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A B S T R A C T   

Dense medium-resolution imagery is essential for fine-scale time-series applications. The combined use of 
Landsat 8 and Sentinel-2 can derive 10-m time-series imagery at a nominal temporal resolution of ~ 2.9 days. 
Specifically, Landsat images can be downscaled to a 10-m resolution by fusing them with temporally adjacent 
Sentinel-2 images. Current approaches simply use a linear model or a shallow network that is insufficient to 
obtain the complex mapping between inputs and outputs, and they rarely consider the temporal variation issue, 
especially for scenes experiencing land cover changes. Facing these limitations, we proposed a degradation-term 
constrained spatiotemporal fusion network (DSTFN). Technically, a deep network architecture incorporating 
residual dense blocks and attention mechanism modules is adopted to enhance the feature representation and 
extraction. A degradation constraint term is embedded into the loss function to maximize the use of the input 
coarse-resolution image and improve the capability of predicting change. A series of experiments based on two 
new datasets indicate that DSTFN achieves the best quantitative scores in every test and is thus effective and 
robust. In 20 resolution-degraded tests, on average, DSTFN decreases the mean relative error by 0.85%–5.35% 
and increases the peak signal-to-noise ratio 0.97–6.23 relative to baseline approaches. The tests featuring diverse 
temporal dynamics also confirm the strong generalization ability of DSTFN to deal with land cover change. The 
proposed network can be used to produce 10-m dense time-series imagery and shows great promise for a variety 
of time-series analyses and applications. The test materials are expected to be employed as standard datasets for 
future model assessment.   

1. Introduction 

Medium-resolution satellites usually observe the Earth’s surface at a 
spatial resolution of tens of meters and show a superior capability to 
characterize the spatial structures of ground features relative to low- 
resolution satellites; thus, they are important for global and regional 
remote sensing applications (Gutman et al., 2008). Among the various 
medium-resolution satellites, Landsat 8 and Sentinel-2 are flagship 
missions because of their outstanding quality, global coverage, and free 
access to data archives (Woodcock et al., 2008). The Landsat family has 
been acquiring Earth observation data since 1972 (Irons et al., 2012), 
and the current Landsat 8 carries the Operational Land Imager (OLI) that 
records reflective signals from visible to shortwave infrared ranges at a 

30-m resolution (Roy et al., 2014). As a part of the European Copernicus 
Project, Sentinel-2 is composed of two on-orbit satellites and collects 
multispectral imagery at 10/20/60-m resolutions depending on specific 
bands (Drusch et al., 2012). The medium-resolution imagery acquired 
by Landsat 8 and Sentinel-2 has been employed in a variety of appli
cations, such as mapping land covers (Sánchez-Espinosa and Schröder, 
2019), estimating biophysical properties (Korhonen et al., 2017), and 
evaluating disaster risks (Roy et al., 2019). Although the two repre
sentative missions are widely employed, a single instrument usually 
observes at a limited frequency that is inadequate to detect rapid 
changes (Pan et al., 2021), especially over dynamic landscapes. For 
example, Sentinel-2 revisits the same region every 5 days with twin 
satellites, but the authentic time gap of usable images is lengthened 
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because of frequent cloud covers (Ju and Roy, 2008; Shen et al., 2019); 
hence, the capability of Sentinel-2 to reveal land surface dynamics is 
reduced. Besides, the 5-day revisit frequency hinders the monitoring of 
rapid changes that occur on a daily basis. Given the specification simi
larities of Landsat 8 and Sentinel-2 described in Table 1, an increasing 
number of studies have started to cooperatively use Earth observations 
from the two missions to densify the imagery (Chen et al., 2021b; Pan 
et al., 2021) and improve the ability to detect surface changes. Ac
cording to Li and Roy (2017), considering Landsat 8 and Sentinel-2 
together can lead to a median average interval of ~ 2.9 days. 

In addition to geometric registration, bandpass adjustment, and 
spectral response harmonization, the combined use of Landsat 8 and 
Sentinel-2 requires the coordination of spatial resolution (Shao et al., 
2019). A number of studies have upscaled Sentinel-2 imagery to 30 m to 
match it with that of Landsat 8 (Dong et al., 2020; Liu et al., 2020). For 
instance, the Harmonized Landsat and Sentinel-2 (HLS) project (Clav
erie et al., 2018), a NASA initiative, produces a harmonized 30-m sur
face reflectance dataset by resampling the Sentinel-2 10/20-m bands to 
30-m. The “degraded resolution” scheme is generally easy to implement, 
but it sacrifices the fine spatial textures and limits the possibility of 
precisely mapping complex landscapes. 

Different from the former option, the “enhanced resolution” scheme, 
i.e., enhancing Landsat 8 imagery to 10 m, is highly attractive. Li et al. 
(2017) downscaled the Landsat 30-m bands to 15 m by utilizing the 
panchromatic band and then resampled the result into registration with 
Sentinel-2 20-m bands. Pouliot et al. (2018) and Chen et al. (2021a) 
super-resolved Landsat 8 by using a convolutional neural network 
(CNN) and generative adversarial network (GAN). These works recon
structed the resolution-improved imagery by utilizing signals only from 
the Landsat source, and the results, although enhanced, have limited 
capacities to depict details relative to observed Sentinel-2 scenes (Pou
liot et al., 2018). Given the deficiency, Sentinel-2 imagery temporally 
adjacent to the desired Landsat imagery is introduced as auxiliary data 
to obtain a robust output. The idea of merging multisource 

multitemporal imagery is similar to the spatiotemporal fusion concept 
originating from MODIS–Landsat fusion (Ma et al., 2021; Zhu et al., 
2018). Various fusion models, such as the spatial and temporal adaptive 
reflectance fusion model (Gao et al., 2006), have been developed, but 
they require coincident fine- and coarse-resolution image pairs as input, 
which is challenging to satisfy for Landsat and Sentinel-2 because of 
their rarely matching acquisition dates. In our previous work (Wu et al., 
2020), we combined an image simulation procedure with a spatiotem
poral fusion model to present an initial solution. Agapiou (2020) 
exploited the pan-sharpening methods for this mission, and the derived 
10-m results enhanced the image segmentation performance. Recently, 
approaches specifically for Landsat 8 and Sentinel-2 have also emerged. 
Wang et al. (2017) extended a geostatistical method called area-to-point 
regression Kriging (ATPRK) to downscale the Landsat 8 data to a 10-m 
resolution. Inspired by the advances in deep learning, Shao et al. 
(2019) and Luo et al. (2021) respectively presented an extended super- 
resolution convolutional neural network (ESRCNN) and a fusion 
generative adversarial network (FusGAN) to achieve data fusion. In 
addition to surface-reflectance-based studies, some cases aimed to 
construct 10-m normalized difference vegetation index (NDVI) time 
series by utilizing deep learning architecture (Ao et al., 2021; Bhogendra 
and Tej Bahadur, 2021). 

