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A B S T R A C T   

Light use efficiency (LUE) models, mainly including the big-leaf (BL) and two-leaf (TL) categories, are efficient 
approaches to simulate gross primary productivity (GPP). Recently, a TL LUE model considering a radiation 
scalar (RTL-LUE) was developed, which improved the GPP simulation and unified the same model structure with 
the BL models using only one maximum LUE. However, whether the radiation scalar is suitable for BL models is 
still unknown yet, and the core parameters of maximum LUE in the BL and TL models have not been fairly 
compared before. In this study, we step forward to modifying the MOD17 model using the radiation scalar 
(RMOD17), and compare the GPP simulations and maximum LUEs in BL (MOD17, RMOD17) and TL (RTL-LUE) 
models at global 169 FLUXNET eddy covariance (EC) sites. Results indicate that the GPP estimation from 
RMOD17 (R2=0.72) matches better with EC GPP than those from the original MOD17 (R2=0.65), because the 
radiation scalar effectively corrects the underestimations or overestimations in low or high photosynthetically 
active radiation (PAR) ranges caused by the radiation-independent LUE in MOD17. The RTL-LUE can further 
improve the accuracy (R2=0.74) by alleviating the GPP underestimation of BL RMOD17 in high productivity 
ranges, which is mainly caused by the insufficient consideration of the shaded leaves contributions. The 
maximum LUE from RMOD17 and RTL-LUE both show more reasonable values and lower diurnal variations than 
MOD17, and further analysis proves the radiation scalar is the main reason for this. Besides, RTL-LUE presents a 
lower model parameter sensitivity compared to RMOD17, indicating that TL is a more robust strategy than BL to 
simulate GPP. This study highlights the importance of considering a radiation scalar and two-leaf strategy in GPP 
simulation in LUE models, to better describe the multi-order impacts of radiation on vegetation photosynthesis.   

1. Introduction 

The terrestrial carbon cycle is a critical component of the global 
carbon budget (Friedlingstein et al., 2019; Marcott et al., 2014). Gross 
primary productivity (GPP), describing the overall carbon fixation of 
plant photosynthesis at the ecosystem scale, is a principal indicator for 
monitoring the status and changes of the terrestrial carbon cycle (Chen 
et al., 2019; Monteith, 1972). Accurate simulation of GPP at regional or 
global scales is essential to assess the global carbon balance and un
derstand the interactions between terrestrial ecosystems and global 
climate change (Running et al., 2004; Wang et al., 2020). 

There are many approaches to estimate GPP at present, which can be 

mainly divided into in-situ measurement-based and model-based esti
mates (Xie et al., 2020; Yuan et al., 2014). Eddy covariance (EC) flux 
systems are the mainstream in-situ measurements for the net ecosystem 
exchange (NEE), which can be used to derive GPP with satisfactory 
accuracies (Baldocchi et al., 2001; Pastorello et al., 2020). Although 
regional and global EC networks (i.e., FLUXNET) have already been 
established and significantly contributed to advancing our understand
ing of vegetation photosynthesis processes at the canopy scale, they are 
still limited by the spatial footprint varying from tens of meters to 
several kilometers (Pastorello et al., 2020; Yu et al., 2006). Ecosystem 
models are efficient methods to estimate regional or global GPP, mainly 
including process-based models and light use efficiency (LUE) models 
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(He et al., 2018b; Xie et al., 2020). Compared to the massive parameters 
and data input requirements in process-based models, the simple model 
structure and fewer data inputs in LUE models make it much easier and 
more popular to be adopted in large-scale applications (Dong et al., 
2015; Haxeltine and Prentice, 1996). LUE models can also be conve
niently driven by the satellite vegetation index (VI) data, i.e., normal
ized difference vegetation index (NDVI) and leaf area index (LAI), 
ensuring its applicability in regional or global GPP simulations world
wide (Guan et al., 2019; Hilker et al., 2008; Yang et al., 2013). 

In recent decades, numerous LUE models have been developed for 
GPP calculation, mainly on the basis of big-leaf (BL) or the two-leaf (TL) 
assumptions (Bai et al., 2018; Zhou et al., 2016). Although the BL and TL 
models both calculate GPP as the product of the absorbed photosyn
thetically active radiation (APAR) and actual LUE, significant differ
ences still exist in the treatments of the vegetation canopy and APAR 
calculations (Xie and Li, 2020; Zhou et al., 2016). The BL models treat 
the entire vegetation canopy as a big extended leaf, assuming that all the 
leaves in the canopy are the same and absorb the direct and diffuse ra
diation without differences for photosynthesis (McCallum et al., 2013). 
The typical BL models include MOD17 (Running et al., 2004), EC-LUE 
(Yuan et al., 2007), Vegetation Photosynthesis Model (VPM) (Xiao 
et al., 2004), and Carnegie-Ames-Stanford approach (CASA) model 
(Potter et al., 1993). These models calculate APAR directly from the 
incoming photosynthetically active radiation (PAR) and the remote 
sensing VI-based fraction of photosynthetically active radiation (fPAR), 
and the major disparities of these models are the hydrothermal envi
ronmental scalars used to constraint the maximum LUE (Dong et al., 
2015; Yuan et al., 2014). However, many studies indicated that the 
APAR and LUE of sunlit and shaded leaves in a canopy should be 
different due to their different exposure levels to sunlight, and the same 
treatment of sunlit and shaded leaves in BL models may induce large bias 
in GPP estimation (Alton et al., 2007; Braghiere et al., 2019; De Pury and 
Farquhar, 1997; He et al., 2013; Zhang et al., 2012). Sunlit leaves, which 
absorb direct and diffuse radiation simultaneously, are easily 
light-saturated with low LUE. In contrast, shaded leaves only absorb 
diffuse radiation, and thus their photosynthesis is usually limited by low 
APAR, and showing higher LUE than sunlit leaves (Chen et al., 1999; 
Farquhar et al., 1980; Liu et al., 1997). To address the above issue, TL 
LUE models were developed by separately calculating the LAI and 
absorbed PAR of sunlit and shaded leaves based on the approach in the 
Boreal Ecosystem Productivity Simulator (BEPS) (Liu et al., 1997), such 
as the TL-LUE model (He et al., 2013), MTL-LUE model (Xie and Li, 
2020), and the revised EC-LUE model (Zheng et al., 2020). These TL 
models have been proved to outperform the corresponding BL models, 
suggesting that the separate treatment of sunlit and shaded leaves is 
essential in GPP modeling (Zan et al., 2018; Zhou et al., 2016). However, 
these TL models still neglect the integral impacts of radiation intensity 
on LUE, and differentiate the LUE of sunlit and shaded leaves only by the 
different two constants of maximum LUEs, which may also lead to un
certainties in GPP estimation. 

