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A B S T R A C T

Background: Accurate mapping of forest canopy heights at a fine spatial resolution over large geographical areas is
challenging. It is essential for the estimation of forest aboveground biomass and the evaluation of forest eco-
systems. Yet current regional to national scale forest height maps were mainly produced at coarse-scale. Such
maps lack spatial details for decision-making at local scales. Recent advances in remote sensing provide great
opportunities to fill this gap.
Method: In this study, we evaluated the utility of multi-source satellite data for mapping forest heights over Hunan
Province in China. A total of 523 plot data collected from 2017 to 2018 were utilized for calibration and vali-
dation of forest height models. Specifically, the relationships between three types of in-situ measured tree heights
(maximum-, averaged-, and basal area-weighted- tree heights) and plot-level remote sensing metrics (multi-
spectral, radar, and topo variables from Landsat, Sentinel-1/PALSAR-2, and SRTM) were analyzed. Three types of
models (multilinear regression, random forest, and support vector regression) were evaluated. Feature variables
were selected by two types of variable selection approaches (stepwise regression and random forest). Model
parameters and model performances for different models were tuned and evaluated via a 10-fold cross-validation
approach. Then, tuned models were applied to generate wall-to-wall forest height maps for Hunan Province.
Results: The best estimation of plot-level tree heights (R2 ranged from 0.47 to 0.52, RMSE ranged from 3.8 to 5.3
m, and rRMSE ranged from 28% to 31%) was achieved using the random forest model. A comparison with existing
forest height maps showed similar estimates of mean height, however, the ranges varied under different defi-
nitions of forest and types of tree height.
Conclusions: Primary results indicate that there are small biases in estimated heights at the province scale. This
study provides a framework toward establishing regional to national scale maps of vertical forest structure.
, Charge-Coupled Device; SAR, Synthetic Aperture Radar; InSAR, Interferometric SAR; ETMþ, Enhanced Thematic
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1. Background

Vegetation height is among the top ten variables for tracking biodi-
versity (Skidmore et al., 2015). Forest canopy height is an important
measurement of forest vertical structure that can be used to further
model forest biomass (Hurtt et al., 2019). These and other horizontal
attributes are essential climate variables to evaluate forest resources and
initiate earth system models (Herold et al., 2019; Hurtt et al., 2019). Yet
current regional to global scales forest height products lack sufficient
spatial or temporal resolutions (Healey et al., 2015). Traditional
sample-based forest inventory relies on ground measurements. They use
systematic or stratified sampling plots to estimate mean canopy heights
at regional to national scales. However, with a limited number of ground
samples, traditional forest surveys could not meet the need of accurately
mapping the spatial and temporal continuous distribution of forest height
at fine resolutions (Duncanson et al., 2019).

Recent advances in remote sensing advocate the mapping of forest
canopy heights over large geographical regions at fine resolution. Nor-
mally, forest inventory was utilized as calibration and validation datasets
for establishing the relationship between forest attributes and various
metrics. These metrics include but are not limited to multispectral fea-
tures and vegetation index calculated from passive optical imagery
(Pascual et al., 2010; García et al., 2018; Potapov et al., 2019), CHM
(Canopy Height Model) metrics derived from lidar (Light Detection and
Ranging) (Hyde et al., 2005; Pang et al., 2008; Simard et al., 2011; Ni
et al., 2015), or CCD (Charge-Coupled Device) stereo imagery (Ni et al.,
2018; Li et al., 2021), backscattering coefficients and index obtained
from SAR (Synthetic Aperture Radar) (Zhang et al., 2017), coherence and
phase center heights derived from InSAR (Interferometric SAR) (Kelln-
dorfer et al., 2004; Ni et al., 2014; Qi et al., 2019). Among them, mul-
tispectral features from Landsat TM (thematic mapper), ETMþ
(Enhanced Thematic Mapper plus), and OLI (Operational Land Imager)
were often applied for annually long-term analysis (Potapov et al., 2019).
Radar features, including ALOS (Advanced Land Observing Satellite-1),
PALSAR (Phased Array type L-band SAR), newer generation ALOS-2
PALSAR-2, or Sentinel-1 C-band SAR, were investigated for extracting
forest extent stock volume (Hu et al., 2020). In addition, auxiliary data
such as topographic and climate variables have been used for continental
to the global scale of forest canopy height mapping (Simard et al., 2011;
Potapov et al., 2021). The publicly available elevation dataset derived
from SRTM (Shuttle Radar Topography Mission), the first spaceborne
InSAR mission, has been widely used to generate forest height and
biomass maps globally (Simard et al., 2011).

An increasing number of studies explored the estimation of forest
structures from field plot-to regional-scales. Previous studies have
investigated different parameter or non-parameter approaches, such as
simple linear regression (SLR) or multi-linear regression (MLR) (Huang
et al., 2013; Sun et al., 2011), regression trees (Potapov et al., 2019),
support vector regression (SVR), and random forest (RF) (Kellndorfer
et al., 2004; Kellndorfer et al., 2010; Simard et al., 2011). Using multiple
independent variables, regression models were found efficient in
explaining simple relationships such as maximum tree height between
field measurements and lidar-derived CHM (Zhao et al., 2018). For
instance, multi-spectral metrics from Landsat Analysis-Ready-Data (ARD)
were utilized to build regression models for mapping a 30-m global forest
height map (circa 2019) using GEDI (Global Ecosystem Dynamics
Investigation) relative height metrics as samples (Potapov et al., 2021).
RF or SVR was found to perform better in explaining the non-linear
relationship between forest structures such as mean canopy height
(Simard et al., 2011) or stock volume (Hu et al., 2020) and remotely
sensed multispectral reflectance. For example, multi-spectral features
derived from MODIS (Moderate-resolution Imaging Spectroradiometer)
and climate variables were used to map forest canopy height globally
(Simard et al., 2011). Multispectral features and texture index calculated
from Sentinel-2 and PALSAR-2 were used to build RFmodels for mapping
forest stock volume at regional scales (Hu et al., 2020).
2

Despite many successful explorations in estimating forest structures
via remotely sensed data, several critical challenges remain in mapping
forest heights over large geographical areas. These include but are not
limited to inconsistent spatial and temporal data availability (Potapov
et al., 2021), and inaccurate calibration and validation datasets (Simard
et al., 2011; García et al., 2018). To this end, we reported here a
framework on a subtropical mixed conifer and deciduous forest in China.
The main objective of this study was to evaluate the ability of spaceborne
remotely sensed data in mapping forest heights seamlessly at fine reso-
lution (30 m) over a large geographic domain. The study site was Hunan
Province, the 10th largest province in central China. With variable
terrain and mixed forested types, this province was selected as repre-
senting southern forest and woodland biomes in the six forest regions
over mainland China. Field surveys were conducted as part of the
pre-launch calibration/validation campaign for China's Terrestrial
Ecosystem Carbon Monitoring (TECM) satellite mission (Hu et al., 2019).
The measured plot samples were used to select feature variables from
multispectral features, vegetation indices, radar backscattering co-
efficients, and topographic indices. Then, forest height models were
calibrated and validated using field measured samples. Last, the forest
height maps generated from this study were validated against existing
forest canopy height products. The development of a wall-to-wall prov-
ince scale map of forest height will be of great significance for future
studies over broader geographical domains.