Although attempts have been made to develop fusion models, several 
issues remain. First, as the core of fusion models, the mapping between 
inputs and outputs is statistically complex, and a simple linear model or 
a shallow network from previous studies (Shao et al., 2019; Wu et al., 
2020) may be insufficient to obtain this mapping. Second, the existing 
deep-learning-based approaches rarely notice the inherent nature of the 
fusion task, such as the robust prediction for diverse temporal changes. 
Third, the scientific community needs benchmark datasets for Landsat 8 
and Sentinel-2 fusion, and so, model validation cannot be performed 
fairly. 

Given the limitations, we proposed a degradation-term constrained 
spatiotemporal fusion network (DSTFN) to fuse Landsat 8 and Sentinel-2 
surface reflectance products and derive a 10-m dense time series. The 
model incorporates residual dense blocks with attention mechanism 
modules to enhance feature-level image fusion. A degradation constraint 
term is integrated into the loss function to enhance the prediction ca
pacity for scenarios with abrupt changes. Two benchmark datasets 
featuring various levels of spatial heterogeneity and temporal dynamics 
are provided. On the basis of these datasets, our model is comprehen
sively evaluated against four baseline methods, including linear- 
weighting-based, geostatistical, and deep-learning-based methods. 

2. Method 

2.1. Two-stage data fusion framework 

DSTFN is a deep-learning-based model that is proposed herein to 
merge Landsat 8 and Sentinel-2 observations and produce 10-m time- 
series imagery. Specifically, a 30-m Landsat image is downscaled to a 
10-m resolution by fusing it with a temporally neighboring Sentinel-2 
imagery. DSTFN considers the blue, green, red, near-infrared (NIR), 
and shortwave infrared (SWIR-1/2) bands that are common to both 
sensors and are widely accepted in applications. Fig. 1 illustrates the 
structure of DSTFN. The fusion framework is composed of two stages. 
The first stage accounts for the resolution disparity of Sentinel-2 bands 
and downscales the 20-m bands (B8A and B11–B12) to 10 m by taking 
the 10-m bands (B02–B04 and B08) as auxiliary data. The second stage 
coordinates the resolutions of Landsat and Sentinel-2 imagery and 
downscales the 30-m Landsat imagery (b2–b7) to 10 m. This stage uses 
the 10-m Sentinel-2 imagery (B02–B04, B8A, and B11–B12) temporally 
neighboring to the desired Landsat imagery as auxiliary data. The 15-m 
Landsat panchromatic band is included as auxiliary data to bridge the 
resolution gap between the two instruments, as suggested by previous 
studies (Shao et al., 2019; Wang et al., 2017). 

Table 1 
Comparison of specifications between Sentinel-2A MSI and Landsat 8 OLI.    

Sentinel-2A MSI Landsat 8 OLI 

Swath width 290 km 185 km 
Revisit cycle 10 days 16 days 
Field of view 20.6◦ 15◦

Equator crossing time 10:30 a.m. 10:13 a.m. 
Band configuration and 

spatial resolution 
Coastal B01: 433–453 nm 

(10 m) 
b1: 430–450 nm 
(30 m) 

Blue B02: 458–523 nm 
(10 m) 

b2: 450–515 nm 
(30 m) 

Green B03: 543–578 nm 
(10 m) 

b3: 525–600 nm 
(30 m) 

Red B04: 650–680 nm 
(10 m) 

b4: 630–680 nm 
(30 m) 

Red Edge 
1 

B05: 698–713 nm 
(20 m) 

—— 

Red Edge 
2 

B06: 733–748 nm 
(20 m) 

—— 

Red Edge 
3 

B07: 773–793 nm 
(20 m) 

—— 

NIR B08: 785–900 nm 
(10 m) 

—— 

NIR- 
narrow 

B8A: 855–875 nm 
(20 m) 

b5: 845–885 nm 
(30 m) 

Water 
vapor 

B09: 935–955 nm 
(60 m) 

—— 

Cirrus B10: 1360–1390 
nm (60 m) 

b9: 1360–1390 
nm (30 m) 

SWIR-1 B11: 1565–1655 
nm (20 m) 

b6: 1560–1660 
nm (30 m) 

SWIR-2 B12: 2100–2280 
nm (20 m) 

b7: 2100–2300 
nm (30 m) 

PAN —— b8: 503–676 nm 
(15 m)  
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2.2. Network architecture 

2.2.1. Overview of fusion network 
The proposed method has two subnetworks with similar structures, 

as shown in Fig. 1. For simplicity of description, the input data of the two 
networks are uniformly divided into two parts, namely, the coarse- 

resolution target data Y and the fine-resolution auxiliary data Z. The 
output data X represent a resolution-enhanced version of Y. As 
mentioned above, in the first stage focusing on the fusion of the Sentinel- 
2 bands, Y is the observed 20-m band group, Z is the observed 10-m band 
group, and X is the downscaled result of Y; they are depicted as 

Fig. 1. Flowchart of the proposed DSTFN model.  