Recently, a two-leaf LUE model considering a radiation scalar (RTL- 
LUE) is developed, in which the same maximum LUE is assigned to the 
sunlit and shaded leaves, and the differences in actual LUE between 
them are characterized and constrained by the respective radiation in
tensity they received (Guan et al., 2021). The RTL-LUE model unifies the 
same model structure with the BL models with only one parameter of 
maximum LUE for all the leaves in the canopy, rather than assigning two 
different values for sunlit and shaded leaves in traditional TL models. In 
fact, it is the actual LUEs that are different for sunlit and shaded leaves 
mainly caused by the disparate radiation intensity they received, but the 
maximum LUE between the two groups of leaves should be almost the 
same (Chen et al., 2012; De Pury and Farquhar, 1997; Ogren, 1993). The 
maximum LUE is only decided by the physiological traits of the leaf it
self, which is nearly the same in a canopy, either for sunlit or shaded 
leaves (Chen, 1996; Hunt Jr and Running, 1992; Koyama and Kikuzawa, 
2010; Liu et al., 1997). While a light response curve normally shows that 

the leaf photosynthesis rate increases rapidly in low radiation intensity 
but slowly when radiation intensity is high, suggesting that LUE in 
shaded leaves should be higher than that in sunlit leaves (Harbinson, 
2012; Ogren, 1993). Therefore, it is more reasonable to assign the same 
maximum LUE for all the leaves in a canopy, and constrain it to the 
actual level respectively by the radiation scalars of sunlit and shaded 
leaves according to the light response curve (Leverenz, 1987; McCallum 
et al., 2013; Propastin et al., 2012). Validation from global EC sites 
proved the RTL-LUE model could significantly improve the GPP simu
lation by alleviating the overestimation in the original TL-LUE model 
under high incoming PAR conditions, highlighting the necessity of 
incorporating a radiation scalar into TL LUE models (Guan et al., 2021). 
However, it is still unknown whether the radiation scalar is suitable for 
BL LUE models, in which even the effects of radiation distribution within 
the canopy on GPP simulation are insufficiently considered. Further
more, the core parameter of maximum LUE in BL and TL models has not 
yet been directly compared previously, because of the different number 
of parameters (i.e., 2 in TL models for sunlit and shaded leaves, and only 
1 in BL models for all the leaves). Since the RTL-LUE model unifies the 
same model structure as the BL models, it provides the possibility to 
directly explore the difference in maximum LUE in the BL and TL LUE 
models. 

In this context, it is necessary to compare the BL and TL LUE models 
for GPP simulation after both using a radiation scalar, and to clarify the 
contribution of the TL strategy and radiation scalar to describe the im
pacts of radiation on vegetation photosynthesis. Since the RTL-LUE 
model stemmed from the MOD17 model, the BL MOD17 model is 
selected for comparison, and a revised model is modified with the ra
diation scalar. The main purposes of this study are: (1) to prove whether 
the radiation scalar is suitable for the big-leaf models; (2) to discuss the 
contribution of two-leaf strategy in GPP simulation after using the ra
diation scalar; (3) to compare the difference of maximum LUE in big-leaf 
and two-leaf models. 

2. Data and methods 

2.1. Data 

EC data from the FLUXNET2015 dataset (www.fluxdata.org) is 
applied to calibrate the parameters and validate the GPP simulations 
from the different LUE models (Baldocchi et al., 2001; Pastorello et al., 
2017, 2020). Overall, 169 sites (Table S1) distributed across the globe 
are selected on the basis of more than one year of valid half-hourly GPP, 
incoming solar radiation, air temperature, and VPD during 2001–2015, 
with 1191 site-years data in total. These sites cover 12 vegetation types 
in the International Geosphere-Biosphere Program (IGBP) classification 
system, including: 19 deciduous broadleaf forest (DBF); 1 deciduous 
needleleaf forest (DNF); 12 evergreen needleleaf forest (ENF); 41 ever
green broadleaf forest (EBF); 8 mixed forest (MF); 32 grass (GRA); crop 
(CRO); 1 closed shrub (CSH); 11 open shrub (OSH); 18 wetlands (WET); 
7 savannas (SAV); 6 woody savannas (WSA). Furthermore, the Global 
LAnd Surface Satellite (GLASS) LAI product during 2001 and 2015 is 
derived to drive all the LUE models, in order to ensure the fairness of the 
comparison between BL and TL models using the same key driven data. 
This LAI product is provided in an 8-days composition with a spatial 
resolution of 1 km, which has been shown to have a satisfactory per
formance in GPP simulation (Xiao et al., 2016; Xie et al., 2019). A 
modified Whittaker trend filtering method is used to further correct the 
residual noises that existed in the LAI time series (Chu et al., 2021; Li 
et al., 2020). 

2.2. The MOD17 algorithm 

The MOD17 algorithm is developed based on the radiation conver
sion efficiency concept of Monteith (1972). GPP is calculated as 
(Running et al., 2004): 
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GPP = εMOD × PAR × fPAR × f (VPD) × g(Ta) (1)  

where εBL is the maximum LUE varied with different vegetation 
types;fPAR is the fraction of PAR absorbed by the canopy; f(VPD) and 
g(Ta) are the scalars of VPD and minimum temperature. 

fPAR = 1 − e− k×LAI (2)  

f (VPD) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 VPD ≥ VPDmax

VPDmax − VPD
VPDmax − VPDmin

VPDmax < VPD < VPDmax

1 VPD ≤ VPDmin

(3)  

g(Ta) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 Ta ≥ Tmax

Ta − Tmin

Tmax − Tmin
Tmin < Ta < Tmax

0 Ta ≤ Tmin

(4)  

where k is the light extinction coefficient and set as 0.5; LAI is the leaf 
area index of the whole canopy; VPD is the daily average VPD at day- 
time and Ta is the daily minimum temperature; VPDmax,VPDmin,Tmax,

andTmin are parameters specific to vegetation types. 

2.3. Modified MOD17 model considering scalar of radiation 

After considering the scalar of radiation, the MOD17 algorithm is 
modified and named as the RMOD17 model. The modified calculation of 
GPP as follows: 

GPP = εRBL × PAR × fPAR × f (VPD) × g(Ta) × f (PPFD) (5)  

where εRBL is the maximum LUE for RMOD17 model; f(PPFD) is the 
scalar of the radiation on vegetation photosynthesis that reduces LUE 
from its prescribed maximum to a realistic value in a way similar to the 
other environmental scalars, i.e., f(VPD) and g(Ta). A reciprocal function 
is used for f(PPFD) according to the format used in previous ecosystem 
models (e.g., BEPS and BIOME-BGC) to scale stomatal conductance (Liu 
et al., 1997; Running and Coughlan, 1988), as follow: 

f (PPFD) =
b

a × PPFD + b
(6)  

where a and b are the coefficients determining the relationship between 
light intensity and LUE. The b is set as a constant with the value of 1 mol 
m − 2 hh− 1 referring to the value set in previous models (Chen et al., 
1999; Mäkelä et al., 2008), and only the parameter a is used to control 
the response of LUE to PPFD and to minimize the number of parameters 
that need to be parameterized. PPFD is the photosynthetic photon flux 
density (mol m − 2 hh− 1) representing the light intensity in a specific 
area and percent time. In the big-leaf model, PPFD is approximated by 
the amount of PAR multiply the constant PAR-energy ratio of 4.55 
mol/MJ (Chen et al., 1999). 

