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Abstract—Deep learning shows potential superiority in the
image fusion field. To solve the problem of the spatial resolution
degradation of polarimetric synthetic aperture radar (PolSAR)
images caused by system limitation, we propose a fully Pol-
SAR images and DualSAR images fusion network (FDFNet).
We use low resolution (LR)-PolSAR super-resolution (LPSR)
and modified cross attention mechanism (MCroAM) to perform
data fusion on LR-PolSAR and high resolution (HR)-dual-
polarization synthetic aperture radar (DualSAR) and design
a polarimetric decomposition attention module to introduce
the polarimetric parameters of LR-PolSAR images to maintain
polarimetric information. Besides, we use the differential infor-
mation between LR-PolSAR and HR-DualSAR to guide spatial
resolution reconstruction. The loss function based on the L,
norm is used to constrain the network training process. The
experimental results show the superiority of the proposed method
over the existing methods in visual and quantitative evaluation.
In addition, polarimetric decomposition experiments verify the
effectiveness of the proposed method to maintain polarimetric
information.

Index Terms— Differential information, dual-polarization syn-
thetic aperture radar (DualSAR), fully-polarimetric synthetic
aperture radar (PolSAR), fusion, polarimetric decomposition.

I. INTRODUCTION

HE fully polarimetric synthetic aperture radar (PolSAR)

images can provide richer polarization information than
single-polarization synthetic aperture radar (SinSAR) or dual-
polarization synthetic aperture radar (DualSAR) images.
Therefore, it is widely used in many fields, such as crop
monitoring [1] and disaster detection [2]. However, due to the
limitations of the PolSAR imaging system, it is inevitable to
reduce the resolution of the fully PolSAR image to obtain rich
polarimetric information. The reduction of spatial resolution
will limit its practical application. To solve this problem,
some scholars have proposed to use single image super-
resolution reconstruction methods to enhance its resolution.
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Zhang et al. [3] proposed the super-resolution method based on
polarimetric spatial correlation (SRPSC), which uses the spa-
tial correlation between the central pixel and the neighboring
pixels to reconstruct the resolution. Shen et al. [4] proposed
a PolSAR images super-resolution reconstruction (PSSR)
method based on deep learning. Some scholars use image
fusion technology to improve the resolution of low resolution
(LR)-PoISAR images. Lin et al. [5] proposed the LR-PolSAR
and high resolution (HR)-SinSAR fusion network (PSFN) to
obtain HR-PoISAR images. This method does not further
use the HR spatial information of DualSAR, and the use of
polarimetric information is relatively insufficient. Therefore,
we proposed the HR-DualSAR and LR-PolSAR fusion net-
work, which increases the utilization of HR spatial information
and enhances the polarimetric information retention capability.
Under this fusion framework, the polarimetric decomposition
results of LR-PolSAR images are used to weight the feature
maps of DualSAR images. Besides, the differential informa-
tion between HR-DualSAR images and LR-PoISAR images
is used to guide spatial resolution reconstruction and reduce
reconstruction errors.

The remainder of this letter is organized as follows. The
proposed fusion network is described in Section II. The
experimental results are provided in Section III, followed by
conclusions and future work in Section IV.

II. PROPOSED METHODOLOGY

A. Fusion Framework

The PolSAR images are usually used in the form of the
covariance matrix, as shown in the following equation:

(ISuul?)  V2(SuuSiy)  (SunSiy)
V2(SuvSin)  2(ISuvl?)  V2(SuvSiy) | (D
(SvwSim)  V2(SwShy)  (ISwl?)

where Syg and Syy represent the power of the copolarized
channel, Syv represents the power of the cross-polarized
channel, (.) represents the statistical average operator, and *
represents the complex conjugate operation.

To solve the resolution reduction of HR-PolSAR images
C, under the degradation process C, = f;(Cy), we perform
image fusion on LR-PolSAR images C, and HR-DualSAR
intensity images I.. In the degradation process, f;(.) rep-
resents the downsampling function. As shown in Fig. 1,
we jointly input the LR-PolSAR images, the HR-DualSAR
images, and the polarimetric decomposition results of the
LR-PolSAR images into the network to obtain HR-PolSAR
images. In the network, the LR-PolSAR super-resolution
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Fig. 1. Proposed fusion framework.