Fig. 2. Illustration of the attention-coupled residual dense block.  
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⎧
⎨

⎩

Y = {B8A20, B1120, B1220}

Z = {B0210, B0310, B0410, B0810}

X = {B8A10, B1110, B1210}

(1)  

where the band notations are consistent with those in Table 1, and the 
subscripts denote band resolutions. In the second stage, Y represents the 
30-m Landsat 8 imagery, Z has two components depicting the 10-m 
neighboring Sentinel-2 imagery and the 15-m Landsat panchromatic 
band, and X is the downscaled version of Y; they are described as 

⎧
⎪⎨

⎪⎩

Y = {b230, b330, b430, b530, b630, b730}

Z1 = {B0210, B0310, B0410, B8A10, B1110, B1210}

Z2 = {b815}

X = {b210, b310, b410, b510, b610, b710}

(2) 

The two networks have similar structures. First, the shallow feature 
maps are separately extracted from Y and Z. The fine-resolution source Z 
adopts a convolutional layer with 64 filters of 3 × 3 × bf, where bf de
notes the fine-resolution band number. The coarse-resolution source Y 
applies a convolutional layer with 64 filters of 3 × 3 × bc and an 
attention-coupled residual dense block (ARDB, the details are presented 
in Section 2.2.2), where bc denotes the coarse-resolution band number. 
Subsequently, a bicubic resampling procedure is performed to coordi
nate the feature map size. Second, the features mapped from the two 
sources are dimensionally concatenated and processed via three ARDBs. 
The output feature maps from the three blocks are concatenated by skip 
connections so that the feature maps at different levels can be fully 
considered and utilized in the network. Then, the derived feature maps 
are combined with the upsampled features from the coarse-resolution 
source via elementwise addition. Finally, the feature maps are pro
cessed by a convolutional layer with fc filters of 3 × 3 × 64 to produce 
the fine-resolution result X. 

2.2.2. Attention-coupled residual dense block (ARDB) 
Given that the mapping between input and output data is complex 

and nonlinear, it is a better choice to use a deep network and complex 
structures to fit this mapping. Therefore, we combine a residual dense 
block and an attention mechanism module to form the basic unit of the 
network called attention-coupled residual dense block (ARDB, Fig. 2). 
The unit applies an attention mechanism module to recalibrate the 
feature maps and then uses a residual dense block to extract features via 
dense connections and residual learning. As illustrated in Fig. 1, each 
network has four ARDBs: one for extracting features from the coarse- 
resolution source and the other three for extracting features from the 
combined sources. 

As an interpretation of human intuition to pay more attention to the 
area of interest than the background (Woo et al., 2018), the attention 
mechanism has been applied in many tasks, such as image super- 
resolution (Lin et al., 2022a; Lin et al., 2022b) and classification 
(Tong et al., 2020). The attention mechanism module adaptively adjusts 
the feature response in the spatial and channel dimension, and thus, it 
recalibrates the extracted features and enhances the feature expressions. 
The module in our network has two branches accounting for spatial 
attention and channel attention. The spatial attention branch employs 
the first 3 × 3 convolutional layer to extract local features and the 
second 1 × 1 layer to estimate the spatial weights. The channel attention 
branch consists of two sub-branches, in which the global statistical 
features are extracted by pooling operators, and then the channel 
weights are derived by two convolutional layers with 1 × 1 kernels, 
followed by elementwise multiplication for signal recalibration. The 
recalibrated maps are combined from the two sub-branches and pro
cessed via a 3 × 3 convolutional layer. Finally, the output feature maps 
from the two branches are added elementwise to generate the adjusted 
feature maps. 

After the recalibration, a residual dense block is used to make full use 
of hierarchical features and focuses on deriving the residual features. 

The block incorporates the ideas of dense connection (Huang et al., 
2017) and residual learning (He et al., 2016; Shen et al., 2020). As 
illustrated in Fig. 2, each block adopts six “Conv + ReLU” layers, and 
each “Conv + ReLU” layer applies a 3 × 3 convolutional layer (Conv), 
followed by a rectified linear unit (ReLU). The feature maps pass within 
the block via dense connections; that is, each layer inputs the features 
from all preceding layers and passes the current features to all suc
ceeding layers (Huang et al., 2017), and this strengthens feature prop
agation and encourages feature reuse. Mathematically, the output of the 
l-th layer (1⩽l⩽6) in a block is depicted as 

Fl = fl(concat(Fa, F1, …, Fl− 1) ) (3)  

where Fa denotes the recalibrated feature map from the attention 
module, andF1, …,Fl− 1, and Fl denote the feature maps from the 1, …, l- 
1, and l-th layer, respectively. fl is the “Conv + ReLU” in the l-th layer. 
concat(∙) represents the concatenation operation. To improve the 
feature representation ability, this study also employs the residual 
learning strategy. The final output Fo of a block can be expressed as: 

Fo = Fa +Fr (4)  

where Fr is the residual feature map derived by 1 × 1 convolutional layer 
imposed on the feature maps concatenated from the six previous layers. 

2.3. Loss function term based on the image degradation process 

The loss function constrains the model and guides the optimization 
of the network. In the two networks, the loss function Lt(Θ) can be 
uniformly depicted as 

Lt(Θ) = αL1(Θ)+ βLf (Θ)+ γLd(Θ) (5)  

where L1(Θ) and Lf (Θ) respectively denote the l1-norm term and Fro
benius norm term that are widely employed to constrain the errors be
tween predictions and labels. Ld(Θ) is the degradation constraint term 
specifically designed to ease the temporal variation issue. Θ represents 
the network parameters.α,β, and γ are the regularization parameters 
adaptively determined by 

α =
L1(Θ)

L1(Θ) + Lf (Θ) + Ld(Θ)
,

β =
Lf (Θ)

L1(Θ) + Lf (Θ) + Ld(Θ)
,

γ =
Ld(Θ)

L1(Θ) + Lf (Θ) + Ld(Θ)

(6)  

The degradation constraint term Ld(Θ) is employed to solve the temporal 
variation problem. Specifically, if a dramatic change occurs between 
two multitemporal input images, the information from the coarse- 
resolution target image Y should be preferentially considered and 
maximally used to reconstruct the output X, because both X and Y 
represent the same-day land surface condition. Therefore, we use Y to 
build a constraint for the model. According to the observation degra
dation model (Shen et al., 2016), Y can be considered a degraded version 
of X by introducing warping, blurring, downsampling, and noise oper
ators. Given that the Landsat and Sentinel-2 images are highly consistent 
after pre-processing steps, including atmospheric correction, bandpass 
adjustment, and geometric registration (see Section 3.1), the motion, 
blurring, and noise operators show indistinctive influence. Accordingly, 
Y is approximately equal to a downsampled version of X: 

Y = DX (7)  

where D denotes the downsampling operator. By embracing this idea, 
we design the degradation terms in the two networks as follows. 