2.4. The RTL-LUE model 

The RTL-LUE model also stems from the MOD17 algorithm, and 
improves the calculation of canopy APAR by considering the difference 
between sunlit and shaded leaves according to the BEPS model (Chen 
et al., 1999; Liu et al., 1997). The RTL-LUE model assumes the same 
maximum LUE for all the leaves in the canopy, and the differences in real 
LUE between sunlit and shaded leaves are decided by the radiation 
scalars ranging from 0 to 1. According to the light response curve, 
shaded leaves only exposed to diffuse radiation would be nearer to the 
light compensation point and thus have a radiation scalar with higher 
values than sunlit leaves. In this way, higher LUE values are obtained for 
shaded leaves than sunlit leaves (Chen et al., 1999; Harbinson, 2012). 

The calculation of GPP in RTL-LUE is modified as follows (Guan et al., 
2021): 

GPP=εRTL×(f (PPFDsu)×APARsu+f (PPFDsh)×APARsh)×f (VPD)×g(Ta)

(7)  

where εRTL is the maximum LUE of all the leaves within the canopy; 
f(PPFDsu) and f(PPFDsh) are the scalar of the radiation on vegetation 
photosynthesis in sunlit and shaded leaves; f(VPD) and g(Ta) are 
calculated the same as it in the MOD17 algorithm with the same 
meaning; APARsu and APARsh are the incoming PAR absorbed by sunlit 
and shaded leaves and calculated as follows: 

APARsu = (1 − α) ×
[

PARdir × cos(β)
cos(θ)

+
PARdif − PARdif ,u

LAI
+C

]

× LAIsu

(8)  

APARsh = (1 − α) ×
[

PARdif − PARdif ,u

LAI
+C

]

× LAIsh (9)  

where α is the canopy albedo that obtained related to vegetation types 
(Table. S2); β is the mean leaf-sun angle and the value for a canopy with 
spherical leaf angle distribution is set as 60◦; θ is the solar zenith 
angle;PARdif , PARdir PARdif ,u, and C are the diffuse, direct components of 
incoming PAR, the diffuse PAR under the canopy, and the multiple 
scattering of direct radiation, respectively, which are empirically par
titioned according to the clearness index (CI) following Chen et al. 
(1999); LAIsu and LAIsh are the LAI of sunlit and shaded leaves, separated 
according to the canopy LAI, clumping index (Ω) and solar zenith angle 
according to Chen et al. (1999). The LAIsu can be computed as follow, 
and the LAIsh is the residual of LAI minus LAIsu. 

LAIsu = 2 × cos(θ) ×
(

1 − exp
(

− 0.5×Ω×
LAI

cos(θ)

))

(10)  

2.5. Model parameterization and evaluation 

2.5.1. Model parameterization 
Similar to previous studies, the parameters VPDmax,VPDmin,Tmax,

Tmin,α,Ωanda are empirically set both in the MOD17, RMOD17, and 
RTL-LUE models according to the previous literature (Guan et al., 2021; 
He et al., 2013; Zhou et al., 2016), as shown in Table S2. There is a 
respective parameter of maximum LUE that needs to be further opti
mized in three models, i.e., εBL in the MOD17 model, εRBL in the 
RMOD17 model, and εRTL in the RTL-LUE model. The parameters of the 
maximum LUE in the three models are all optimized site by site, so a set 
of parameter values can be obtained for each site within a given PFT, 
revealing the variance of the parameter (Huang et al., 2021). Similar to 
previous studies, the mean values for the sites within the same PFT are 
obtained as the parameter for this PFT (Xie and Li, 2020; Zhou et al., 
2016). Only one site-year data are randomly selected for parameteri
zation at each site, in order to compare the BL and TL models using as 
much data as possible. The shuffled complex evolution method of the 
University of Arizona was employed to implement the optimization 
(Duan et al., 1992; Zhou et al., 2016), which evaluates the model per
formance with the agreement index (d): 

d = 1 −

∑N

i=1
(Pi − Oi)

2

∑N

i=1
(|Pi − O| + |Oi − O|)

2
(11)  

where N is the total simulated experiment data point; Pi and Oi represent 
the predicted GPP and observed EC GPP, respectively; and O and P are 
the mean values of observations and predictions for all experimental 
data points. 
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2.5.2. Model evaluation 
The accuracies of the GPP simulations from the three models were 

assessed against the EC GPP, both using the half-hourly data, the 
composited 8-day data, and the composited yearly data. The optimized 
maximum LUE for the three models were compared both in the spatial 
heterogeneity and the diurnal variation. In addition, four indexes were 
applied for quantitative accuracy evaluation, including the coefficient of 
determination (R2), the root-mean-square error (RMSE), the mean pre
dictive error (bias), and the Coefficient of Variation (CV): 

R2 =

⎛

⎜
⎜
⎜
⎜
⎝

∑N

i=1
(Pi − O)(Oi − O)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Pi − P)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Oi − O)

2

√

⎞

⎟
⎟
⎟
⎟
⎠

2

(12)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(Pi − Oi)

2

N

√
√
√
√
√

(13)  

bias =

∑N

i=1
(Oi − Pi)

N
(14)  

CV =
SD

Mean
× 100% (15)  

where SD is the standard deviation, and Mean is the mean value. 

3. Results 

3.1. Improvements of RMOD17 after considering the scalar of radiation 

The half-hourly GPP simulations from the MOD17, RMOD17, and 
RTL-LUE models are evaluated using the EC GPP from the global 169 
sites. As shown in Table 1, the statistics of R2, RMSE, and bias among 12 
different vegetation types are listed, after calculating the mean value of 
all the sites within the same vegetation type. It can be observed that the 
accuracy of GPP simulations from the RMOD17 model is better than the 
results of the original MOD17 model in all of the 12 vegetation types, 
with higher R2 or lower RMSE and bias. Overall, the mean R2 and RMSE 
for MOD17 model results is 0.57 and 0.13 g C m − 2 hh− 1, respectively, 
and the corresponding value is 0.60 and 0.11 g C m − 2 hh− 1 for the 
RMOD17 model, with an improvement of 0.03 in R2 and a reduction of 
0.02 g C m − 2 hh− 1 in RMSE. Considerable improvements can be found 
in all of the five forest vegetation types, especially the increase of R2 

reaches 0.05 and 0.04 in the deciduous and evergreen broadleaf forest 

sites, respectively. The value of R2 ranges from 0.37 for open shrubs to 
0.78 for closed shrubs in the results of the MOD17 model, and the range 
is from 0.40 to 0.81 for the same two vegetation types in the RMOD17 
model. The R2 and RMSE of half-hourly GPP simulations from the 
MOD17 and RMOD17 models at each site are further compared using 
the scatter plots in Fig. 1. Among all the 169 EC sites, there are in total 
140 sites showing a reduced RMSE in the results of the RMOD17 model 
after considering the radiation scalar, and 119 sites have a higher R2. 
Although the number of sites for an improved R2 is not as many as it for a 
reduced RMSE, a significant difference of 0.06 in the mean value can be 
observed at these sites between the results of MOD17 (R2=0.60) and 
RMOD17 (R2=0.66). 