2. Methods

Our methodology consists of four major components (shown in
Fig. 1): 1) field data preparation; 2) remote sensing and ancillary data
processing; 3) model development and evaluation; and 4) province scale
mapping and evaluation.

2.1. Study area and field data

2.1.1. Study area
The domain of study was the Hunan Province, China, located at

latitude 24.64�–30.13� N, longitude 108.78�–114.25� E, covering a land
area of approximately 211,855 km2. The domain represents Chinese
southern subtropical forest that exhibits diverse canopy structures,
various vegetation phonologies, and abundant biodiversity. Located in a
transition zone between the middle and lower reaches of two river basins
(the Yangtze River and the Xiangjiang River) and a plateau platform
(Yungui Plateau), the region has a unique geographical landscape. It has
a clear seasonality and a warm and humid climate. The annual average
temperature ranges from 16 �C to 18 �C, total precipitation varies be-
tween 1200 and 1700 mm, and the frost-free period ranges from 216 to
269 days.

The forested area covers 59.82% of the land area in Hunan (Statistics,
2019). According to the statistics from the 8th National Forest Inventory,
Hunan Province is the region with the largest proportion of forest re-
sources in the southern forest region. These cover 131 forest units
recorded by the State Forestry Administration. Ten dominant tree species
and forest types include cypress (Cupressus funebris endl.), oak (Quercus
spp.), Masson's pine (Pinus massoniana Lamb.), Chinese fir (Cunninghamia
lanceolata), slash pine (Pinus elliottii), poplar group (Populus L.), cam-
phorwood and Chinese timber nanmu, coniferous mixed, and
broad-leaved mixed. The region features mountainous and rolling
topography. Elevations range from 30 to 1150 m. Together the region
thus presents all challenges and opportunities encountered in mapping
forest vertical structures.

2.1.2. Field data collection
The Hunan forest field survey was prepared as one of the core pre-

launch field campaigns for the TECM satellite mission. A total of 523
circled plots (in a 15-m radius) were surveyed fromOctober 2017 to April
2018 (purple circled dots shown in Fig. 2). These plots were collected
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under a sampling design to represent major forest types and across
different classes of canopy cover and tree height in Hunan Province.
These plots cover the ten major forest types in the province, where each
forest type is divided into 15 type units (5 tree height classes and 3
canopy classes). Four sample plots with a projection radius of 15 m were
investigated for each type of unit. Within each type unit, sample plots
were selected at least 200 m apart on the same slope, slope direction, or
distance. Within each sampled plot, a set of measurements were taken,
including the location of the plot center, individual tree locations, height,
density, crown size, and diameter at breast height (dbh). The locations of
the plot center and individual tree were taken through the combined use
of the Differential Global Positioning System (DGPS) and Global Navi-
gation Satellite System (GNNS). This new technology provided a geo-
location accuracy ranging from 0.1 to 0.25 m (Hu et al., 2019).

2.1.3. Plot height calculation
The height of a tree is a quantitative indicator reflecting the growth

status of a tree, and it is also an important basis for reflecting the stand
Fig. 1. The diagram of data preparation, modeling,
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quality of forests. Within our sampled plot, all individual trees were
measured. Therefore, various types of tree height were prepared,
including maximum height and average height. First, maximum tree
height (Hmax) within a plot was calculated by getting the maximum tree
height within the plot:

Hmax ¼maxðHiÞ (1)

where Hi is the height of the individual tree, the unit is meter.
Then, average heights were prepared. In forestry, it is usually divided

into the average height of stand (AHS) and average top height (HT) for
various purposes. Commonly used AHS in forestry, calculated based on
field measurements are conditional average height, weighted average
height, and dominant average height (Thomas and Harold, 2001). Using
our measured tree data, two types of AHS were calculated, averaged- and
basal-area-weighted tree height, respectively.

The average tree height (Havg) was calculated by averaging individual
tree heights:
validation, mapping, and evaluation framework.



Fig. 2. Study area showing general land cover classes (forest, non-forest, and
water), and locations of sampled field plots in Hunan Province, China. General
land cover classes are taken from the Finer Resolution Observation and Moni-
toring of Global Land Cover (FROM-GLC, 2017) dataset.
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Havg ¼
n
i¼1Hi

n
(2)
P

where n is the number of trees within the plot.
Then, basial-area-weighted height (Hbaw) was calculated by weight-

ing the tree heights by basal area (BA) as follows:

Hbaw ¼
Pn

i¼1BAi � HiPn
i¼1BAi

¼
Pn

i¼1DBH
2
i � HiPn

i¼1DBH
2
i

(3)

where BAi and DBHi are the basal area (BA) and diameter at the breast
(DBH) for tree number i.

Summary statistics of the field plots are given in Table 1. The plot
number of different forest types ranged from 33 to 61. The maximum tree
heights have a mean of 19.1 m, ranging from 3.8 to 43.1 m. The average
tree heights have a mean of 12.4 m, ranging from 3.0 to 38.4 m. The
basal-area-weighted tree heights have a mean of 14.5 m, ranging from
3.0 to 39.1 m.
2.2. Remote sensing data

2.2.1. Multispectral metrics from landsat
Annual normalized multispectral metrics were prepared from Landsat

Analysis Ready Data (ARD). First, the ARD product was acquired from the
website supported by Global Land Analysis and Discovery team (GLAD),
where 16-day Landsat surface reflectance (SR) were composited from
Landsat TM, ETMþ, and OLI data downloaded from USGS. The pre-
processing step contains radiometric calibration, atmospheric correction,
geometric refinement, and filling of data gap (cloud and shadows) with
the values from previous observation within 4 years (Potapov et al.,
2020). Then, ARD annual phenological metrics (i.e., type B used in this
study) were prepared through the GLAD Landsat ARD Tools V1.1
(https://glad.umd.edu/ard/glad-landsat-ard-tools), containing a set of
normalized spectral reflectance, vegetation indices, and statistical mea-
surements of the abovementioned values. These include spectral reflec-
tance from blue (B), green (G), red (R), near-infrared (NIR), shortwave
4

infrared (SWIR1) and mid-wave infrared (SWIR2), land surface bright-
ness temperature (LST), and vegetation index such as normalized ratio of
NIR and red (RN), NIR and SWIR1 (NS1), NIR and SWIR2 (NS2), spectral
variability vegetation index (SVVI) (Table S1).