In the first stage, given a training dataset 
{(

zi
S10m

, yi
S20m

)
; xi

S10m

}N

i=1
, 
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where zi
S10m 

and yi
S20m 

are the 10-m and 20-m band groups, xi
S10m 

is the 
label data (i.e., the enhanced version of yi

S20m
), and N is the training data 

number. The degradation term Lnet1
d (Θ) is expressed as 

Lnet1
d (Θ) =

1
2N

∑N

i=1

⃦
⃦
⃦yi

S20m
− fd

(
ξnet1

(
zi

S10m
, yi

S20m

)
+ fu

(
yi

S20m

))⃦
⃦
⃦

2

F
(8)  

where ξnet1(∙) denotes the residual output from the first-stage network. 
The residual output is combined with the upsampled coarse-resolution 
data to derive the fusion result. fd(∙) and fu(∙) denote the down
sampling and upsampling operators, respectively. 

In the second stage, the training dataset is depicted as 
{(

zi
S10m

, zi
L15m

, yi
L30m

)
; xi

L10m

}M

i=1
, wherezi

S10m
,zi

L15m
, and yi

L30m 
are the 10-m 

Sentinel-2 imagery, 15-m Landsat panchromatic band, and 30-m Land
sat imagery, respectively; xi

L10m 
is the label data (i.e., the resolution- 

enhanced result of yi
L30m

); and M is the training data number. In this 
case, the degradation term Lnet2

d (Θ) is depicted as 

Lnet2
d (Θ) =

1
2M

∑M

i=1

⃦
⃦
⃦yi

L30m
− fd

(
ξnet2

(
zi

S10m
, zi

L15m
, yi

L30m

)
+ fu

(
yi

L30m

))⃦
⃦
⃦

2

F
(9)  

where ξnet2(∙) denotes the residual output from the second-stage 
network. 

3. Test datasets, network training, and baseline methods 

3.1. Study sites and test datasets 

Two time-series datasets are constructed for model evaluation. The 
first site (“Hailar” herein, Fig. 3(a)) is located at the border across Hailar 
and Qiqihar in Northeast China, with an area of about 1,568 km2 (3,960 
× 3,960 10-m pixels). It has various land covers, including farmlands, 
woodlands, lakes, and residential settlements. The woodlands are 
generally homogeneous and show slow phenological variations through 
time, while the farmlands are more heterogeneous and change more 
significantly due to human-induced activities. The farmlands at this site 
are dominantly covered by two crop species, namely, soybean (sowed in 
late April and matures in early-to-mid September) and maize (sowed in 
late May and matures in mid-to-late September). The second site 
(“Dezhou” herein, Fig. 3(b)) is located in Dezhou, Shandong Province, 
China, and it covers a spatial extent of 882 km2 (2,970 × 2,970 10-m 
pixels). Although primarily covered by farmlands, this site has more 
built-up regions (e.g., urban regions and scattered villages) than the 
previous site. The farmlands at this site vary through time with growing 
cycles of two crops, namely, winter wheat (sowed in the previous year 
and matures in early June) and maize (sowed in late June and matures in 
early October). 

Landsat 8 Level-2 and Sentinel-2 Level-1C products were collected 
from the United States Geological Survey web portal 
(https://earthexplorer.usgs.gov/). The Hailar dataset comprises 23 
cloud-free scenes from 2019, with 10 obtained from Landsat 8 (path/ 

Fig. 3. Geographic locations and collected Sentinel-2 images at Hailar (a) and Dezhou (b).  
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row: 121/027) and 13 (tile: T51UWP) from Sentinel-2. The Dezhou 
dataset contains 24 scenes from 2018, with 11 obtained from Landsat 8 
(122/035) and 13 from Sentinel-2 (T50SMF). The Landsat Level-2 
product was atmospherically corrected by Landsat 8 Surface Reflec
tance Code (LaSRC) before data distribution, and the Sentinel-2 L1C 
product was corrected by Sen2Cor. We extracted the visible, near 
infrared, and shortwave infrared bands from the two sources. The 
panchromatic band was also collected from Landsat. The collected data 
were geometrically aligned and spatially clipped to ensure the same 
extent. The slight differences caused by bandpass configuration were 
adjusted via the linear correction model developed by Zhang et al. 
(2018) with the linear coefficients regressed from coincident Landsat 
and Sentinel-2 surface reflectance data. 

3.2. Model training 

Each dataset was divided into two parts for network training and 
testing (Table 2). In the first stage, given that the label data (i.e., 10-m 
B8A and B11-B12) are unavailable, we followed Wald’s protocol and 
trained the model based on resolution-degraded data with a scale factor 
of 2 (Shao et al., 2019). Specifically, the Sentinel-2 10-m and 20-m bands 
were degraded to 20-m and 40-m, respectively. The degraded bands (i. 
e., 20-m B02–B04 and B08; 40-m B8A and B11–B12) were used as input, 
and the 20-m B8A, B11, B12 bands as output labels. In the second stage, 
we adopted the same strategy but with a degradation factor of 3. Each 
Landsat image was combined with a temporally adjacent Sentinel-2 
imagery before/after the Landsat. The Sentinel-2 imagery was 
degraded to 30-m, and the Landsat multispectral imagery and the 
panchromatic band were degraded to 45-m and 90-m, respectively. The 
degraded data were used as input, and the observed Landsat 30-m 
multispectral imagery was used as output labels. By constructing the 
mapping at degraded resolutions, the two deep networks can be trained. 