(LPSR) module [5] is used to perform super-resolution recon-
struction processing on LR-PolSAR images. The modified
cross attention mechanism (MCroAM) [5] is used to cross-
weight the PolSAR data and the DualSAR data, and to
enhance the information extraction capabilities for the two
types of data. In MCroAM, we only modify the channels
number of input data to adapt to DualSAR images. The
polarimetric decomposition attention (PDA) is proposed to
extract and use polarimetric decomposition information to
weight synthetic aperture radar (SAR) images. The difference
information module (DIM) is designed to make full use of
the differential information between HR-DualSAR images
and LR-PolSAR images. In the fusion network, we use the
residual densely connected module with a built-in attention
mechanism (RDMA) to extract information from the feature
layers obtained by LPSR, MCroAM, PDA, and DIM modules.
In addition, a loss function based on the L; norm is used
to constrain the network training. Details of the proposed
modules are provided in the following.

B. RDMA Module

The dense connection block [6] is proposed to improve
the information flow connection problem between layers. This
module can introduce the information flow of any layer into
the subsequent layers and realize the information flow con-
nection of the characteristic layers under different levels. The
attention mechanism is widely used in image reconstruction
tasks to recalibrate the feature layers. In this letter, we have
embedded residual spatial attention and channel attention
mechanisms between two densely connected blocks to effec-
tively extract the information while recalibrating the feature
maps. As shown in Fig. 1, RDMA includes a three-level
structure, and each level includes residual channel attention
and spatial attention joint block (RCSA), and a residual dense
connection block (RDB) [6] through cascading operation to
integrate different levels of feature maps. As shown in Fig. 2,
RCSA includes a channel attention block and a spatial atten-
tion block. The feature maps recalibrated by the two blocks are
aggregated in the form of element addition and are connected
to the input feature maps of the RCSA in the form of a residual
structure.

C. PDA Module

The polarimetric decomposition theory is proposed to use
the polarimetric scattering matrix to reveal the physical mech-
anism of the scatterers, promote the full use of polarization
information, and better interpret polarization data. In this letter,
we use the LR polarimetric decomposition results (LR-PDR)
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Fig. 3. PDA module.

of LR-PoISAR images, including odd scattering component,
double-scattering component, volume scattering component,
and helix scattering component, which were obtained by the
Yamaguchi decomposition [7] to weigh the feature maps of
HR-DualSAR images and enhance the polarimetric informa-
tion of HR-DualSAR images.

As shown in Fig. 3, in the PDA, we first use the transposed
convolutional layer to perform resolution enhancement and
features extraction on the LR-PDR and use the sigmoid
function to normalize the extracted feature maps. Then, we use
the normalized feature maps to weight features maps of
HR-DualSAR images and obtain the HR-DualSAR feature
maps that are weighted by the LR-PDR.

D. DIM Module

In the fusion framework, the introduction of HR-DualSAR
images can effectively enhance the spatial resolution of the
corresponding polarization channel, while the spatial reso-
lution improvement of Non-HR-DualSAR polarization chan-
nel! is relatively insufficient. Therefore, we use the DIM to

'The Non-HR-DualSAR polarization channel represents the polarization
channel not included in the HR-DualSAR image.
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generate HR features of the Non-HR-DualSAR polarization
channel for LR-PolSAR images’ enhancement in the subse-
quent process.

The structure of the DIM is shown in Fig. 4. To illustrate
the differential information module intuitively, we take the
fusion of HR-DualSAR (HV, VV) images and LR-PolSAR
data as an example to describe the module in detail. In this
module, we interpolate the LR-PolSAR images and extract
the polarization channel intensity images (HH) without corre-
sponding HR images guidance. Then, we use HR-DualSAR
intensity images to subtract them to obtain the initial dif-
ferential information results (DHYHH DYYHH) In the next
steps, we perform element multiplication operations on ini-
tial differential information results and LR-PolSAR feature
maps to obtain differential information weighted feature maps

(FHYHE S pVY-HEY  Through the RDMA module for features
extraction and features aggregation, the HR differential infor-
mation weighted feature maps (FiY 11, FYYHH) are obtained.
Finally, the HR-DualSAR weighted feature maps (FiY, FiR)
and the HR differential information weighted LR-PolSAR
feature maps (FiYHH, FYYHH) are subjected to element sub-
traction to obtain HR polarization channel images (HH) and
weighted LR-PoISAR feature maps (Fi¥, Fi¥), which is
directly used in the subsequent images fusion.