Besides, statistical measurements of the abovementioned indices
were computed, such as minimum (min.), maximum (max.), quantiles
(Q1 to Q4), averaged values between min and Q1 (avmin25), averaged
values between Q3 andmax (av75max), averaged values betweenQ1 and
Q3 (av2575). Then, additional statistical measurements of the above-
mentioned original reflectance sorted by reference values (NDVI, NS2,
and LST) were computed. A set of 36 metrics were calculated, including
minimum (min), maximum (max) of original reflectance sorted by NDVI,
NS2, and LST (Table S2).

Moreover, additional vegetation indices (VI), Tasseled Cap (TC)
indices, and topographical indices were prepared (Table 2). Enhanced
VIs (i.e., EVI and EVI2), ratio VI (RVI), and TC indices (TCB, TCG, TCW,
and TCWGD) (Crist, 1985) were calculated from normalized Landsat
ARD metrics. Topographical indices such as elevation, slope, and aspect
of the corresponding pixel were calculated from STRM data. Details
about Landsat ARD normalized reflectance and phenological metrics
could be referred to Hansen et al. (2008) and Potapov et al. (2020).

To cover the Hunan Province, 1610 Landsat ARD tiles from the year
2015–2017 were first downloaded, processed to 35 1� � 1� degree tiles,
then mosaiced and clipped to the province boundary. A false-color
composite (red for SWIR1, green for RED, and blue for NIR) mosaic of
Landsat data was given in Fig. 3a.

2.2.2. L-band SAR metrics from PALSAR-2
Annual L-band radar metrics were prepared from ALOS-2/PALSAR-2

L-band SAR imagery. PALSAR-2 annual mosaic in the year 2017 was
processed by Japan Aerospace Research and Development Agency
(JAXA). This dual-polarized (HH and HV) SAR backscattering coefficient
(ortho and slope corrected) was organized as 1� � 1� tiles in approxi-
mately 25 m (0.00022�) spatial resolution (JAXA, 2018). Data stored in
digital number (DN) were converted to gamma naught (γ�) values in
decibel unit (dB) using the following equation:

γ0 ¼ 10log 10 DN2 þ CF (4)

where, CF is a calibration factor (�83.0 dB for PALSAR-2 mosaic data),
and 〈〉 represents the ensemble averaging. A multi-look was applied to
reduce speckle noise. Then, the image was rectified and terrain-corrected
using 90m SRTM dem (Shimada et al., 2014). Details could be referred to
the dataset description document Ver.H (JAXA, 2018). For this study, a
total of 35 1� � 1� scenes in the year 2017 were downloaded, mosaiced,
and clipped to the province boundary (Fig. 3b). The definition of metrics
and tile name convention could be referred to in Table 3 and Table S3.

2.2.3. C-band SAR metrics from Sentinel-1
Annual C-band radar metrics were prepared from Sentinel-1 SAR

imagery. Sentinel-1 data from the year 2017 was accessed from Alaska
Satellite Facility (ASF) via python API. The dual-polarized (VV and VH)
Interferometric Wide swath (IW) Ground Range Detected (GRD) products
were chosen, where each scene has a swath of 180 km and a spatial
resolution of 5 m � 20 m. For efficiency in data processing and index
computation, a 1� � 1� tiling system was designed following the ARD
gridding system. Within each tile, the same orbit data products were first
calibrated and assembled using modules provided by the Sentinel
Application Platform (SNAP). Then, the data were multi-looked to 20 m
using a 2 � 2 window to reduce the speckle noise. A “Refined Lee Sigma”
speckle filter was applied during the pre-processing. Finally, terrain
correction was conducted using local incidence angles and processed to
gamma naught (γ�). Lastly, statistical indices such as mean, median, and
standard deviation of a pixel over the field time domain (i.e., Oct 2017 to
Apr, 2018) were calculated (Table 2). To cover the province, a total of
250 Sentinel-1 GRD products were downloaded and processed to 35 1� �

https://glad.umd.edu/ard/glad-landsat-ard-tools


Table 1
Summary statistics of field plots. Plot distributed by ten major forest species, the corresponding number of field plots, numbers of trees, maximum tree height (Hmax),
averaged tree height (Havg), and basal-area-weighted height (Hbaw).

Type Plot (#) Tree (#) Hmax (m) Havg (m) Hbaw (m)

Min. Max. Avg. Std. Min. Max. Avg. Std. Min. Max. Avg. Std. Min. Max. Avg. Std.

Quercus 33 8 170 67 32 10.1 30.2 18.2 5.1 5.4 15.9 10.0 2.3 6.7 22.4 12.5 3.4
Cunninghamia 55 14 163 61 33 7.2 39.3 18.7 7.9 3.6 35.4 12.7 6.4 4.1 36.3 14.3 6.9
Pinus massoniana 54 10 155 48 30 6.1 33.8 19.3 7.6 4.6 26.8 13.1 5.8 4.8 28.5 15.0 6.6
Populus 52 4 111 35 25 6.4 43.1 22.1 8.5 5.4 38.4 15.3 7.2 5.6 39.1 17.4 7.4
Cupressus 48 8 207 69 52 7.0 39.6 17.9 6.4 5.1 30.3 11.8 5.2 5.4 32.1 13.6 5.8
Schima superba 55 11 142 56 30 8.0 26.2 16.2 5.6 5.5 21.8 11.8 4.6 6.0 22.2 13.0 5.0
Cinnamomum 53 5 177 37 32 3.8 37.4 19.2 8.0 3.0 20.9 11.9 4.9 3.0 23.7 14.3 5.8
Coniferous mixed 53 9 170 66 42 5.9 34.7 17.4 6.7 4.5 26.3 11.0 4.3 4.6 28.3 13.0 5.3
Mixture of needle and broadleaf 59 4 170 43 29 5.9 40.0 21.2 8.9 4.6 32.7 13.7 6.8 4.7 35.4 15.9 7.3
Broadleaf mixed 61 7 87 34 20 6.8 37.5 20.2 8.7 4.8 28.4 11.8 5.3 4.8 30.2 14.6 6.9
Total 523 4 207 50 35 3.8 43.1 19.1 7.7 3.0 38.4 12.4 5.7 3.0 39.1 14.5 6.4

Table 2
Summary of additional vegetation indices derived from Landsat multispectral
surface reflectance sorted by reflectance values.