3.3. Baseline methods 

Four baseline methods, namely, bilinear interpolator, STARFM 
under simplified input modality (STARFM-SI) (Wu et al., 2020), ATPRK 
(Wang et al., 2017), and ESRCNN (Shao et al., 2019), were used for 
comparison. The bilinear interpolator directly interpolates the coarse- 
resolution imagery to a fine resolution while the other three ap
proaches restore spatial structures by adding fine-resolution auxiliary 
imagery. STARFM-SI adopts a weighted linear relationship to achieve 
the fusion. ATPRK, a geostatistical algorithm, involves semi-variogram 
modeling from the cokriging matrix. ESRCNN applies deep learning to 
formulate the mapping between different resolutions. Fusion results 
were visually and quantitatively assessed against ground truth. Eight 
quantitative measures, namely, mean absolute error (MAE), mean 

Table 2 
Imagery used for model training and validation in the two sites.    

Training Validation   

Landsat 8 
(MM/DD/YY) 

Sentinel-2 
(MM/DD/YY) 

Landsat 8 
(MM/DD/YY) 

Sentinel-2 
(MM/DD/YY) 

Hailar site 01/23/2019 
02/24/2019 
05/15/2019 
09/04/2019 
10/22/2019 

01/02/2019 
01/22/2019 
02/16/2019 
03/03/2019 
03/23/2019 
05/02/2019 
10/19/2019 

01/07/2019 
02/08/2019 
04/13/2019 
06/16/2019 
10/06/2019 

01/07/2019 
01/27/2019 
02/26/2019 
03/13/2019 
04/02/2019 
09/29/2019 

Dezhou site 01/11/2018 
04/17/2018 
05/03/2018 
09/08/2018 
10/26/2018 

01/05/2018 
03/26/2018 
04/20/2018 
09/07/2018 
10/02/2018 
11/01/2018 

02/12/2018 
03/16/2018 
06/20/2018 
09/24/2018 
10/10/2018 
12/13/2018 

02/04/2018 
03/16/2018 
03/31/2018 
07/19/2018 
09/22/2018 
10/17/2018 
12/16/2018  

Fig. 4. Resolution-degraded input imagery and ground truth imagery in the two tests with slight (a–c) and dramatic (d–f) changes at the Hailar site. (a) and (d) are 
degraded from Sentinel-2, (b) and (e) are degraded from Landsat 8, and (c) and (f) are the observed Landsat 8 images. 
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relative error (MRE), root-mean-square error (RMSE), erreur relative 
global adimensionnelle de synthèse (ERGAS), spectral angle mapper 
(SAM), correlation coefficient (CC), peak signal-to-noise ratio (PSNR), 
and structural similarity (SSIM), were used to reveal the fusion perfor
mance. For details on the quantitative measures, please refer to Text S1 
in the supplementary material. The lower MAE, MRE, RMSE, SAM, and 
ERGAS scores and higher CC, PSNR, and SSIM scores indicated superior 

fusion outputs. 

4. Experimental results 

4.1. Experiments based on resolution-degraded data at Hailar site 

The collected Hailar dataset was used to validate the model. Each 

Fig. 5. Experimental results in the test featuring slight change at the Hailar site. (g)–(l) are detailed views of (a)–(f) in the subset region marked with a red square.  
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Landsat imagery was combined with the temporally nearest Sentinel-2 
imagery before/after Landsat, resulting in eight data groups for 
testing. Following the training strategy, the eight tests were performed 
on the basis of resolution-degraded imagery to obtain the baseline data 
as ground truth. Specifically, the 90/45-m Landsat-degraded data and 
the 30-m Sentinel-degraded data were merged to derive the 30-m im
agery (i.e., the resolution-enhanced output of the Landsat-degraded 

data), and the result was assessed against the observed 30-m Landsat 
imagery. 

The two tests showing slight and dramatic changes are presented for 
visual comparison. The resolution-degraded inputs and ground truth in 
the tests are illustrated in Fig. 4. The two cases have time gaps of 7 days 
(Fig. 4(a)–(c)) and 75 days (Fig. 4(d) –(f)), respectively, in which the 
first case shows inapparent change while the second has dramatic 

Fig. 6. Experimental results in the test featuring dramatic change at the Hailar site. (g)–(l) are detailed views of (a)–(f) in the subset region marked with a red square.  
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change, with forest phenology stages transforming from dormancy to 
greening. The results of the two tests and detailed views are shown in 
Figs. 5 and 6. In the slight change case (Fig. 5), the bilinear interpolator 
completely fails to recover the spatial structures. ATPRK presents a 
slightly blurry output while STARFM-SI, ESRCNN, and DSTFN produce 
results visually similar to the ground truth. In the dramatic change case 

(Fig. 6), according to the zoomed-in views, STARFM-SI predicts the 
result with spectral distortion in the green forest area, ATPRK still has 
room for recovering the sharp edges of ground features, and the deep- 
learning-based DSTFN and ESRCNN outperform the others from the 
spatial and spectral aspects. 

The quantitative descriptions reflect the visually imperceptible 

Fig. 7. Red-band error maps and scatter plots of fusion results against the ground truth in the two temporally diverse tests at the Hailar site. (a)–(e) and (f)–(j) belong 
to the slight and dramatic change cases, respectively. 

Table 3 
Quantitative results of the two temporally diverse tests at the Hailar site.    

Ideal Bilinear STARFM-SI ATPRK ESRCNN DSTFN 

Slight change test MAE 0  0.0087  0.0077  0.0067  0.0038  0.0034 
MRE 0  0.0671  0.0641  0.0559  0.0334  0.0282 
RMSE 0  0.0142  0.0131  0.0111  0.0064  0.0058 
SAM 0  2.0089  1.8457  1.7612  1.1179  1.0329 
ERGAS 0  0.7505  0.7476  0.5831  0.3459  0.3148 
CC 1  0.8755  0.8897  0.9354  0.9753  0.9800 
SSIM 1  0.9905  0.9916  0.997  0.9994  0.9995 
PSNR +∞  36.2956  37.1957  38.3869  43.0591  43.7915 