In order to conduct an overall assessment of GPP simulations from 
the MOD17 and RMOD17 models, the half-hourly data were further 
composited into the yearly sum. The density scatterplots of the GPP 
simulations and EC GPP for all site years are shown in Fig. 2(a) and (b). 
After the yearly composition, more significant improvements can be 
observed in the RMOD17 results, with increased R2 (+0.07) and reduced 
RMSE (− 82.51 g C m − 2 year− 1). Due to the accumulation error, many 
points from MOD17 results show a large discrepancy from EC GPP, while 
the points in the scatter plot of RMOD17 results are more concentrated 
near the 1:1 line, especially in the medium and high productivity ranges. 
The slope of the linear regress line improves from 0.69 to 0.73, which 
indicates minor systematic biases of the GPP simulations from the 
RMOD17 model after using the radiation scalar. 

3.2. Comparison of the big-leaf RMOD17 model and two-leaf RTL-LUE 
model 

The accuracies of GPP simulations from the big-leaf RMOD17 model 
and the two-leaf RTL-LUE model are also compared. The two models 
both use the radiation scalar but treat the vegetation canopy differently. 
As shown in Table 1, the RTL-LUE model generally shows a better per
formance than the RMOD17 model almost in all the 12 vegetation types, 
either with higher R2 or reduced RMSE. Considerable improvements in 
R2 can be found at DBF, DNF, crops, and wet sites. After being 
composited into yearly data, the GPP simulations from the RTL-LUE 
model also agree better with EC data than the RMOD17 results (Fig. 2 
(b) and (c)), with improvements of R2 (+0.02) and RMSE (20.73 g C m −
2 year− 1). Although the gains are not as significant as those between 
MOD17 and RMOD17 model induced by the radiation scalar, an obvi
ously better linear regression line can be found in the RTL-LUE results 
with a slope of 0.85, compared to the value of 0.69 and 0.73 in the 
MOD17 and RMOD17 results. This indicates that the distribution of GPP 
simulations from the RTL-LUE model is overall more similar to EC data 
with a smaller systematic error. The main reason for the improvements 

Table 1 
Statistic of the half-hour GPP simulation accuracy for different vegetation types.  

Vegetation type a MOD17  RMOD17  RTL-LUE 
R2 RMSE b bias b  R2 RMSE b bias b  R2 RMSE b bias b 

DBF 0.66 0.16 0.03  0.71 0.13 0.04  0.74 0.12 0.04 
DNF 0.64 0.08 0.04  0.65 0.06 0.03  0.67 0.05 0.02 
EBF 0.65 0.15 − 0.01  0.69 0.11 − 0.01  0.69 0.11 0.02 
ENF 0.65 0.13 0.00  0.68 0.10 0.00  0.68 0.09 0.00 
MF 0.71 0.19 0.02  0.73 0.13 0.01  0.73 0.15 0.01 
GRA 0.50 0.13 0.03  0.53 0.11 0.03  0.53 0.10 0.02 
CRO 0.39 0.19 0.05  0.40 0.17 0.05  0.43 0.15 0.03 
CSH 0.78 0.09 − 0.01  0.81 0.07 0.01  0.82 0.07 0.01 
OSH 0.37 0.07 0.03  0.40 0.06 0.03  0.40 0.04 0.01 
WET 0.58 0.15 0.08  0.59 0.10 0.03  0.62 0.09 0.03 
SAV 0.49 0.15 0.04  0.49 0.13 0.01  0.49 0.11 0.01 
WSA 0.52 0.12 0.03  0.52 0.10 0.04  0.54 0.09 0.03 
All 0.57 0.13 0.03  0.60 0.11 0.02  0.61 0.10 0.02  

a DBF: deciduous broadleaf forest; DNF: deciduous needleleaf forest; ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; MF: mixed forest; GRA: grass; 
CRO: crop; CSH: closed shrub; OSH: open shrub; WET: wetlands; SAV: savannas; WSA: woody savannas 

b the units of RMSE and bias are g C m − 2 hh− 1. 
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is that RTL-LUE can better simulate GPP in high productivity ranges, 
where underestimation is typically found in the RMOD17 results (Fig. 2 
(b)). 

In order to further explore the improvements of slope in the RTL-LUE 
(RTL) model compared to the RMOD17 (RBL) model, the scatterplots of 
all the 8-days sum data points for the 12 vegetation types are provided in 
Fig. 3. The slopes of RTL-LUE simulations are much better than the 
RMOD17 results in all the 12 vegetation types, with the value much 
nearer to 1, which indicates a better agreement with EC data. Consid
erable improvements in slope can be found in EBF (+0.18), DBF 
(+0.16), ENF (+0.15), and wet (+0.23). The data points of results from 
the RMOD17 (gray) and RTL-LUE (black) models are displayed in 
different colors, so direct qualitative comparisons can be achieved. The 
underestimated points from the RMOD17 model in high productivity 
ranges are overall well raised by the RTL-LUE model, to be more 
concentrated near the 1:1 line. Especially for the sites covered by five 
forests and wet types, significant differences can be observed in the re
sults from the two models. 

3.3. Sensitivity of GPP simulations to PAR and CI in different models 

In order to further investigate the reasons for the different accuracies 
of GPP simulations from the MOD17, RMOD17, and RTL-LUE models, 
simulated and EC GPP values are averaged over 0.01 (MJ m − 2 hh− 1) 
bins of incoming PAR, as well as their differences (ΔGPP = GPPsimulation 
− GPPEC). R2 between the average binned GPP simulations and the EC 
data in 12 different vegetation types are listed in Table 2. It can be 

observed that R2 values in all three models are improved after binned 
into different PAR magnitudes in almost all the 12 vegetation types, 
because the averaging process can eliminate the outliers and abnormal 
values. GPP simulations from the RTL-LUE model still perform the best 
for all or individual vegetation types, with a higher R2 than that of 
RMOD17 (+0.04) and MOD17 (+0.07). This indicates that the GPP 
simulations from the RTL-LUE model show more similar trends than 
those from the other two models with the EC GPP at different PAR 
intensities. 

The variations of ΔGPP= GPPsimulation − GPPEC for 12 typical sites 
with different vegetation types are selected to show the variation of GPP 
estimation errors with radiation intensity, as shown in Fig. 4. GPP 
simulated by the MOD17 model can only approach the EC data under the 
average incoming PAR conditions, but showing apparent underestima
tion in low PAR ranges and overestimation in high PAR ranges. It is 
because the radiation-independent LUE used in the MOD17 model is 
only suitable for the average incoming PAR conditions, and the actual 
LUE should decrease with the increase of incoming PAR. As a result, the 
applied constant LUE will certainly be lower than the actual LUE when 
the incoming PAR is low, resulting in the underestimation of GPP. The 
conditions will be opposite when the incoming PAR is high, leading to 
overestimation. After using the radiation scalar, this problem is mostly 
overcome in the RMOD17 model, with reduced bias in GPP simulation 
under different PAR conditions. However, the RMOD17 model tends to 
underestimate GPP under the high incoming PAR conditions, which is 
consistent with the result in Figs. 2 and 3, i.e., the underestimation in 
high productivity ranges. It is mainly caused by the insufficient 

Fig. 1. Comparison of the R2 and RMSE for GPP simulations from the MOD17 and RMOD17 models against tower measurements (EC GPP) at 169 EC sites.  