Source Index Equation

Landsat
SR

EVI 2.5 � (NIR � R)/(1 þ NIR þ 6 � R � 7.5 � B)
EVI2 2.5 � (NIR � R)/(1 þ NIR þ 2.4 � R)
RVI NIR/R
TCB 0.1509 � B þ 0.1973 � G þ 0.3279 � R þ 0.3406 � NIR þ

0.7112 � SWIR1 þ 0.4572 � SWIR2
TCG 0.3037 � B þ 0.2793 � G þ 0.4734 � R þ 0.5585 � NIR þ

0.5082 � SWIR1 þ 0.1863 � SWIR2
TCW ‒0.2848 � B � 0.2435 � G � 0.5436 � R þ 0.7243 � NIR þ

0.0840 � SWIR1 � 0.1800 � SWIR2
TCWGD TCW ‒ TCG

Table 3
Summarized definitions of PALSAR-2 and Sentinel-1 SAR metrics.

Source Index Polarizations/Formula Calculation method

PALSAR-
2

Mosaic

p2hh L ‒ HH Mosaic
p2hv L ‒ HV
p2npdi (HH � HV)/(HH þ HV) Normalized polarized difference

Sentinel-1
GRD

s1vv C � VV Mean
s1vh C � VH
s1vvmd C � VV Median
s1vhmd C � VH
s1vvsd C � VV Std.
s1vhsd C � VH
s1npdi (VV � VH)/(VV þ VH) Normalized polarized difference
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1� tiles, and mosaiced (Fig. 3c). The definition of metrics and a list of tiles
were summarized in Table 3 and Table S3.

2.2.4. Characteristic metrics from the multi-source dataset
A total of 116 characteristic metrics was prepared from the above-

mentioned multi-source spaceborne satellite data, including 96 multi-
spectral and vegetation metrics (Table 2, Tables S1 and S2), 17 SAR
backscatter coefficients, and indices (Table 3), and 3 topographical
metrics. Specifically, the averaged values of each metric were extracted
from the metric raster over sampled field plots using the precise circled
boundary. To reduce the error caused by the plot geolocation and
resampling process, a 1-m raster analysis size was set in the “Zonal Sta-
tistics” function provided by ArcGIS®.

2.2.5. Forest/non-forest masks
Existing land cover maps were utilized to differentiate between

forested and non-forested areas for forest height estimations at the
Fig. 3. Statewide false-color composite mosaic of (a) Landsat (R: SWIR1, G: Red, B: NI
HH, G: HV, B: HH/HV; averaged values), and (c) Sentinel-1 (R: VV, G: VH, B: VH/VV
to color in this figure legend, the reader is referred to the Web version of this articl
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province scale. Three global landcover maps, including FROM-GLC 2017
(Finer Resolution Observation and Monitoring of Global Land Cover at
30-m resolution, 2017v1) (Gong et al., 2013), GlobeLand30 2020 (30-m
resolution Global Land Cover, 2020 version) (Chen et al., 2021) and
GLC-FCS30 2020 (Global Land Cover with Fine Classification System at
30 m in 2020) (Liu et al., 2020), were used to generate three sets of forest
masks. These maps classified 10 Level-1 land cover types and their def-
initions of forest varied. FROM-GLC defined “forest” as areas dominated
by trees greater than 3 m in height and with greater than 15% total
vegetation cover. The GlobeLand30 is a 30-m resolution global land
cover data product. GlobeLand30 defined “forest” as land covered with
trees where top density is over 30%, and deciduous broadleaf forest,
evergreen broadleaf forest, mixed forest, and open woodland with a tree
cover 10%–30% (Chen et al., 2015). GLC-FCS30 defined “forest” as land
with trees greater than 3 m and with tree cover greater than 15% (Zhang
et al., 2021). Original landcover data were downloaded from the Earth
Science System (ESS) data center at Tsinghua University (http://data
.ess.tsinghua.edu.cn/fromglc2017v1.html), National Geomatics Center
R; averaged values between minimal and maximum quantiles), (b) PALSAR-2 (R:
; averaged values) over the Hunan Province. (For interpretation of the references
e.)

http://data.ess.tsinghua.edu.cn/fromglc2017v1.html
http://data.ess.tsinghua.edu.cn/fromglc2017v1.html


Table 5
Different scenarios of input variable combinations for forest height modeling.

Scenario
id

Variable combination Short
name

Number of
input variables

1 Senitnel-1 s1 12
2 PALSAR-2 p2 5
3 Sentinel-1, PALSAR-2 s1p2 17
4 Sentinel-1, PALSAR-2, topographic

variables
s1p2to 20

5 Landsat multispectral band l8m 10
6 Landsat phenology metrics l8ph 86
7 Landsat vegetation index l8vi 10
8 Landsat multispectral & vegetation

index
l8mvi 20

9 Landsat multispectral, vegetation
index & phenology metrics

l8all 96

10 Sentinel-1, PALSAR-2, Landsat
multispectral, vegetation index,
phenology metrics

l8allto 99

11 Sentinel-1, PALSAR-2, Landsat all
metrics

s1p2l8 113

12 Sentinel-1, PALSAR-2, Landsat all
metrics, topographic variables

s1p2l8to 116
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of China (http://globallandcover.com/), and Zendo
(10.5281/zenodo.4278952).