dramatic change test MAE 0  0.0120  0.0153  0.0101  0.0070  0.0059 
MRE 0  0.0892  0.1311  0.0815  0.0631  0.0492 
RMSE 0  0.0189  0.0238  0.0157  0.0112  0.0100 
SAM 0  3.3871  4.2133  3.3312  2.3773  1.9917 
ERGAS 0  0.9029  1.2498  0.7194  0.5097  0.4643 
CC 1  0.9242  0.858  0.9559  0.9753  0.9798 
SSIM 1  0.9875  0.9576  0.9949  0.9982  0.9988 
PSNR +∞  33.9028  32.1334  35.2991  38.1388  39.2244  
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differences. According to Fig. 7 which shows the red-band error maps 
and scatter plots of the fusion results against the ground truth, DSTFN 
and ESRCNN have considerably fewer errors than the others because the 
error maps have less bright area and the scatters are more fixed around 
the ideal 1:1 line. The quantitative descriptions in the scatter plots reveal 
that DSTFN outperforms ESRCNN to a certain degree. For example, 
DSTFN gives red-band predictions with large R2 scores (DSTFN vs. 
ESRCNN:0.9632 vs. 0.9518) in the first case. Table 3 presents the 
quantitative results averaged from the six bands. DSTFN achieves the 
quantitative scores closest to the ideal values across the eight measures; 
this result suggests its superiority. Eight tests were performed at the 

Hailar site, and their quantitative results in terms of RMSE, SAM, CC, 
and PSNR are mapped in Fig. 8. DSTFN stably achieves the highest CC 
and PSNR scores and the lowest RMSE and SAM scores and is thus robust 
under various scenes. Specifically, relative to the benchmark methods, 
DSTFN shows a 0.79%–4.3% decrease in MRE and a 1.00–6.57 increase 
in PSNR on average in these tests. 

4.2. Experiments based on resolution-degraded data at Dezhou site 

Based on the Dezhou dataset, we applied the testing strategy in 
Section 4.1 to perform twelve tests. The Dezhou site has more complex 

Fig. 8. Quantitative results of the eight experiments at the Hailar site. The observed dates of input images in these tests are shown in Table 2.  

Fig. 9. Resolution-degraded input imagery and ground truth imagery in two tests with slight (a–c) and dramatic (d–f) changes at the Dezhou site. (a) and (d) are 
degraded from Sentinel-2, (b) and (e) are degraded from Landsat 8, and (c) and (f) are the observed Landsat 8 images. 
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landscapes than the previous site, such as spatially heterogeneous arti
ficial buildings and temporally dynamic farming systems. Similarly, the 
two temporally diverse cases are displayed, and the input data, ground 
truth, and results in two tests are shown in Figs. 9–11. In the slight 
change case (Fig. 9(a)–(c) and Fig. 10), the ground surface shows 
insignificant change during the 8-day time gap. The bilinear interpolator 

fails to reconstruct spatial details. ATPRK produces the result with slight 
blurry effects. By contrary, DSTFN, ESRCNN, and STARFM-SI derive 
plausible outputs. In the dramatic change case (Fig. 9(d)–(f) and 
Fig. 11), STARFM-SI fails to capture subtle features such as line-shaped 
roads. ATPRK continues to show limited capacities to recover edges. 
ESRCNN suffers from slight spectral inconsistency. DSTFN is generally 

Fig. 10. Experimental results in the test featuring slight change at the Dezhou site. (g)–(l) are the detailed views of (a)–(f) in the subset region marked with a 
red square. 
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closet to the ground truth from the spatial and spectral perspectives. 
Fig. 12 shows the red-band error maps and scatter plots of the above 

two tests, and it can be observed that DSTFN and ESRCNN have 
remarkable advantages over the others. Between the two deep learning 
approaches, DSTFN is more effective because it has fewer errors (e.g., 
DSTFN vs. ESRCNN in terms of RSME: 0.0084 vs. 0.0103). The 

quantitative results involving full bands are presented in Table 4. The 
finding generally conforms to the visual comparison that DSTFN has the 
best performance since its quantitative results are closest to the ideal 
quantitative values. Twelve tests were performed at the Dezhou site, and 
the quantitative descriptions of RMSE, SAM, CC, and PSNR in these tests 
are shown in Fig. 13. DSTFN shows robustness across various landscapes 

Fig. 11. Experimental results in the test featuring dramatic change at the Dezhou site. (g)–(l) are the detailed views of (a)–(f) in the subset region marked with a 
red square. 
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and temporal dynamics since it obtains the highest CC and PSNR values, 
and the lowest RMSE and SAM values in every experiment. Compared 
with the other approaches, DSTFN shows a 0.91%–6.40% decrease in 
MRE and a 0.95–6.60 increase in PSNR. In addition, DSTFN outperforms 
ESRCNN, and its quantitative superiority is more obvious in the scenes 
with dramatic change, demonstrating that DSTFN has stronger 

capacities to deal with temporal variations. 

4.3. Experiments based on original data at Dezhou site 

The Dezhou site has a more complex landscape than the Hailar site. 
Thus, we used this site to perform the tests on the basis of the original 

Fig. 12. Red-band error maps and scatter plots of fusion results against the ground truth in the two temporally diverse tests at the Dezhou site. (a)–(e) and (f)–(j) 
belong to the slight and dramatic change cases, respectively. 

Table 4 
Quantitative results of the two temporally diverse tests at the Dezhou site.    

Ideal Bilinear STARFM-SI ATPRK ESRCNN DSTFN 

slight-change test MAE 0  0.0108  0.0063  0.0068  0.0048  0.0044 
MRE 0  0.0645  0.0401  0.0490  0.0320  0.0277 
RMSE 0  0.0161  0.0101  0.0103  0.0071  0.0066 
SAM 0  2.0824  1.4031  1.6708  1.2138  1.0726 
ERGAS 0  0.5846  0.3963  0.3933  0.2637  0.2410 
CC 1  0.8725  0.9441  0.9532  0.9749  0.9789 
SSIM 1  0.9797  0.9919  0.9941  0.9983  0.9987 
PSNR +∞  35.4524  39.6289  39.4981  42.4609  43.0676 

dramatic-change test MAE 0  0.0153  0.0207  0.0123  0.0105  0.0087 
MRE 0  0.0873  0.1447  0.0797  0.0568  0.0472 
RMSE 0  0.0218  0.0275  0.0175  0.0144  0.0123 
SAM 0  3.4373  4.8723  2.9265  2.7399  2.2969 
ERGAS 0  0.7255  0.9137  0.5682  0.4478  0.3836 
CC 1  0.9070  0.8419  0.9481  0.9579  0.9691 
SSIM 1  0.9694  0.8992  0.9875  0.9930  0.9953 
PSNR +∞  32.5511  30.5379  34.3971  35.8314  37.2402  
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observations. The Landsat–Sentinel image pair was collected on March 
16, 2018. By fusing the Landsat image with a temporally adjacent 
Sentinel image, we synthesized a Sentinel-like image on March 16, 2018. 
Then, the fused image was compared with the collected Sentinel image 
to assess the model performance. Similar to those described in the pre
vious sections, the results of two tests featuring diverse temporal dy
namics are displayed in Fig. 14 and Fig. 15, and their quantitative results 
are given in Table 5. To facilitate the visual comparison, we present two 
subset regions involving land cover changes. 

