDVI filtering methods. In the comparison methods, the points
with lower similarity or larger error are concentrated in the
regions of rain forest and desert. In contrast, the proposed
OGVR method shows a good performance by recovering
the noisy NDVI curves well for different land-cover types,
particularly in the challenging areas of rain forest and desert.
According to the overall results, the proposed model exhibits a
satisfactory denoising capability, whether the flag information
is employed or not. Even in the case of making no use of the
flag data, the proposed OGVR_nw method is still competitive
when compared to the existing ancillary data-dependent NDVI
reconstruction methods.

D. Real-Data Experiments

Without the help of reference data, qualitative assessment
through visual comparison is the main way to judge the

performance of different methods in real-data experiments.
To make the experiments more convincing, the long-term
NDVI time series for different land-cover types based on
the IGBP classification were used. More specifically, the
GIMMS data and the IGBP maps within the same time span
from 2001 to 2015 were first collected. An IGBP class was
then assigned to each GIMMS pixel when two conditions were
simultaneously satisfied: 1) the resampled IGBP pixel was
generated by pixels from the same land-cover class (spatial
homogeneity) and 2) the class type of the resampled IGBP
pixel remained unchanged over the entire 15 years (temporal
homogeneity). The candidate points with IGBP class informa-
tion are shown in Fig. 4. The areas colored in gray correspond
to those pixels with a lack of spatial homogeneity or temporal
homogeneity. Due to the space limitations, ten control points
were randomly chosen from the different land-cover types
for the comparison. Their geographical locations along with
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Fig. 4. Spatial distribution of ten randomly chosen control points for comparison. Water body and noncandidate points are masked by light blue and gray
colors, respectively. ENF: evergreen needleleaf forests. EBF: evergreen broadleaf forests. DNF: deciduous needleleaf forests. DBF: deciduous broadleaf forests.
MF: mixed forests. CSH: closed shrublands. OSH: open shrublands. WSA: woody savannas. SAV: savannas. GRA: grasslands. WET: permanent wetlands.
CRO: croplands. URB: urban and built-up lands. CVM: cropland/natural vegetation mosaics. SNO: permanent snow and ice. BSV: barren or sparsely vegetated.

the classification information are given in Fig. 4. In order to
maintain consistency with the original settings [1], [19], [22],
the raw NDVI values obtained from the data, the NDVI values
obtained by spline interpolation, and those values correspond-
ing to possible snow/cloud cover were set to 1, 0.5, and 0 for
the proposed method, and 1, 1, and 0 for the comparison
methods, respectively.

The reconstructed NDVI time series calculated by the six
approaches at the ten control points are shown in Fig. 5. It can
be seen clearly that although the GIMMS data are composited
by the MVC technique, a lot of noise still remains in the NDVI
time series. In addition, the flag information only indicates
some of the contaminated points, and to complicate matters
further, these contaminated points can appear even beyond the
local low points. Faced with different cases of complicated
GIMMS NDVI time series, the proposed OGVR method can
successfully eliminate the unnatural disturbances, maintaining
a good agreement with the upper envelope of the good
points, while capturing the gradual change of vegetation and
also conquering the problem of continuous cloud/snow. The
satisfactory and stable performance in all the control points
demonstrates the effectiveness and robustness of the OGVR
method. As a method that is independent of the ancillary
flag information, the RMMEH method reconstructs the time
series based mainly on the local mean and median values and
is thus sensitive to local oscillations [e.g., Fig. 5(a) and (c)].
Compared with the RMMEH method, the other methods
that are independent of the ancillary flag information, i.e.,
IDR and OGVR_nw, output better reconstruction results.
Although the reconstruction performances of the IDR and
OGVR_nw methods look similar, their close-up details reveal
the differences. The OGVR_nw method generates smoother
time series and is better able to capture the gradual changes
of vegetation by using a global constraint instead of local
calculation. According to the results shown in Fig. 5, the
estimated NDVI curves of the RMMEH, IDR, and OGVR_nw
methods are consistent with the proposed OGVR method in

most cases but are significantly worse than OGVR in dealing
with contaminated high-value points [e.g., Fig. 5(c) and (d)].
This is understandable as OGVR utilizes more information
(flag information) than RMMEH, IDR, and OGVR_nw.