2.2.6. Existing maps of forest canopy height
Two global scale forest canopy height maps, Simard et al. (2011) and

Potapov et al. (2021) were prepared for map evaluations (Table 4). The
Simard et al. (2011) was a spaceborne lidar derived global canopy height
map (hereafter Hsimard) at 1-km spatial resolution (~0.0083�). It was
developed using GLAS measured maximum canopy height (RH100)
collected from the year 2003–2009 as a reference, and 7 spatial predictor
variables, including elevation (SRTM þ GTOPO), tree cover (MOD44B),
and climate variables (precipitation and temperature from Worldclim).
The Potapov et al. (2021) was a prototype global canopy height dataset in
approximately 30-m spatial resolution (0.00025�) developed by the
GLAD team (hereafter Hglad). It was generated by combining information
from space-borne lidar measured height and Landsat data. Specifically,
the GEDI height metric (relative height at 95%, RH95) was first validated
airborne LiDAR data and then were integrated with Landsat ARD
phenological metrics in 2019 to build forest height models. Eventually,
multi-year forest canopy heights were inversed using time-series ARD
metrics, allowing the detection of forest height changes.
2.3. Model development and evaluation

2.3.1. Feature variable selection
Characteristic variables were selected and analyzed from the multi-

source remote sensing dataset using all field measurements as a refer-
ence. Two sets of experiments were conducted to select feature variables
for modeling three types of forest height (i.e., Hmax, Hbaw and Havg).
Altogether, a total of 12 variable combination scenarios were designed to
cover the case of using a single sensor, multi-sensor, vegetation index,
and topographical index (Table 5). First, initial variables were selected
via a both-direction stepwise regression. Using AIC (Akaike information
criterion) as criteria, the stepwise regression picked the best subset of
variables by iteratively evaluating the performance of the model, while
adding or removing variables in the prediction model at the same time.
Second, feature variables were chosen using a packaged method (i.e.,
Variable Selection Using Random Forests, VSURF). Briefly, the random
forest used two-third of bootstrap samples for constructing trees and
nodes, and the remaining samples for calibration of “out-of-bag” esti-
mates (Breiman, 2001). Using out-of-bag (OOB) error as the criteria, the
VSURF selected a suitable subset of variables that have a close relation-
ship with forest heights and low internal redundancy. In addition, mul-
tiple linear regression (MLR) models were applied to describe the
relationship between tree heights and the independent variables. Vari-
able selection and regression model analysis used the R package ‘MASS’
and ‘VSURF’ (Genuer et al., 2015; R Development Core Team, 2016).

2.3.2. Height model calibration
We developed models to predict three types of forest heights (i.e.,

Hmax, Hbaw and Havg) as a function of selected characteristic variables.
Explicitly, we tested three types of model, including multiple linear
regression (MLR), support vector regression (SVR), and random forest
Table 4
Summary of two global forest canopy height products.

Nominal
year

Data source Nominal
resolution

Fore
mas

2005 MOD44B, TRMM, Worldclim, STRM, GTOPO
(GLAS RH100*)

1 km Glo

2019 Landsat,
SRTM (GEDI RH95*)

30 m GFC

Model samples: * height from space-borne lidar.
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(RF). Critical parameters within these models were tuned through
running multiple times. For SVR, model parameters such as the epsilon
(ε) and the cost value (c) were optimized, by a grid screening of c ranges
from 22 to 29 and ε ranges from 0 to 1. The radial basis function (RBF)
was set as the kernel function. For the RF model, the important model
parameters include the number of trees to grow (ntree) and the number of
variables randomly sampled as candidates at each split (mtry). A similar
screening, ntree ranges from 500 to 2000 and mtry values range from 1 to
12, was set up to select the best parameters. The modeling and analysis
process used the R package ‘MASS’, ‘randomForest’, ‘e1071’, respectively
(R Development Core Team, 2016).

2.3.3. Height model validation
After getting tuned model parameters, a 10-fold cross-validation

approach was adopted for model validation and evaluation. The 10-
fold cross-validation approach split the plots into 10 sets. Each time, 9
sets were used as the calibration dataset and the rest was left as the
validation dataset. The process was repeated 10 times, and the average
performance was calculated. The model performances were evaluated
and the best model was determined. Specifically, statistical indicators,
including coefficient of determination (R2), root mean squared error
(RMSE), and relative error (rRMSE), were employed to validate results
using the plot data as the reference.

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðyi � xiÞ2
n

s
(5)

rRMSE¼ 100� RMSE
x

(6)

R2 ¼ 1�
Pn

i¼1ðyi � xiÞ2Pn
i¼1ðxi � xÞ2 (7)
st
k

Approach Accuracy Reference

bCover Random
forest

RMSE ¼ 6.1 m, R2 ¼ 0.5; (in-situ)
RMSE ¼ 4.4 m, R2 ¼ 0.7 (without 7
outliers)

Simard et al.
(2011)

Regression
tree

RMSE ¼ 6.6 m; MAE ¼ 4.45 m,
R2 ¼ 0.62 (GEDI)
RMSE ¼ 9.07 m; MAE ¼ 6.36 m,
R2 ¼ 0.61 (airborne lidar)

Potapov et al.
(2021)

http://globallandcover.com/
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where xi is the ith value from field measurements, yi is the predicted value
from the statistical model; i is the sample index; and x is the mean value
of field measurements; and n is the sample size.

2.4. Province scale mapping and product evaluation

2.4.1. Province scale mapping of forest height
The tuned models were then used for wall-to-wall mapping of forest

heights (i.e., Hmax, Hbaw, and Havg) in Hunan Province for the year 2017.
Each height model using different independent variables was applied to
all 35 tiles over the domain. Particularly, the model of maximum tree
height (Hmax) was applied to metrics in the year 2019 to match the
timeframe of Hglad. All forest height maps and forest/non-forest masks
were mosaiced, and re-projected to a common frame of reference to
minimize the distortion in the area.

2.4.2. Map product comparison
Map estimates of forest heights from this study were compared to

available map products at the province scales. Maximum, mean, and
standard derivation of forest heights were compared between measure-
ments from in-situ plots and estimates from map-based results. These
include averaged values over the forested area from maps generated in
this study (Havg,Hbaw, andHmax) and two global maps (Hsimard andHglad).
Additionally, forest/non-forestedmasks generated from three global land
cover data products (GLC_FCS30, 2020, FROM-GLC, 2017; and Globe-
Land30, 2020) were used to assist the evaluation of map-based results.

3. Results

3.1. Characteristic of multi-source satellite metrics

The characteristic of metrics was analyzed through linear correlation
analysis. Results show that the correlations between in-situ measured
tree heights and multi-source metrics were moderately weak (r ranged
from 0.10 to 0.45) (Table S4). The low to moderate correlations between
multi-source metrics and forest heights reflected the fact that multi-
spectral reflectance, C-band or L-band SAR backscattering coefficients
have a different level of saturation to canopy height due to limited
penetration. Top multispectral metrics from Landsat that have a high
negative correlation with tree heights are the minimum value of red and
green band (l8rmin, l8gmin), the average value between the minimum
and first quantile of the green and red band (l8g25min and l8r25min),
and the average annual value of green band (l8g).