The first experiment focuses on a scene with a slight temporal change 
(Fig. 14). In this case, the farmlands experienced mild phenological 
variations while the region marked by a yellow ellipse showed signifi
cant changes, transforming from bright ice to dark green water. The 
visual comparison indicates that the bilinear interpolator causes serious 
image blur and that ATPRK shows slight artifacts. Although the results 

reveal slight radiometric differences from the ground truth, STARFM-SI, 
ESRCNN, and DSTFN generally reproduce spatial structures and provide 
reliable outputs. As for the capability of capturing land cover changes, 
the ice outlines are more evident in the results of STARFM-SI and 
ESRCNN than in the output of DSTNF. The second experiment (Fig. 15) 
features a dramatic change. The nearly four-month time gap caused 
strong temporal variations because the crops were at contrasting 
phenological stages in multitemporal imagery. The subset region 
marked by a yellow ellipse shows significant land cover transformations 
caused by artificial constructions. Generally, STARFM-SI shows weak
ness in recovering transformed land surface, ATPRK continues to show 
noticeable artifacts, while the deep learning methods visually outper
form the others. The quantitative results in Table 5 reveal that DSTFN is 
superior to ESRCNN in the two tests. By comparing the two tests, we find 
that the four fusion methods show degraded performance along with an 

Fig. 13. Quantitative results of the twelve experiments at the Dezhou site. The observed dates of input images in these tests are shown in Table 2.  

Fig. 14. Experimental results of a subset region in the test featuring a slight change at the Dezhou site.  
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extended magnitude of ground variations. Nevertheless, DSTFN has the 
minimum decreasing tendency quantitatively. For example, the MRE 
scores decrease by 3.61%, 4.92%, 0.35%, and 0.28% for STARFM-SI, 
ATPRK, ESRCNN, and DSTFN, respectively. These results demonstrate 
the stronger ability of DSTFN to capture dramatic changes. 

Lastly, we present a synthetic 10-m image in Fig. 16, which was 
downscaled from the Landsat observation by using the proposed deep 
network. Four representative regions featuring complex landscapes, 
such as agricultural farmlands and urban artificial constructions were 
zoomed in for comparison between the 30-m and 10-m scenes. Gener
ally, the original 30-m Landsat imagery cannot provide sufficient spatial 
structures of heterogeneous ground features. By contrast, the synthetic 
10-m imagery significantly enhances the spatial resolution and dem
onstrates a strong capacity to distinguish ground features. 

5. Discussion 

5.1. Analysis of the five resolution enhancement methods 

The five methods herein can be categorized into three groups, i.e., 
interpolation-based, linear-regression-based, and deep-learning-based 

methods. The bilinear interpolation method upsamples the Landsat 
images to a 10-m resolution without using auxiliary data and shows 
incapability to reproduce spatial structures. The linear-regression-based 
group assumes a linear mapping between inputs and outputs. STARFM 
involves a linear weighting function with respect to spatial, temporal, 
and spectral information from similar pixels (Gao et al., 2006). STARFM 
searches similar pixels based on the fine-resolution auxiliary image, the 
selected pixels are not so reliable to give accurate estimations when the 
land surface remarkably changes in the multitemporal input images; 
Thus STARFM works less effectively in cases featuring land cover 
changes (e.g., Fig. 11). ATPRK produces estimations by combing linear 
prediction with residual compensation (Wang et al., 2017). The residual 
compensation helps to preserve the spectral coherence between fine- 
resolution outputs and coarse-resolution inputs. Nevertheless, the re
siduals are estimated at the coarse resolution, and even they are 
downscaled by geostatistical techniques, the outputs still show slight 
blur and artifacts (e.g., Fig. 6). 

The deep-learning-based group applies the deep learning techniques 
to fit the mapping, and the data-driven models spontaneously learn a 
complex nonlinear relationship by exploiting training samples. As 
clearly observed from our tests, the deep learning methods perform 

Fig. 15. Experimental results of a subset region in the test featuring a dramatic change at the Dezhou site.  

Table 5 
Quantitative results of the two tests based on original data at the Dezhou site.    

Ideal Bilinear STARFM-SI ATPRK ESRCNN DSTFN 

slight-change test MAE 0  0.0146  0.0120  0.0147  0.0114  0.0111 
MRE 0  0.0987  0.0834  0.0896  0.0806  0.0781 
RMSE 0  0.0206  0.0168  0.0209  0.0158  0.0155 
SAM 0  3.3264  3.0509  3.8422  2.9786  2.8486 
ERGAS 0  0.8726  0.7031  0.8450  0.6583  0.6499 
CC 1  0.8970  0.9339  0.9030  0.9433  0.9456 
SSIM 1  0.9870  0.9889  0.9885  0.9886  0.9886 
PSNR +∞  33.6062  35.3616  33.4213  35.8348  36.0158 

dramatic-change test MAE 0  0.0146  0.0184  0.0158  0.0122  0.0118 
MRE 0  0.0987  0.1195  0.1388  0.0841  0.0809 
RMSE 0  0.0206  0.0259  0.0226  0.0170  0.0167 
SAM 0  3.3264  4.5354  4.1161  3.1478  3.0249 
ERGAS 0  0.8726  1.0222  0.8835  0.7017  0.6869 
CC 1  0.8970  0.8433  0.8931  0.9344  0.9376 
SSIM 1  0.9870  0.9838  0.9883  0.9884  0.9886 
PSNR +∞  33.6062  31.5148  32.6897  35.1782  35.3382  
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more accurately and robustly than the other groups. The two methods 
herein are developed based on CNN, but with different components. 
Compared with ESRCNN, DSTFN has two advantages: it has much 

deeper layers and more complex network structures to fit the mapping 
and uses a degradation term to constrain the relationship between fine- 
resolution outputs and coarse-resolution inputs. The constraint term can 

Fig. 16. Synthetic 10-m imagery produced by DSTFN and the comparison between 30-m and 10-m scenes.  