Under the same input conditions, the proposed OGVR
method was then further evaluated and compared with the SG,
WS, and MWHA methods. The SG method can conquer parts
of the fluctuations in the NDVI time series but is vulnerable to
frequent fluctuations. For instance, for the evergreen broadleaf
forest (EBF) and woody savannas (WSA) land-cover types,
the SG method is unable to capture the gradual changes of
vegetation growth [Fig. 5(b) and (f)]. Compared to SG, the
WS method always obtains very smooth time series, whereas
the results shown in Fig. 5(c), (h), and (i) reveal its heavy
dependency on good flag information, in which regionally
large bias is caused by the method being misled by some incor-
rect good points or outliers. The MWHA method inherits the
advantage of the Fourier-based fitting method, in which it can
reconstruct smooth curves, but also the disadvantage, in which
it easily generates large bias from the original NDVI values.
Although the local adjustment is designed in MWHA to
alleviate the unwanted bias, the residual bias is nonnegligible.
Examples are shown in Fig. 5(d), (e), and (i). It should also
be mentioned that the MWHA method fails to reconstruct
the long-term continuous cloud/snow time series in the c and
h control points. This is mainly because the parameters of
MWHA fail to converge for the seriously contaminated cases.
In summary, the proposed OGVR method can capture the
gradual change of vegetation well and can properly handle the
contaminated points, no matter if they are locally high or low.
Even in seriously contaminated cases, such as the continuous
cloud/snow problem, the OGVR method still performs stably
and is unaffected by the frequent oscillations. Considering
that, in the OGVR reconstruction, all the parameters are fixed
and the ancillary flag information is not strictly required
(OGVR_nw), the proposed method can also be regarded as
having advantages in execution.
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Fig. 5. Performance of the various methods for reconstructing NDVI time series during 2001–2015 at 10 control points (Fig. 4). (a) ENF. (b) EBF. (c) DNF.
(d) MF. (e) CSH. (f) WSA. (g) SAV. (h) GRA. (i) WET. (j) CRO.
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Fig. 6. Regional performance of the various methods for NDVI reconstruction in the first half of August in 2005 in south-central Africa. DIFF: difference
image obtained via subtracting the results of the other methods from those of OGVR. Interp: spline interpolation. Snow/Cloud: possible snow/cloud cover.
(a) RMMEH. (b) IDR. (c) OGVR_nw. (d) SG. (e) WS. (f) MWHA. (g) OGVR. (h) Raw image. (i) Flag.

Examples of performance comparisons at regional scales
with extensive cloud cover or spline interpolation are given
in Figs. 6 and 7. The first example shown in Fig. 6 is
selected from south-central Africa, where the Congo Basin is
located, which contains the world’s second-largest contiguous
rainforest. Due to the nature of the terrain, the western
part of the Congo rainforest is always covered by cloud.
In the first half of August, the savanna areas north of the

Congo rainforest are in the rainy season, so the NDVI values
both near and north of the equator should remain at a high
level. However, many abnormal low values can be found
in the raw NDVI in 2005 (Fig. 6), and the distribution
of these low values is consistent with the location of the
cloud/interpolation flags [see Fig. 6(h) and (i)]. The other
example is chosen from East Asia (Fig. 7), where the majority
of the areas belong to the monsoon climate zone, which is
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Fig. 7. Regional performance of the various methods for NDVI reconstruction in the first half of June in 2007 in East Asia. DIFF: difference image obtained
via subtracting the results of the other methods from those of OGVR. Interp: spline interpolation. Snow/Cloud: possible snow/cloud cover. (a) RMMEH.
(b) IDR. (c) OGVR_nw. (d) SG. (e) WS. (f) MWHA. (g) OGVR. (h) Raw image. (i) Flag.

characterized by humid summers and dry winters. In the first
half of June, areas affected by the monsoon have entered
into the rainy season, while the vegetation coverage also
approaches the highest level. However, the corresponding raw
NDVI in 2007 is seriously contaminated by either cloud
or interpolation, appearing as a wide range of low values
[see Fig. 7(h) and (i)].

For a clearer observation, difference maps obtained via
subtracting the results of the other methods from those of
OGVR are also given. Hence, a negative value in the difference
map indicates that the NDVI reconstruction result of this
pixel is lower than that of OGVR and vice versa. According
to the reconstruction results shown in Figs. 6 and 7, the
RMMEH, SG, and WS methods all fail to increase some
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Fig. 8. Sensitivity analysis between parameters λ and μ in the OGVR model
at (a) control point a (ENF) and (b) control point e (CSH).