Fig. 2. The relation between the yearly EC GPP and the simulation results from (a) the MOD17 model, (2) the RMOD17 model, and (c) the RTL-LUE model.  
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consideration of the contribution of shaded leave in the big-leaf 
RMOD17 model, which has been described in many previous studies 
(He et al., 2018a; Zhang et al., 2012). Due to the shaded leaves only 
expose to diffuse radiation, they can still maintain relatively high LUE 
even with high incident radiation on the canopy. Thus, the big-leaf 
models using the same average LUE for all leaves in the canopy will 
certainly lead to a lower LUE and cause an underestimation of GPP. 
Furthermore, the unreasonably high level of PAR used to represent the 
average radiation intensity of the canopy would be another reason 

because the large fraction of shaded leaves in the canopy only receive 
diffuse radiation. As a result, the RMOD17 model will use a relatively 
low f(PPFD), inducing a lower LUE to underestimate GPP under the high 
incoming PAR conditions. This problem is alleviated in the RTL-LUE 
model by separately considering the photosynthesis of sunlit and 
shaded leaves, so the LUE values of different groups of leaves are indi
vidually determined according to their own received radiation intensity. 
As a result, the RTL-LUE model does not show any significant tendency 
to overestimate or underestimate GPP under any levels of incoming 

Fig. 3. Scatter plot of GPP simulations from the RMOD17 and RTL-LUE models after composited into 8-day totals. The “RTL slope” denotes the slope of the linear 
regress line for RTL-LUE model results, and the “RBL slope” is for the results of the big-leaf RMOD17 model. 

Table 2 
Statistic of the R2 between GPP simulations from the three models and EC GPP after averaged over 0.01 bins of incoming PAR in different vegetation types.  

Vegetationtype a DBF DNF EBF ENF MF GRA CRO CSH OSH WET SAV WSA All 

MOD17 0.82 0.78 0.78 0.80 0.86 0.64 0.66 0.91 0.54 0.70 0.69 0.64 0.74 
RMOD17 0.82 0.76 0.92 0.86 0.88 0.71 0.70 0.92 0.59 0.71 0.68 0.64 0.77 
RTL-LUE 0.89 0.83 0.90 0.87 0.90 0.72 0.74 0.96 0.59 0.79 0.73 0.74 0.81  

a The abbreviations of different vegetation types are the same as it in Table 1. 
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PAR, and the simulated GPP can fit better with the EC data than the 
other two big-leaf models. 

Furthermore, the canopy LUEs (LUEc=GPP/PAR) (He et al., 2013) 
calculated by the models and EC data are also averaged over 0.05 bins of 
sky clearness index (CI), as shown in Fig. 5. At all sites, the EC LUEc 
generally decreases with the increase of CI. This is because the amount 
of diffuse radiation, which can be used by both sunlit and shaded leaves 
with high light use efficiency, is negatively correlated with the R. As a 
result, the higher CI is, the less diffuse radiation is, and the lower LUE of 
a canopy is. However, the LUEc simulated by the MOD17 model shows 
weak responses to CI only with similar values to EC LUEc at high CI 
ranges. This is because the MOD17 model considered neither the im
pacts of radiation on LUE nor the differences between sunlit and shaded 
leaves, so the LUE of the model results does not vary with the amount of 
radiation or the percentage of the diffuse component. As a result, the 
MOD17 model usually underestimates LUE under low CI conditions, 
leading to GPP underestimation in low PAR ranges (Fig. 4). After using 
the radiation scalar, the RMOD17 and RTL-LUE models can generally 
reproduce the decreasing trends of LUEc with CI shown in EC data. 
Especially under the high CI conditions (CI> 0.4) with more direct ra
diation, results from both RMOD17 and RTL-LUE are almost the same as 
the EC data. 

3.4. Differences of parameterized maximum LUE across biomes 

The maximum LUE is a crucial parameter in LUE models. Since the 
differences between maximum LUE in the big-leaf and two-leaf models 
have not yet been previously investigated, it is necessary to conduct a 
comparison for the three models. As shown in Table 3, the optimized εBL 
in the MOD17 model is the lowest in all the 12 vegetation types, and εRBL 
in the RMOD17 model shows the highest value with approximately 2.5 

times higher than εBL. As a result, εRBL in the RMOD17 model indicates 
that all vegetation types should have a much higher maximum LUE after 
considering the radiation scalar. It is because that the εBL in the original 
MOD17 model is not the actual maximum LUE but only is an average 
value constrained by radiation scalar at an intermediate radiation level. 
The maximum LUE should be the maximum photosynthetic rate for 
vegetation under the completely ideal environmental conditions, which 
definitely includes the radiation environment. As a result, εBL after the 
constraint by the average radiation scalar will certainly be much lower 
than εRBL. 

Furthermore, εRBL in RMOD17 is also higher than εRTL in RMOD17 in 
all of the 12 vegetation types. It is mainly caused by the insufficient 
consideration of the contribution of shaded leaves in the big-leaf 
RMOD17 model by treating the whole canopy as a big leaf, so a 
higher maximum LUE is needed to avoid underestimation and approach 
the data used to optimize it. Besides, the direct use of PAR as the average 
radiation intensity for the canopy in the big-leaf RMOD17 model would 
be another reason. Since only sunlit leaves in the canopy can receive the 
total incoming radiation while shaded leaves can only receive diffuse 
radiation, the average radiation intensity for a canopy should be much 
lower than the value directly calculated by PAR. As a result, the 
RMOD17 model tends to use a generally more strong radiation 
constraint to LUE with a much lower f(PPFD) value, and finally results in 
the overestimated εRBL. In contrast, the separate consideration of the 
radiation intensity incident on sunlit and shaded leaves in the RTL-LUE 
model can avoid these problems, and shows a more reasonable εRTL to 
approximate actual values. 

For all of the three models, the greatest values of maximum LUE are 
found in the crop sites, and the lowest values are found in different 
vegetation types, which are CSH, SAV, and OSH respectively for εBL, 
εRBL, and εRTL. The rank of εRBL and εRTL among the 12 vegetation types 

Fig. 4. The sensitivity of GPP simulations to PAR for 12 specific sites with different vegetation types (ΔGPP = GPPsimulation − GPPEC). The title of each subplot is 
named as “vegetation types/site name”. 
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are very similar with an R2 reaching 0.94, while the rank of εBL is quite 
different from εRBL (R2=0.25) and εRTL (R2=0.41). The CV of εBL is the 
lowest among the three maximum LUE except for the MF and SAV sites, 
and the CV of εRTL is lower than εRBL in 11 vegetation types except for the 
MF sites. It indicates that the spatial variation of εRTL in the RTL-LUE 
model would be much lower than εRBL in the RMOD17 model. 