Fig. 17. 10-m dense time series in 2018 in a Dezhou subset region by using DSTFN. “S2” and “L8_d” represent Sentinel-2 and downscaled Landsat 8 imagery, 
respectively. 
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maximize the use of information from coarse-resolution inputs and 
reduce the adverse effect of the fine-resolution auxiliary inputs, which is 
very useful for dealing with significant surface changes. Due to these 
improvements, DSTFN performs over ESRCNN. Even in the cases with 
land cover changes (e.g., Fig. 11), DSTFN can avoid the spectral 
distortion issue and get robust estimations. 

5.2. Implications for time-series analysis 

Through the synergistic use of Landsat 8 and Sentinel-2 imagery, 
time-series analysis can be performed at a frequency denser than that 
when using a single data source. For instance, at the Dezhou site, 
although the twin Sentinel-2 satellites have a 5-day revisit cycle, we 
collected only 13 cloud-free Sentinel-2 images in 2018. Meanwhile, 
Landsat 8 provided another 10 usable images. Fig. 17 exhibits the 
DSTFN-derived time-series imagery at a 10-m resolution at the Dezhou 
site. In this case, the combined use of the two data sources led to a 
relatively dense time series and more efficient temporal variation 
characterization. As shown in Fig. 18, we mapped the NDVI dynamics of 
the crop pixel at the center of the region in Fig. 17 by using only 
Sentinel-2 imagery and combined imagery, respectively. Since the 
collected Sentinel-2 images did not cover May and June during which 
the land cover was transformed from winter wheat to maize, one growth 
circle was mistakenly interpreted when only Sentinel-2 imagery was 
used (Fig. 18(a)). By contrast, the combined sources offered 23 images in 
total and the Landsat 8 image acquired on June 20 recorded the maturity 
stage of winter wheat. Thus, the dense time-series images were more 
likely to distinguish the two crop growth circles (Fig. 18(b)). In sum, the 
combined dense images provide new implications and opportunities for 
time-series applications. Launched recently, Landsat 9 (Masek et al., 
2020) can further improve the temporal frequency when it is involved in 
the data processing chain in future applications. 

5.3. Benchmark dataset for Landsat 8 and Sentinel-2 fusion 

Some methods have been proposed to merge Landsat 8 and Sentinel- 
2 observations, and more are expected in the future. The cross- 
comparison of models is essential in establishing guidelines for 
choosing ideal approaches. In this study, we offered two datasets that 
can be potentially employed as standard datasets for model assessment. 
The two datasets, Hailar and Dezhou, contain 23 and 24 scenes, 

respectively, and involve bands across visible, near infrared, and 
shortwave infrared ranges. Generally, the two datasets cover diverse 
landscapes (homogeneous land covers such as woodlands and hetero
geneous land covers such as urban buildings), and reveal various surface 
dynamics (mild changes such as forest phenological changes and abrupt 
changes such as crop harvesting activities); thus, they are ideal datasets 
for assessing the models under scenarios across different levels of spatial 
and temporal variations. 

5.4. Generalized definition of spatiotemporal data fusion 

Traditionally, spatiotemporal data fusion is defined as the fusion of 
observations from two sensors with the complementary spatial and 
temporal resolution, i.e., a sensor with a fine spatial resolution and a 
sparse temporal coverage, and another with a coarse resolution but a 
frequent coverage (Zhu et al., 2018). A typical example is the widely- 
used MODIS–Landsat fusion that combines daily 500-m MODIS and 
16-day 30-m Landsat observations to yield daily Landsat-like imagery 
(Gao et al., 2006). However, as new remote sensors emerge, the tradi
tional definition shows limitations. For example, the fusion of Landsat 8 
and Sentinel-2 can produce 10-m dense time series, but compared with 
Sentinel-2, Landsat has a coarser resolution and a sparser frequency. 
Thus, we suggested a more generalized spatiotemporal fusion definition 
as the fusion of two or more sensors with different spatial resolutions 
and temporal coverages. In this context, we do not strictly require the 
sensors to have complementary spatial and temporal resolutions, and 
the combination of Landsat 8 and Sentinel-2 observations can be 
included in spatiotemporal data fusion. 

6. Conclusion 

In this work, a deep network is proposed to produce 10-m dense 
time-series imagery by merging Landsat 8 and Sentinel-2 observations. 
The presented DSTFN model takes advantage of residual dense blocks 
and attention mechanism modules to enhance the feature representation 
and extraction. A constraint term designed on the basis of the image 
degradation process is embedded into the loss function, thus enabling 
the model to maximize the use of coarse-resolution imagery and ease the 
temporal variation issue. A series of experiments based on resolution- 
degraded data and original data indicate that DSTFN robustly out
performs the benchmark methods and stably achieves the state-of-the- 

Fig. 18. NDVI dynamics recorded by the Sentinel-2 source (a) and the combined source (b).  

J. Wu et al.                                                                                                                                                                                                                                      



International Journal of Applied Earth Observation and Geoinformation 108 (2022) 102738

18

art performance. Generally, the proposed method can effectively 
downscale Landsat imagery to 10 m and produce dense time series by 
combing the downscaled Landsat imagery with Sentinel-2 imagery. A 
case study of mapping NDVI annual variations is also provided to 
illustrate the potential of the 10-m dense time series to reflect crop 
temporal dynamics at the field scale. The two experimental datasets in 
this work can be employed as standard datasets for future model vali
dation. The experimental datasets and the DSTFN code can be accessed 
at https://github.com/andywu456 or by sending requests to the 
authors. 
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