The top vegetation indices from Landsat that have a positive corre-
lation with tree heights are the tassel cap indices (l8tcwgd, l8tcw, and
l8tcb), the average annual value of ratio vegetation index (l8rvi),
enhanced vegetation index (l8evi2), and normalized differential vegeta-
tion index (l8ndvi). The correlation between variables from Sentinel-1
(s1vhsd, s1vh, s1vhmd, s1vvsd), PALSAR-2 (p2hv, p2hh), and SRTM DEM
(elevation, slope) and in-situ tree heights are comparably lower than those
values from Landsat multispectral bands (Table S4).

3.2. Variable selected for forest height modeling

Two variable selection approaches, stepwise regression and VSURF
package, were compared in feature variables selection for modeling
forest heights. Among hundreds (116) of independent variables,
approximately 40 were selected by stepwise regression (Table S8) and
around 10 were chosen by the VSURF (Table S9).

The best variable combinations selected by the stepwise regression
method (Table S10; Table S8) were “l8allto” forHmax, “s1p2l8to” forHbaw,
and “s1p2l8” for Havg, respectively. Among three types of forest height,
RF model selected variables were mainly from Landsat multispectral
reflectance and phenology metrics, topographic variables, and radar
metrics. These variables include SRTM DEM (elevation, slope), minimum
7

quantile of Landsat spectral bands (green, red, blue, shortwave near-
infrared), and PALSAR-2 L-HV polarization (p2hv). Then, the selected
variables were used in SVR models. The optimal parameters of c and ε for
SVR models were 4 and 0.18 for Hmax, 8 and 0.14 for Hbaw, and 8 and
0.49 for Havg, respectively. Although the rank of variables from Sentinel-
1 (s1vv, s1vhmd, s1vvsd, s1npdimd), PALSAR-2 (p2hv), and SRTM (eleva-
tion, slope) are relatively low, these vaeviriables were selected by step-
wise regression in all three cases.

The best variable combinations selected by the VSURF method
(Table S10; Table S9) were “l8allto” for Hmax, “s1p2l8to” for Hbaw, and
“s1p2l8to” for Havg, respectively. Among three types of forest height, RF
model selected variables were mainly from Landsat multispectral
reflectance and phenology metrics, topographic variables, and radar
metrics. These variables include SRTM DEM (elevation, slope), minimum
quantile of Landsat spectral bands (green, red, blue, shortwave near-
infrared), and PALSAR-2 L-HV polarization (p2hv). The optimal parame-
ters of ntree and mtry for RF models were 1000 and 6 for Hmax, 500 and 3
for Havg, 500 and 4 for Hbaw, respectively.

After data standardization, the absolute value of the coefficient of the
independent variable can reflect its influence on the height prediction
model (Table S5‒S7). The top three variables that had the greatest in-
fluence are the enhanced vegetation index (l8evi2 or l8evi), the average
annual value of blue band (l8b) and shortwave 2 bands (l8sw2), and the
average value between third quantile and maximum of the shortwave red
band (l8sw175smax).

3.3. Forest height model evaluation using plot data

Height models built by different variable scenarios were evaluated
using the 10-fold cross-validation approach through two statistical in-
dicators (rRMSE and R2). The model performances in the calibration
stage (Fig. 4) and validation stage (Fig. 5), were grouped by three
modeling approaches (upper, middle, and bottom row), and the two-
variable screening methods (stepwise regression in left, and VSURF
package in right). Within each subfigure, the rRMSE (filled bars) and R2

(dotted lines) were plotted for three types of forest height in different
colors, and sorted by 12 variable scenarios from left to right. Among
different variable combinations, the coefficient of the determinant (R2)
increased, while the relative error (rRMSE) decreased with the increasing
number of the sensor and metrics.

Then, the best models selected from different variable combinations
were summarized in Table 6. Evaluation using plot data showed that RF
models performed the best among all three types of height models
(Table 6). In the calibration stage, three models (MLR, RF, and SVR)
explained moderated to high variability (0.47–0.93) in tree heights. RF
models had the best performance compared to the two other models
(MLR and SVR). Among three different height models, the RMSE of the
best RF models is 2.3, 1.8, and 1.7 m for three types of heights (Hmax,
Hbaw, Havg). The second was the SVR model, and the MLR model was the
worst.

In the validation stage, RF models also showed the best generalization
ability. Results indicated that all three models (MLR, RF, and SVR)
explain low to moderated variability (0.33–0.52) in tree heights. The RF
model explained the highest variability in Havg (R2 ¼ 0.52, RMSE ¼ 4.2
m, rRMSE ¼ 29%). Then followed by Hmax (R2 ¼ 0.50, RMSE ¼ 5.3 m,
rRMSE ¼ 28%), and Hbaw (R2 ¼ 0.47, RMSE ¼ 3.8 m, rRMSE ¼ 31%). In
both cases, results indicated that RF models have the best performance
compared with the other two models (MLR and SVR). Therefore, RF
models were selected to conduct the regional mapping of forest canopy
heights over the Hunan Province.

3.4. Height maps comparison to existing products

The RF-derivedmap of forest height maps (Havg,Hbaw, andHmax) from
this study were compared to two existing height products over the Hunan
province. In general, all heights map products followed similar patterns
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in topography (Fig. 6a SRTM elevation) and landscape (Fig. 6b FROM-
GLC, 2017). While the fine-scale comparison in a mountainous area
showed larger disagreements among different forest canopy height maps
(Fig. 7).

At the province scale, the estimated forest heights showed a large
difference among different maps (Table 7). The mean estimates from
Hsimard had a slightly higher value (13.2 � 13.7 m) compared to Hglad
(12.5� 4.6 m), and Havg (12.6� 2.7 m), but lower than Hmax (19.0� 3.8
m in 2017, and 19.0 � 3.0 m in 2019) and Hbaw (14.2 � 2.8 m), and the
maximum heights from in-situ plot data (19.1 � 7.7 m).