E. Fusion Loss Functions

The PolSAR images have the characteristics of a large
numerical dynamic range and complex data distribution. Com-
pared with the L, norm, which is sensitive to outliers, the
L, norm is more suitable for data with high dynamic range
and complex data distribution characteristics. Therefore, the
loss function in this letter adopts the form of the L; norm,
which includes two parts: a numerical loss function and a
dual-polarization information loss function. The numerical
loss function is used to maintain the consistency of image
numerical information, and the dual-polarization information
loss function is used to maintain the consistency of image
polarization information. The fusion loss function can be
defined as follows:

Liota(©) = 21L,(0) + 12L ,(0©) 2)

where L (®) represents the total loss function, L,(®)
represents the numerical loss function, and L ,(®) represents
the polarimetric information loss function. 4; and A, are
regularization parameters, and they are adaptively determined

4500905
TABLE I
TRAIN DATASETS’ INFORMATION
Region Res Size Data
8m  6400%2400%9 HR-PoISAR
San Francisco 16m  3200x1200x9 LR-PolSAR
8m  6400x2400x2 HR-DualSAR (HV, VV)
8m  5200%2400%x9 HR-PoISAR
San Francisco 16m  2600x1200x9 LR-PoISAR

8m  5200x2400x2 HR-DualSAR (HV, VV)

TABLE II
TEST DATASETS’ INFORMATION

Region Res Size Data
San Francisco lém  1200x1200x9 LR PolSAR
8m  2400x2400x2  HR DualSAR (HV, VV)
16m  2048x1708x9 LR PolSAR

Quebec

8m 1024x854x2  HR DualSAR (HV, VV)

by the values of L,(®) and L,(®)

1M o
La(©) = 5 >[IV = A (. 1)), ®
L | -
Ly,(©®) = Yo =35(C) =35 (m(c )], @
i=1
L,(® L,(®
| = ( ) ) P( ) (5)

L,(©)+L,(®) 7 L,(0)+L,(O)

where 0 is the residual between the LR-PolSAR images’
upsampling results C;, the reference HR-PoISAR images C;

u’

and C} represent the observed LR-PolSAR images, and I}
represents the HR-DualSAR intensity images. f,(.) represents
the input of the proposed fusion network. N represents the
number of training image pairs. J(.) represents the intensity
image extraction operator. The subscript j represents two
of the polarization channels, HH, HV, and VV, which are
determined by the polarization channel of the input DualSAR.
In practical applications, we extract different polarization
intensity images to calculate the loss function according to
the polarization channel of the DualSAR images used.

III. EXPERIMENT AND ANALYSIS

To verify the effectiveness and robustness of the proposed
fusion method, we conduct simulation experiments, real exper-
iments, and polarization information analysis experiments.
We use RADARSAT-2 data as experimental data, which is
C-band data. The details of the train data and test data used
in the experiment are listed in Tables I and II. Since there is
no DualSAR and PolSAR image fusion method, in simula-
tion experiments and real experiments, we compare with the
current mainstream four PolSAR image-enhancement meth-
ods, including interpolation method (Bicubic), super-resolution
reconstruction methods (SRPSC [3] and PSSR [4]), SinSAR,
and PolSAR image fusion method (PSFN [5]). To ensure
the fairness of the comparison experiment, DualSAR input
is used to replace SinSAR input in the PSEN. In the quan-
titative evaluation, we select two quantitative evaluation indi-
cators, peak signal-to-noise ratio (PSNR), and mean absolute
error (MAE) to measure the fidelity of POISAR images’ infor-
mation and the error of the reconstructed images, respectively.
According to the quantitative evaluation system in PSFN [5],
we quantitatively calculate three components of the Pauli
decomposition, including the odd scattering component P,
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SRPSC

Residual results of simulation experiments.

PSSR
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Fig. 6.

double-scattering component P,, and volume scattering com-
ponent Ps. In the visual evaluation experiment, we perform
the Pauli composition on the results and calculate the residuals
of the Pauli composition results. In the polarimetric analysis
experiments, we perform polarimetric decomposition on the
fusion results and compare the results with the corresponding
HR-PoISAR images. The code link of the proposed method is
(https://github.com/LiupengLin/FDFNet).

A. Simulation Experiments

In the simulation experiments, we downsample the
HR-PoISAR images to get the LR-PoISAR images and extract
the intensity of it to get the HR-DualSAR images. The
LR-PoISAR images and HR-DualSAR images are used as test
data, and the HR-PolSAR images are used as reference data for
quantitative evaluation. The data used in the experiment have
been preprocessed by sigma radiometric calibration, nonlocal
means despeckle processing, and multilook processing.

As shown in Fig. 5, in the enlarged image on the left in
densely built-up areas, compared with the super-resolution
methods, the proposed method can effectively reconstruct the
texture details of the ground features. At the same time,
compared with PSFN, the proposed fusion method has fewer
artifacts. In the enlarged image on the right, the strong scatterer
reconstructed by the proposed method has good color fidelity
while reconstructing detailed information, and no obvious
defocusing phenomenon occurs. Besides, as shown in Fig. 6,
in the residual results of the original HR-PoISAR images,
the proposed method has lower residuals, and all comparison
methods have more obvious residual information. As shown
in Table III, the proposed method is significantly superior to
other comparison methods in quantitative indicators.