3.5. Diurnal variation of εBL, εRBL, and εRTL 

The LUE models are usually driven by biome specific maximum LUE, 
so it is essential to clarify the suitability of different model structures 
using a constant maximum LUE without any temporal changes. Because 
the maximum LUE is only determined by the physiological traits of the 
leaf itself, which should not change considerably within a day, there 

should be no significant diurnal variation for the εBL, εRBL, and εRTL. As a 
result, it can be a standard to verify the reasonability of the maximum 
LUE in the three models, and half-hourly εBL, εRBL, and εRTL time series at 
each site are all calculated using the simple ratio of the EC GPP and the 
GPP simulations without the maximum LUE (i.e., the maximum LUE sets 
to 1 in all the three models, denoted as GPPsim ε=1). Afterward, the mean 
value and CV for εBL, εRBL, and εRTL, as well as R2 between EC GPP and 
GPPsim ε=1 from the three models are calculated for all the 333,919 site- 
days. Since the different values of maximum LUE in the three models 
will not influence R2 between GPP simulations and EC GPP, so R2 be
tween EC GPP and GPPsim ε=1 in each site-days can represent the accu
racy of the model simulations. The direct comparisons among the three 
models are plotted in Fig. 6, and the statistics for 12 vegetation types are 
listed in Table. 4. As shown in Fig. 6(a) and (d), it can be observed that 

Fig. 5. Comparison of the dependence of canopy light use efficiency (LUEc = GPP/PAR) on clear sky index (CI) averaged over 0.05 bins at 12 specific sites with 
different vegetation types. The title of each subplot is named as “vegetation types/site name”. 

Table 3 
Mean value, Standard Deviations (SD), and CV of the optimized different maximum LUE for the three models, i.e. εBL, εRBL, and εRTL, for different vegetation types.  

Vegetation type a Mean (g C MJ¡1)  SD (g C MJ¡1)  CV (%) 
εBL  εRBL  εRTL   εBL  εRBL  εRTL   εBL  εRBL  εRTL  

DBF 1.22 4.75 2.85  0.34 2.28 0.91  28.01 48.06 32.08 
DNF 1.01 1.95 1.68  / / /  / / / 
EBF 1.01 3.32 2.16  0.16 1.96 0.83  15.67 59.05 38.46 
ENF 1.11 2.67 2.14  0.34 0.87 0.58  30.24 32.63 27.07 
MF 1.50 3.34 2.54  0.97 0.93 0.76  64.67 27.84 30.05 
GRA 1.52 3.39 2.39  0.74 2.25 1.39  48.31 66.29 58.01 
CRO 1.63 5.06 3.32  0.46 4.30 2.04  28.49 85.12 61.33 
CSH 0.91 2.21 1.68  / / /  / / / 
OSH 0.93 1.95 1.58  0.56 1.41 1.01  59.87 72.06 63.97 
WET 1.71 3.82 2.82  1.04 3.09 1.89  60.66 80.88 67.08 
SAV 1.55 1.72 1.60  1.16 1.23 1.07  74.45 71.62 66.85 
WSA 1.21 2.47 1.96  0.32 0.97 0.63  26.78 39.15 31.95  

a The abbreviations of different vegetation types are the same as it in Table 1. 
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εRBL is generally much higher than εBL and εRTL, and the relationship 
between εRBL and εRTL (R2=0.96) is obviously much better than it be
tween εRBL and εBL (R2=0.82), which is consistent with the results in 
Section 3.3. The RMOD17 model can significantly reduce the diurnal 
variation of maximum LUE with lower CV (Fig. 6(b)) after considering 
the radiation scalar, and improve R2 between the diurnal variations of 
GPP simulations and EC data (Fig. 6(c)). The results in Fig. 6(e) and (f) 
also indicate the overall improvements of CV and R2 in the results of the 
two-leaf RTL-LUE model compared to the big-leaf RMOD17 model. 
However, different from the scatter plot in Fig. 6(e), the RTL-LUE model 
shows a slightly higher mean CV value for all site-days (24.1%) than the 

RMOD17 model (23.2%) in Table 4. It is mainly caused by the higher 
value of the RTL-LUE model in the abnormal points with very high CV 
ranges (such as >100%), as demonstrated in Fig. 6(e). The R2 of RTL- 
LUE model (0.89) results is higher than it for the RMOD17 model 
(0.87) both for all or individual vegetation types. The percentage of site- 
days showing a higher R2 and lower CV than the results of the MOD17 
model are also calculated for both RMOD17 and RTL-LUE models. 
Obviously higher ratios can be found for both improved R2 and reduced 
CV in the results of the RTL-LUE model compared to the RMOD17 
model. The percentage for a higher R2 is 82.0% in the results RTL-LUE 
model, and it is 71.0% for the RMOD17 model; the percentage for a 

Fig. 6. Comparison of the daily mean maximum LUE value, the CV of maximum LUE diurnal variation, R2 between GPPsim ε=1 (GPP simulation results with 
maximum LUE set to 1) and EC GPP in all the 333,919 site-days: (a), (b), and (c) for MOD17 and RMOD17 models; (d), (e), and (f) for RMOD17 and RTL-LUE models. 

Table 4 
Statistic of the R2 for GPP diurnal variation and CV for maximum LUE diurnal variation in different vegetation types.  

Vegetation type a R2 b  CV c (%)  Percentage d (%)  Percentage d (%) 
BL e RBL e RTL e  BL e RBL e RTL e  R2-RBL R2-RTL  CV-RBL CV-RTL 

DBF 0.91 0.91 0.95  35.36 19.21 15.77  60.31 79.46  75.60 87.69 
DNF 0.90 0.90 0.92  37.15 22.91 25.05  59.44 72.90  80.93 91.78 
EBF 0.91 0.95 0.96  33.05 13.19 15.77  75.24 92.42  86.33 96.79 
ENF 0.90 0.94 0.94  35.60 15.32 21.37  81.03 90.61  88.73 94.86 
MF 0.90 0.90 0.91  31.23 14.03 18.94  73.62 83.09  82.50 88.32 
GRA 0.84 0.86 0.86  44.90 26.86 30.20  74.23 79.09  85.86 89.76 
CRO 0.89 0.90 0.93  37.52 21.86 17.92  60.46 78.49  72.72 87.08 
CSH 0.94 0.96 0.97  27.07 11.01 13.03  71.78 90.48  83.63 97.12 
OSH 0.76 0.81 0.81  60.10 38.83 39.36  75.56 80.32  89.13 92.36 
WET 0.91 0.91 0.94  32.53 18.51 15.54  62.24 76.77  73.24 85.39 
SAV 0.75 0.73 0.75  45.38 41.17 40.98  44.43 47.94  71.93 74.91 
WSA 0.76 0.73 0.76  46.88 35.35 34.76  45.32 54.13  76.11 87.14 
ALL 0.86 0.87 0.89  38.90 23.19 24.06  70.99 81.96  83.10 90.96  

a The abbreviations of different vegetation types are the same as it in Table 1. 
b R2 is the mean for the diurnal variation of EC GPP and GPP simulations with the maximum LUE set to 1. 
c CV is the mean for the diurnal variation of maximum LUE in each site-days. 
d percentage is the percentage of site-days that the diurnal variation of GPP simulated by RTL-LUE (RTL) or RMOD17 (RBL) model is better than MOD17 model, i.e., 

with a higher R2 and lower CV. 
e BL, RBL, RTL denotes the results for the MOD17, RMOD17, RTL-LUE model, respectively. 
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lower CV is 91.0% and 83.1%, respectively. As a result, it can be 
concluded that the RMOD17 (R2=0.87, CV=23.2%) and RTL-LUE 
(R2=0.89, CV=24.1%) models can significantly reduce the diurnal 
variation of maximum LUE compared to MOD17 model (R2=0.86, 
CV=38.9%), with much lower CV and higher R2 in most of the site-days. 