parts with low NDVI values in the test regions. Although the
spatial distributions of their recovered NDVI become much
smoother, the remaining discontinuity is still nonnegligible.
Consistent results can be found in their difference maps, where
many negative values are distributed over a large area. For
the RMMEH method, it recovers the depressed NDVI by
employing the statistics of the median and mean in the time
series and can thus be affected by short-term oscillations. The
reason why the SG and WS methods obtain relatively poor
performances is that these two methods are heavily reliant on
good-point flag (in GIMMS). Namely, when the NDVI values
with good-point flag are, in fact, not good, the results can
be misdirected. The MWHA method is better able to increase
the contaminated NDVI values in Figs. 6(f) and 7(f), but some
“speckle” artifacts reveal its instability. Taking Fig. 6(f) as an
example, the artifacts with obvious low values near the Congo
River are distinct in both the NDVI and difference maps. The
IDR, OGVR_nw, and OGVR methods obtain satisfactory and
similar visual results in Figs. 6 and 7. The main differences
between the IDR, OGVR_nw, and OGVR methods lie in the
cloud-flag and interpolation-flag areas, which can be seen
more clearly in their difference maps. With the help of the
flag information, the recovered NDVI obtained by the OGVR
method is more homogeneous, with more continuous coloring
throughout the whole space [see Figs. 6(g) and 7(g)]. These
results confirm the effectiveness and stability of the proposed
model, whether flag information is employed or not.

IV. DISCUSSION

A. Parameter Selection
In the OGVR and OGVR_nw methods, the properties

of both the latent NDVI time series and the atmospheric

Fig. 9. Sensitivity analysis between parameters λ and μ in (a) OGVR model
and (b) OGVR_nw model, based on the average reconstruction performance
at the ten control points.

Fig. 10. Global statistics of the untouched points in TISSBERT simulated
time series.

contamination are fully considered and constructed as con-
straint terms to estimate the high-quality NDVI time series.
Therefore, the regularization parameters λ and μ in (7) are
very important. λ works to control the smoothness of the
estimated NDVI curve. A larger λ induces a smoother curve,
whereas a smaller λ captures more frequent changes. For μ,
it tunes the degree to approach the upper envelope of the
original NDVI time series. The estimated curve goes through
the middle of the original time series as μ → 0 and goes
by the top as μ → ∞. To better understand the influence
of λ and μ on the reconstruction performance, parameter
sensitivity analyses were undertaken based on the synthesized
reference NDVI curves at the locations of the ten control points
(see Fig. 4). Since the OGVR model can be regarded as a
more general version of the OGVR_nw model, the sensitivity
analysis for OGVR was done first. By taking control point
a from the evergreen needleleaf forests (ENF) category and
control point e from the closed shrublands (CSH) category as
examples, the changes of the CC, MeanAE, and MaxAE values
varying with the different combinations of parameters λ and
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Fig. 11. Method comparison in TISSBERT data under MeanAE and MaxAE evaluations. From top to bottom: the percentage distributions of NDVI
reconstruction errors and the corresponding global distributions of the best performing method. (a) MeanAE. (b) MaxAE.

TABLE I

GLOBAL RATIOS (%) OF THE BEST PERFORMING
METHOD IN TISSBERT SIMULATED DATA

μ are shown in Fig. 8. Ideally, the CC, MeanAE, and MaxAE
should be, respectively, equal to 1, 0, and 0. It is clear that
the proposed OGVR method performs satisfactorily and stably
with the changes of λ and μ under the different evaluation
indices at the control points of the different land-cover types.
Specifically, within the range of λ ∈ [10−2, 104] and μ ∈
[10−2, 102], the impact on reconstruction performance caused
by the changes of parameters λ and μ is almost negligible.
In order to further verify the stability of the proposed method,
a sensitivity comparison between OGVR and OGVR_nw was
conducted by using the average reconstruction performance at
all ten control points. According to the results shown in Fig. 9,
OGVR doubtlessly exhibits satisfactory stability in average
performance. Although the sensitivity of OGVR_nw is higher
than that of OGVR, due to the lack of constraints from flag
information, a relatively stable and pleasing performance can
also be found around the point when both λ and μ are equal
to 100. For convenience, λ and μ were fixed as 100 in all our
practical usage.

B. Suggestions on Version Selection of the Proposed Method
There remains a question about when to use OGVR and

when to use OGVR_nw. Although OGVR is a more precise

TABLE II

RUNNING TIME(s) OF THE COMPARISON METHODS
WITH THREE TIME-SERIES LENGTHS

model and should be more suitable than OGVR_nw when
the ancillary quality information is available, its performance
may be worse than OGVR_nw in the case when untouched
points in an NDVI time series are few. This is understandable
as OGVR sets the weight of 0 for contaminated pixels,
i.e., abandons the contaminated pixels in NDVI reconstruc-
tion. To illustrate the issue better, time-series simulation
for benchmarking of reconstruction techniques (TISSBERTs)
data [47], [48] was employed to conduct a supplementary
experiment. TISSBERT is a global daily NDVI statistics data
synthesized from 15 years AVHRR data, which provides a
global test and reference dataset representative of real-world
NDVI time series. TISSBERT data consist of one year of
standardized parameters, including DOY cloudy average, DOY
cloudy standard deviation, DOY clear average, DOY clear
standard deviation, and DOY probability of clouds. In the
experiment, daily synthetic cloud-free and cloudy time series
were first generated. Concretely, cloud-free reference time
series were determined as the DOY clear average time series,
while cloudy test time series were synthesized from a mixture
of cloudy time series and clear average time series according
to the DOY probability of clouds. Then, both reference and
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test time series were composited bimonthly using the MVC
technique, with a total of 24 composites.