B. Real Experiments

In the real experiment, the LR-PolSAR images and the
HR-DualSAR images used were acquired in the standard
mode and fine mode of the RADARSAT-2 satellite, respec-
tively. The HR-PolSAR fusion results are obtained by fus-
ing the LR-PolSAR images in the standard mode and the

PSFN FDFNet Original HR image

TABLE III
QUANTITATIVE EVALUATION RESULTS OF RS-2 (SAN FRANCISCO)

Method Bicubic  SRPSC PSSR PSFN__ FDFNet
PSNR (P/)  45.63 46.04 4725 52.64 52.77
PSNR (P,)  43.16 42.84 43.42 49.97 49.48
PSNR (IP;)  51.39 50.89 52.53 65.37 81.47
PSNR (mean)  46.73 46.59 47.73 55.99 61.24
MAE (P/) 0284 0.236 0.254 0.078 0.069
MAE (P)  0.199 0.190 0213 0.089 0.083
MAE (Ps)  0.035 0.034 0.037 0.013 0.002
MAE (mean)  0.173 0.153 0.168 0.060 0.051

TABLE 1V

QUANTITATIVE EVALUATION RESULTS OF RS-2 (QUEBEC)

Method Bicubic  SRPSC PSSR PSFN __ FDFNet
PSNR ((P/)  50.77 50.74 51.72 56.47 56.94
PSNR (P,})  49.95 50.21 50.76 58.50 58.63
PSNR (|Psf)  50.35 50.60 54.17 7141 80.79
PSNR (mean)  50.36 50.52 5222 62.13 65.45
MAE (P.})  0.095 0.083 0.099 0.030 0.031
MAE (P,f)  0.103 0.086 0.106 0.023 0.026
MAE (Ps)  0.152 0.129 0.084 0.009 0.002
MAE (mean)  0.117 0.099 0.096 0.021 0.020

HR-DualSAR images in the fine mode. The HR-PolSAR
images acquired in fine mode are used as reference data
for quantitative evaluation. The real experimental data are
also preprocessed in the same way as the simulated data.
In addition, image registration processing has been carried out
on the data in the two modes.

In the real experiment, we select two types of land cov-
erage for visual evaluation, including densely built-up and
vegetation. As shown in Fig. 7, the enlarged image on the
left is a densely built-up area, and the one on the right
is a vegetation area. In densely built-up areas, both fusion
methods can effectively reconstruct detailed information, while
the results of super-resolution methods are relatively smooth.
Compared with PSFN, the detailed information of the pro-
posed method is closer to the HR-PolSAR images in the fine
mode. In vegetation areas, the results of the proposed method
have clearer edges and better color fidelity. At the same time,
as shown in Fig. 8, in the residual image, the residual of the
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Fig. 9. Polarimetric decomposition results.

proposed method is lower. Quantitative evaluation indicators
show that the proposed method has better details and lower
reconstruction errors, as shown in Table IV.

C. Polarization Decomposition Experiment

To verify the ability of the fusion network to maintain
polarimetric information, we use H /A /o polarimetric decom-
position [8] to analyze the scattering characteristics of the
result. To prove the practical application capability of the
fusion network, polarimetric analysis experiments are all based
on the fusion results of real experiments.

As shown in Fig. 9, in the polarimetric decomposition
results, including the polarimetric entropy (H), anisotropy
(A), and average alpha angle (a), the decomposition results
of the proposed method are close to that of the HR-PolSAR
images in the fine mode. It shows that the proposed method
can better maintain the polarimetric information and can
effectively extract the polarimetric parameters.

FDFNet: FUSION NETWORK FOR GENERATING HIGH-RESOLUTION FULLY PolSAR IMAGES
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IV. CONCLUSION

In this letter, a fusion network of LR fully PolSAR images
and HR DualSAR images is proposed. By introducing polari-
metric decomposition information and differential information,
the two kinds of data are effectively fused. In addition, the L
norm loss function makes the trained model more suitable for
PolSAR images. Compared with the existing PoISAR images
resolution enhancement methods, the proposed method can
effectively reconstruct the texture details while maintaining
the inherent polarimetric information of the PolSAR images.
The proposed network is a data-driven method, and the accu-
racy of the model depends on the training dataset. There-
fore, the development of a weakly supervised fusion method
that combines physical mechanisms is one of the future
trends.
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