We also select 12 representative diurnal variation curves from 12 
different months and 12 different vegetation types to further qualita
tively compare the diurnal variation of maximum LUE in the three 
models. As shown in Fig. 7, monthly mean values for each half-hour 
were calculated and plotted to reflect the overall diurnal variation at 
monthly time steps. It can be observed that εBL in MOD17 shows evident 
diurnal variation in all the months and vegetation types, generally with 
a much lower value at noon and a higher value in the morning and dusk. 
This is because that the MOD17 model does not consider the impact of 
radiation on LUE, i.e., f(FFPD), so these impacts are manifested in εBL. 
Due to much higher radiation intensity at noon, the LUE at noon should 
be lower than those in the morning and dusk. The variations of εRBL and 
εRTL in RMOD17 and RTL-LUE are generally much smaller after 
considering the radiation scalar, with only slight or even no diurnal 
variations. Due to the constant parameter a used for all the sites with the 
same vegetation types, εRBL and εRTL cannot be the ideal constants over 
the diurnal cycle, but are generally much less variable than εBL. The εRBL 
tends to show an inverse diurnal variation to εBL with higher values at 
noon and lower values in the morning and dusk. This is because PAR 
used to calculate the radiation scalar in the RMOD17 model will over
weight the radiation intensity at noon and the contribution of shaded 
leaves to GPP that is not accounted for in the model, resulting in lower f 
(FFPD) and higher εRBL to compensate for the contribution of shaded 
leaves. 

3.6. Sensitivity of RMOD17 and RTL-LUE models to parameter a 

The parameter a in Eq. (6) is the only parameter to control the 
relationship between LUE and light intensity. Since the big-leaf 
RMOD17 and two-leaf RTL-LUE model treat the canopy differently 
and use different light intensities (i.e. PAR in RMOD17 model and PARsu 
and PARsh in RTL-LUE model) to calculate the radiation scalar, it is 
necessary to discuss the sensitivity of these two models to the parameter 
a. Fig. 8 demonstrates the variation of R2 between the GPP simulations 
(GPPsim ε=1) and EC GPP with different a values ranged from 0 to 4. Due 
to the RMSE and bias of the simulation results are not only impacted by a 
but also related to the maximum LUE (i.e. εRBL, and εRTL), so only the R2 

is demonstrated to show the impact of the parameter a on GPP simula
tion. It can be observed that R2 generally firstly increases and then de
creases with increasing a, and an optimal a can be found with the highest 
R2. For the RMOD17 model, when a = 0, f(PPFD) is a constant equal to 1, 
and it becomes the original MOD17 model. In all of the 169 sites, the 
optimal a (with the highest R2) is found to be higher than 0 for the 
RMOD17 model, and significant improvements in R2 can be observed. 
This analysis further proves the necessity of considering the radiation 
scalar when simulating GPP. Huge differences can be found between the 
optimal a values (with the highest R2) for the two models, with 162 out 
of 169 sites showing a higher value in the RTL-LUE model than it in the 
RMOD17 model. The mean optimal a for different vegetation types are 
listed in Table. 5, the value of the RTL-LUE model is almost three times 
higher than that of the RMOD17 model. The optimal a here is different 
from the value used in this study (Table S2) because only R2 is consid
ered here and all site-years data are involved, while the a value in 
Table S2 is optimized using the agreement index with the random 
selected one-year data for each site. The optimal a values for the EC 
LUEc and PAR are also calculated based on Eq. (6), which are similar to 

Fig. 7. Diurnal variations of the optimized different maximum LUE for the three models in different months and different vegetation types. The title of each subplot is 
named as “month. year/site name/vegetation types”. 
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those of the RTL-LUE model, suggesting that the optimal a for RTL-LUE 
is more reasonable and can approach the regression parameter using EC 
data. Besides, R2 between EC GPP and RTL-LUE GPP simulations using 
the optimal a is also higher than that between EC GPP and RMOD17 GPP 
simulations in all 12 vegetation types, demonstrating the advantage of 
RTL-LUE in GPP simulation. The lower optimal a in the big-leaf 
RMOD17 model is associated with the use of the total incoming PAR 
to calculate radiation scalar, causing overestimation of the light in
tensity on average leaves in the canopy because shaded leaves only 
receive the diffuse radiation. With overestimated radiation intensities, a 
lower value of parameter a is needed to calculate the proper radiation 

scalar and achieve the optimal results. 
Furthermore, the variation of mean CV for diurnal variation of 

maximum LUE (i.e., εRBL and εRTL) with parameter a is also discussed, in 
order to further assess the model stability. As shown in Fig. 9, the CV 
values for maximum LUE diurnal variations in the two models both first 
decrease and then increase with increasing a. Another optimal a can also 
be found for the lowest CV, which is also higher than 0 in all the 169 sites 
for the RMOD17 model and proves the necessity of using radiation 
scalar. The optimal a here generally show different values from the 
optimal a for the highest R2. Consistently, the optimal a with the lowest 
CV for the RTL-LUE model is also much higher than that for the RMOD17 

Fig. 8. The variation of R2 between GPP simulations and EC GPP with different parameter a for the RMOD17 (RBL) and RTL-LUE (RTL) model.  

Table 5 
Statistics of the GPP simulation results for the RMOD17 (RBL) and RTL-LUE (RTL) model with respective optimal parameter a.  

Vegetation types a Optimal a b  R2  CV (%) 
RBL c RTL c EC c  RBL c RTL c Diff d  RBL c RTL c Diff d 

DBF 0.77 3.06 1.29  0.75 0.78 0.03  15.95 15.72 − 0.23 
DNF 0.44 1.97 2.87  0.67 0.69 0.02  24.35 22.43 − 1.91 
EBF 0.59 1.79 1.90  0.72 0.72 0.00  11.28 13.77 2.49 
ENF 0.69 2.02 2.12  0.71 0.72 0.01  17.13 17.98 0.84 
MF 0.60 2.42 1.41  0.77 0.79 0.02  13.30 13.69 0.39 
GRA 0.77 1.56 2.57  0.55 0.56 0.01  27.75 28.74 0.99 
CRO 0.76 2.73 1.12  0.44 0.47 0.03  22.14 20.99 − 1.16 
CSH 0.32 1.40 1.50  0.83 0.85 0.02  10.73 9.85 − 0.89 
OSH 1.16 2.13 3.58  0.43 0.44 0.01  36.12 37.71 1.59 
WET 0.75 1.83 2.12  0.63 0.65 0.02  17.55 17.72 0.16 
SAV 0.48 1.27 1.83  0.53 0.55 0.02  39.57 39.23 − 0.34 
WSA 0.43 0.97 2.24  0.56 0.58 0.02  37.71 35.48 − 2.23 
ALL 0.72 2.02 2.07  0.63 0.65 0.02  22.80 22.77 − 0.03  

a The abbreviations of different vegetation types are the same as it in Table 1. 
b the optimal a is for the results with the highest R2. 
c RBL, RTL, EC denotes the results for the RMOD17 model, RTL-LUE model, and EC data, respectively. 
d Diff means the differences between the results of the RMOD17 and RTL-LUE model. 
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Fig. 9. The variation of mean CV for maximum LUE diurnal variation with different parameter a in the RMOD17 (RBL) and RTL-LUE (RTL) model.  