Before method comparison, the global statistics of the
untouched composites in the TISSBERT simulated time series
were made. The result is shown in Fig. 10 (sea composites
were excluded). It can be found that more than 30% of
the test time series have zero untouched composites, and
nearly 60% of the test time series have untouched composites
less than or equal to 7 (30% of all 24 composites). Two
groups of methods using flag information or not were both
tested. Since the methods using flag information abandon the
contaminated points in NDVI reconstruction, it will be very
difficult when untouched composites are few. The percentage
distributions of NDVI reconstruction errors in TISSBERT
data under MeanAE and MaxAE evaluations are shown in
Fig. 11. The corresponding global distributions of the best
performing method are also given in Fig. 11. As a supplement,
the global ratios of the best performing method are listed in
Table I. It is obvious that the class using flag information
shows a significant overall decline in performance. With
very limited information of untouched composites, SG, WS,
MWHA, and OGVR are much easier to produce higher errors
than RMMEH, IDR, and OGVR_nw methods (see Fig. 11).
Although the performance of OGVR can be highly limited
by the insufficient untouched points in TISSBERT simulated
data, the proposed OGVR_nw that is independent of the flag
information can always ensure a stable and high-quality NDVI
reconstruction performance and achieves the best in this test.
Therefore, combined with the previous experimental results,
OGVR_nw is a more robust method that can always be relied
on, while OGVR is recommended when flag information is
available and the noise ratio is not too high. Alternatively,
we can always choose OGVR but manually change its weight
(from 0 to 1) for noisy pixels when processing seriously
contaminated time series.

C. Running Time

For the proposed NDVI reconstruction method, the �p-norm
(p ∈ (0, 2]) minimization in model (7) can be converted into
a much simpler weighted least-squares minimization problem
through the IRLS technique. As a result, both OGVR and
OGVR_nw can efficiently estimate the latent ideal NDVI
time series under the variational framework. In addition, since
the regularization parameters in the proposed method are
relatively insensitive, computation time is further saved by
using the fixed parameters in real implementations. To speed
up the calculation, all the experiments were conducted through
the same parallel computation strategy in MATLAB on a
desktop personal computer (CPU: eight processors with a
frequency of 3.0 GHz and RAM: 48 GB). Based on 10 000 test
points, the running times of all the test methods were recorded
for cases of processing NDVI time series with different
lengths. The average times calculated from the five rounds
of repeated tests are given and compared in Table II. It should
be noted that the running times of the SG and WS methods
include the time taken to search for the best parameters,
in accordance with their original works. According to the

results listed in Table II, although the proposed OGVR and
OGVR_nw, as global optimization methods, are not the fastest,
their computation efficiency is still comparable to that of the
highly efficient methods such as IDR and SG. Moreover,
the running times of both versions of the proposed method
grow slowly even when the data length increases significantly,
indicating that the proposed method has good feasibility and
applicability.

V. CONCLUSION

In this article, we have proposed a novel OGVR method
to effectively and efficiently estimate high-quality NDVI time
series via taking the properties of both the gradual vegetation
change and negatively biased atmospheric contamination into
consideration. To adapt to different processing cases, there
are two versions of the proposed method, for data with and
without ancillary flag information. The experiments under-
taken on simulated and real NDVI time series at a global
scale demonstrated that the proposed method has obvious
advantages over the comparison methods in the following
three aspects. First, the OGVR method is able to obtain
effective and stable results for seriously contaminated NDVI
time series, even if continuous missing data problems exist.
Second, OGVR is convenient to use, without worrying about
any tedious preprocessing/postprocessing steps or complex
parameter settings. Third, OGVR possesses good universality
and computing performance for different input conditions. The
proposed method is not only suitable for use with GIMMS
data, but it can also be easily applied to various NDVI products
and self-calculated NDVI or EVI time series. These advantages
of the proposed method will be conducive to research into
vegetation monitoring, drought analysis, land-cover change
detection, and other related topics.
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