4. Discussions

Our study systematically explored mapping forest heights by fusion of
in-situ measured tree heights and multi-source satellite data. Various
combinations of characteristic variables for forest height models were
tested through stepwise regression and VSURF approaches. Three types
of tuned regression models were calibrated, validated, and applied for
mapping of maximum- (Hmax), averaged- (Havg) and basal-area-weighted
tree height (Hbaw) over the study site. The analysis highlighted several
important aspects, concerning the quality of reference samples, selection
of feature variables and models, the sensitivity of multi-source metrics on
forest heights, the strategy of model evaluation, other factors on high-
resolution forest height mapping, and directions of future research.
4.1. High-quality plot data

Accurate plot geolocation and precise tree height measurements
guaranteed a solid reference dataset. On one hand, this study collected
Fig. 4. Sensitivity of rRMSE (%) and R2 of three models (RF in the top row; SVR
calibration stage using two variable selection methods (VSURF in left column, and st
basial-area-weighted height (Hbaw in blue color), and average height (Havg in orang
reader is referred to the Web version of this article.)
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precise plot center locations using DGPS and GNSS with a measurement
error of less than 0.5 m (estimated 0.1–0.25 m in the best case). Thus,
small geolocation errors within in-situ plots avoided mismatch between
the field plot and corresponding remote sensing metrics (Huang et al.,
2013; Hu et al., 2020). On the other hand, the plot-level forest heights
were aggregated from individual tree heights. These accurate height
measurements thus formed a solid calibration and validation dataset for
forest height model development.

Although this study was carried out by combining in-situ measure-
ments and passive optical and radar metrics, the findings may also be
useful for forest height inversion using lidar data as samples. Recent
studies indicated that the position accuracy error of GEDI footprints leads
to the deviation of height products, and its correlation between plot-level
aboveground biomass was improved after position correction (Wang
et al., 2019).
4.2. Exploration for feature variable selections

This study used two variable selection approaches, stepwise regres-
sion, and VSURF, to screen variables for different forest height models.
Results showed that stepwise regression (Table S8) always selects more
variables than VSURF (Table S9). The subsequent model evaluations
indicated VSURF has advantages in selecting more concise feature vari-
ables. However, in terms of method efficiency, our experiments
confirmed that stepwise regression is faster than VSURF. This is
reasonable as the RF model has higher complexity than the multi-
variable linear model, leading to a lower efficiency especially under a
large number of variables.

Evaluation results grouped by sensors also showed a limited
in the middle row; and MLR in bottom row) to variable scenarios during the
epwise regression in right column). Maximum tree height (Hmax in green color),
e color). (For interpretation of the references to color in this figure legend, the



Fig. 5. Sensitivity of rRMSE (%) and R2 of three models (RF in the top row; SVR in the middle row; and MLR in bottom row) to variable scenarios during the validation
stage using two variable selection methods (VSURF in left column, and stepwise regression in right column). Maximum tree height (Hmax in green color), basial-area-
weighted height (Hbaw in blue color), and average height (Havg in orange color). (For interpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)

Table 6
Model evaluation using the 10-fold cross-validation approach.

Height type Algorithm Calibration Validation

RMSE (m) rRMSE (%) R2 RMSE (m) rRMSE (%) R2

Maximum tree height (Hmax) MLR 5.5 29% 0.47 6.0 31% 0.39
SVR 3.7 19% 0.76 5.7 30% 0.44
RF 2.3 12% 0.93 5.3 28% 0.50

Basal area-weighted tree height (Hbaw) MLR 4.4 30% 0.48 4.7 33% 0.41
SVR 3.1 21% 0.75 4.7 32% 0.43
RF 1.8 13% 0.93 4.2 29% 0.52

Average tree height (Havg) MLR 4.0 32% 0.43 4.3 35% 0.33
SVR 2.9 23% 0.74 4.3 34% 0.35
RF 1.7 14% 0.92 3.8 31% 0.47
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improvement in model accuracy. No matter what type of learning model
is used, only Landsat metrics or all-radar metrics could be trained with
high accuracy in the calibration and validation stages (Figs. 4 and 5).
Landsat metrics alone achieved model accuracy close to that of all cate-
gories (optical, radar, and topo), indicating the capacity of using Landsat
data for mapping forest heights large scales (Potapov et al., 2021).

In addition, the comparison between different Landsat metrics found
some unexpected results. Using annual spectral metrics, the model ac-
curacy is better than the ones that use vegetation index. This is
explainable as the spectral metrics were related to vegetation growth and
environment conditions that are widely used in the large-scale mapping
of forest canopy height (Simard et al., 2011; Mahoney et al., 2016).

4.3. Sensitivity of multi-source satellite metrics to forest heights

The first highlight of our objective is to utilize multi-source satellite
9

data for the estimation of forest heights. Model evaluation results indi-
cated the sensitivities of passive optical and radar data to forest height
varied, confirming that their different sensitivities to forest structural
parameters (Kellndorfer et al., 2004). While multi-temporal metrics
made up for this disadvantage to a certain extent (Potapov et al., 2019).
Thus, multispectral variables were selected many times in all cases that
involve Landsat metrics. Similarly, the C-band and L-band radar back-
scatter have different penetration degrees. Thus, L-band SAR metrics
from PALSAR-2 always showed a higher correlation coefficient and sig-
nificance than of C-band metrics from Sentinel-1 (Tables S5–S7).

Grouping variables by a sensor, there are similar findings and inter-
esting phenomenon. Firstly, variable combinations from multi-source
sensors are better than indicators from a single sensor. Previous studies
also found that fusion of passive optics and radar is better than single
category (Sun et al., 2011). Secondly, our experiments indicated that the
optical indicator is better than the radar or terrain indicator. The



Fig. 6. Province scale maps of Elevation (a), Havg (b), Hbaw (c), Hmax (d), Hpotapov (e), and Hsimard (f) at 30-m spatial resolution.
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Landsat-derived combinations, including reflectance, vegetation indices,
and phenological indicators, are better than radar metrics. In addition,
elevation has a good correlationwith forest height. This phenomenon has
been reported in previous studies, especially over the mountainous area
(Simard et al., 2011). As SRTM utilized a C-band InSAR instrument, and
the contribution from vegetation is not completely separated from
ground elevation, thus the elevation may contain partial vegetation
height.

4.4. Model evaluation approach

This study adopted a 10-fold cross-validation method to evaluate
three sets of height models (MLR, SVR, RF). This choice is made after a
10
comparison to 70%–30% data with-holding approach (hereafter 70–30
approach), in which model performance (Table S10). Evaluation result
from the 70–30 approach showed similar however lower accuracy than
the 10-fold approach, especially for the RF model of Hbaw (rRMSE is
~4.0% higher). A one-time split of reference samples is less stable due to
sampling bias under a small sample situation. Suggestion from this study
is that the 10-fold cross-validation method should be adopted for the RF
model when the sample size is relatively small to feature characteristic
variables.

In either evaluation case, the comparison between different models
showed that the RF model could explain a moderately higher variability
in tree heights, compared with the other two models (MLR and SVR).
Model evaluations also indicated that in either approach, the RF models



Fig. 7. Fine-scale map example of spatial variation in tree heights over a mountainous area in northwest Hunan. (a) Elevation (30 m) from SRTM DEM, (b) Havg (this
study), (c) Hbaw (this study), (d) Hmax (this study), (e) Hglad, (f) Hsimard, and (g) FROM-GLC 2017.
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Table 7
Comparison of estimated forest heights over Hunan Province.

Product Nominal
year

Reference Coverage Data source Nominal
resolution

Forest
mask

Approach Forest height (m)

Max. Mean Std.

Hsimard 2005 Simard et al.,
(2010)

Global MOD44B, TRMM, Wordlclim,
SRTM, GTOPO (GLAS* RH100)

1 km GlobCover Random
forest

38 13.2 13.7

Hglad 2019 Potapov et al.
(2021)

Global Landsat, SRTM (GEDI* RH95) 30 m GFC Regression
tree

38 12.1 4.4

Hmax 2019
2017

This study Province Landsat, PALSAR-2
(in-situ# average tree height)

30 m FROM-
GLC
2017

Random
forest

33.1
33.1(43)

19.0
19.0(19.1)

3.9
3.8
(7.7)

Hbaw 2017 This study Province Landsat, PALSAR-2, SRTM (in-
situ# basial area-weighed tree
height)

30 m FROM-
GLC
2017

Random
forest

26.2(39) 14.2
(14.5)

2.8(6.4)

Havg 2017 This study Province Landsat (in-situ# Maximum tree
height)

30 m FROM-
GLC
2017

Random
forest

26.0(38) 12.2(12.4) 2.7(5.7)

Model samples: *height from lidar; # height from field plot; Estimated results were shown in italic brackets under the main data source.
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have the best performance in calibration- and validation stages. There-
fore, the RF model is recommended for height modeling using multi-
source metrics, consistent with previous studies (Simard et al., 2011;
Mahoney et al., 2016).

4.5. Framework of high-resolution forest height mapping

The second highlight of our objective is to set up a framework for
mapping forest heights seamlessly at 30-m spatial resolution. To com-
plete this goal, we adopted a 1� � 1� map framing system following the
Landsat ARD (Potapov et al., 2019). PALSAR-2 and Sentinel-1 data were
re-organized into 1� � 1� tiles with a spatial resolution of 0.00025� per
pixel in the WGS84 geographical system (Table S3). For the PALSAR-2
annual mosaic, the original resolution is 0.00022� (~25 m). For
Sentinel-1 IW data, the original resolution is 5 m � 20 m. Thus, the
resampling into 0.00025� slightly multi-looked the radar backscatter
coefficients. Overall, this map framing system greatly facilitates batch
processing and large-scale data handling.

Previous studies indicated that the choice of forest/non-forest masks
may have influences on the mean estimates in the map-based product
(Huang et al., 2017). Our investigation also found large variances in the
estimates of forest coverage in Hunan province (ranged from 49.69% to
62.02%). These estimates were from China Statistic Report (49.69%)
(2018), Hunan Statistic Report (59.69%) (2019), GLC_FCS30 2020
(53.49%), GlobeLand30 2020 (55.99%), and FROM-GLC 2017 (62.02%).
However, the variances in estimates of forest heights were relatively
small and within the standard deviations (Table S11). Thus, we finally
chose FROM-GLC 2017 that had a close date to our product, an overall
accuracy of 72.43%, and consistent classification schemes cross-walked
to existing land-cover systems (Gong et al., 2013, 2019), to generate
the reference forest/non-forest masks for the province scale forest height
estimation.

4.6. Limitations and potential improvements

Future work will focus on improving the quality of metrics, incor-
porating lidar samples, and exploring a deep learning approach. Firstly,
this study used Landsat annual composites from multiple years of
observation, thus some areas were affected by Landsat ETM þ strips is-
sues and terrain effects. Similar data issues were found in PALSAR-2 and
Sentinel-1 SAR annual mosaics. Higher quality of multi-source metrics
could further improve the accuracy of the height model. Second, a rela-
tively limited number of in-situ plot samples (523) were used. Within this
in-situ dataset, few low or high height values were sampled, leading to
overestimations in low-height areas and underestimations in higher-
height areas. Similar issues were reported in the mapping of forest
aboveground biomass (Huang et al., 2017). Incorporating national in-
ventory plots as well as space-borne lidar acquisitions (GEDI, ICESat2,
12
and TECM) could leverage these issues (Dubayah et al., 2020; Duncanson
et al., 2019). Lastly, model performance may be further improved
through the fusion of deep learning andmachine learning algorithms that
take advantage of information mining and the ability of regression
modeling.

5. Conclusions

This study explored the high-resolution (30 m) mapping of forest
heights at a regional scale combining inventory data and multi-source
satellite remote sensing data. Three types of statistical learning models
were evaluated, including multiple linear regression (MLR), support
vector regression (SVR), and random forest (RF). Height models were
calibrated and validated using field plots to predict forest height as a
function of characteristic variables. Maximum, basal-area-weighted, and
averaged tree heights (i.e., Hmax, Hbaw and Havg) were mapped over the
Hunan Province (211,855 km2).

Plot-level analysis revealed low to moderate correlations between in-
situ measured tree heights and characteristic metrics from multispectral
and radar data. However, through a combination of multiple character-
istic metrics, the machine learning models performed better in predicting
plot-level forest heights. Overall, the characteristic variables that have a
relatively stronger correlation with forest heights include topographic
variables (elevation and slope), Landsat multispectral reflectance (green,
red, blue, shortwave near-infrared), and PALSAR-2 cross-polarization
backscatters (p2hv). The accuracy evaluations using 10-fold cross-
validation showed that the RF models achieved moderately good esti-
mation accuracy (R2 ranged from 0.47 to 0.52, RMSE ranged from 3.8 m
to 5.3 m, rRMSE ranged from 28% to 31%) when the correlations be-
tween feature variable and height are not strong (r ranged from 0.1 to
0.45). All three forest height maps have general consistency with existing
map products over the study domain. The forest height mapping
framework proposed in this study could support further national scale
mapping of forest structures such as height and biomass.
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