Fig. 10. Comparison of R2 and daily CV between the RMOD17 (BL) and RTL-LUE (TL) model with different a: (a) and (d) are the results both using the optimal a for 
BL; (b) and (e) are the results both using the optimal a for TL; (a) and (d) are the results for the two models using their respective optimal a. 
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model. However, only minor differences can be found in the CV values 
using the respective optimal a for the RTL-LUE and RMOD17 model, as 
listed in Table 6. Overall, the optimal CV for the RTL-LUE model 
(22.77%) is slightly lower than that for the RMOD17 model (22.80%), 
but discrepancies are observed among different vegetation types. The 
performances of these two models are much better than the original 
MOD17 model, suggesting that it is the radiation scalar that can 
significantly reduce the diurnal variation of maximum LUE, and the two- 
leaf separation strategy contributes little to it but can improve the R2 

between the GPP simulations and EC data. 
In order to compare the parameter sensitivity of the big-leaf 

(RMOD17) and two-leaf (RTL-LUE) model, the R2 and CV at all the 
169 sites are further calculated using different optimal a values. Fig. 10 
(a) and (d) are the results for the two models both using the optimal a for 
the RMOD17 model, Fig. 10(b) and (e) are the results using the optimal a 
for the RTL-LUE model, and Fig. 10(c) and (f) are the results for the two 
models with their respective optimal a. It can be observed that there are 
still 30.18% of the 169 sites showing a higher R2 in the results of the 
RTL-LUE model than it in the RMOD17 model, even using the optimal a 
for the RMOD17 model, and the mean difference between the two R2 is 
only 0.01. On the contrary, when the optimal a for the RTL-LUE model is 
used, only 7.10% of the sites do not show a higher R2 in the RTL-LUE 
mode results, and the mean value for the RTL-LUE model (R2=0.65) is 
notably higher than the RMDO17 model (R2=0.60). When the two 
models using their respective optimal a, 71.60% of the sites show a 
higher R2 in the RTL-LUE model than the RMDO17 model, with a mean 
difference of 0.02. As a result, it can be concluded that the two-leaf RTL- 
LUE model shows much lower sensitivity to parameter a, and is a more 
robust strategy to estimate GPP compared to the big-leaf RMOD17 
model. However, the results of the CV for maximum LUE diurnal vari
ations are different, with almost no differences can be observed when 
the two models using their respective optimal parameters. Both the two 
models performed much poorer when using the optimal a for the other 
model (Fig. 10(d) and (e)). 

4. Discussion 

4.1. Improvements of the radiation scalar 

Consideration of the radiation scalar can considerably improve the 
accuracy of GPP estimation, which cooperatively constrain LUE from 
optimal to reality with environmental scalars of water and temperature. 
In previous studies, it has been proved that GPP simulations from the 
RTL-LUE model show better accuracy than the original TL-LUE model 
after using the radiation scalar, by alleviating the overestimation under 
the conditions of high incoming PAR (Guan et al., 2021). This study also 
proves that GPP simulations from RMOD17 model is more converged to 
the EC GPP with many fewer outliers after using the radiation scalar, 
because the underestimation of GPP in low PAR ranges and over
estimation in high PAR ranges are well corrected. The flat variation of 
LUEc with the clear sky index in the original MOD17 model is also 
altered by the radiation scalar to be more similar to the decreasing 
trends of EC GPP. As a result, it can be concluded that the radiation 
scalar is necessary and helpful to improve the accuracy of GPP simula
tion for both big-leaf and two-leaf models. 

Furthermore, the radiation scalar is the main reason for the im
provements in the CV for the maximum LUE diurnal variation. Since the 
LUE models usually assign a constant maximum LUE without any tem
poral variations to unique vegetation types, a stable maximum LUE is 
important to capture the actual diurnal GPP variation and improve the 
estimation accuracy (Chen, 1999; Huang et al., 2021; Madani et al., 
2017). The diurnal variation of maximum LUE is significantly reduced 
by the radiation scalar both in the big-leaf RMOD17 model and the 
two-leaf RTL-LUE model, and this reduction is of great significance to 
model the diurnal variation of GPP. Besides, the similar diurnal behavior 
of these two models indicates that the radiation scalar is the main reason 

for the reduction of the diurnal CV in the maximum LUE, and the 
two-leaf strategy contributes little to this issue. The seasonal variation of 
maximum LUE is not analyzed in this study, because previous studies 
have proved that seasonal changes in maximum LUE is related to the 
vegetation physiological traits and it is difficult to evaluate the useful
ness of the radiation scalar in different models in simulating seasonal 
variations in GPP (Chen et al., 2020b; Lin et al., 2017). 

4.2. Improvements of the two-leaf model 

The improvements of the two-leaf model from the big-leaf model in 
GPP simulation have already been shown in many studies (Braghiere 
et al., 2019; He et al., 2018a; Zheng et al., 2020). The main reason is that 
the two-leaf model can correct the underestimations at high productivity 
ranges (Chen et al., 2020a; He et al., 2013; Zhang et al., 2012). A similar 
conclusion is also obtained in this study, and we further find that the 
underestimation in big-leaf models is not only caused by the insufficient 
consideration of the shaded leaf contributions but also related to the 
unreasonable PAR used to represent the average radiation intensity on 
leaves in the canopy. Although R2, RMSE, and bias of GPP simulations 
from the RMOD17 model have been considerably improved after using 
the radiation scalar, the apparent underestimation in high productivity 
ranges can still be observed both in the yearly and 8-days results. This 
problem can be well adjusted in the two-leaf RTL-LUE model, showing a 
much better linear regression line in all of the 12 vegetation types. 
Furthermore, the two-leaf RTL-LUE model also shows a lower sensitivity 
to parameter a than the big-leaf RMOD17 model. The RTL-LUE model 
can obtain overall more stable results using different optimal parameter 
a, thus indicates it has better fault tolerance when simulating regional or 
global GPP. Since the LUE models are usually driven by the 
biomes-specific parameters (Chen et al., 2020b; Huang et al., 2021; 
Madani et al., 2017), this is an important advantage for the two-leaf 
RTL-LUE model because it can be more robust to simulate GPP with 
less impact by the spatial and seasonal heterogeneity of parameters. For 
BL models, previous studies improve their GPP simulations simply using 
CI to quantify the effects of diffuse radiation on LUE (Wang et al., 2015; 
Zhang et al., 2016), further efforts may be directed towards combining 
the radiation scalar and CI to better describe the impacts of radiation on 
vegetation photosynthesis in BL models. 

4.3. Uncertainties 

This study highlights the importance of the radiation scalar and two- 
leaf strategies in simulating GPP in LUE models. Although some con
clusions are found, there are still some limitations and uncertainties that 
should be declared. First of all, only the key parameter maximum LUE is 
optimized for all the three models in this study, the parameters for 
environmental scalars (i.e., VPDmax, VPDmin, Tmin, Tmax) are all inherited 
from the original MOD17 model (He et al., 2013; Running et al., 2004). 
Some studies indicated the optimization of these parameters could 
further improve the accuracy of GPP simulation (Huang et al., 2021; 
Zheng et al., 2018). In order to enhance the reliability of the comparison 
between BL and TL models and provide the full set of parameters for the 
future applications of the three models (i.e., MOD17, RMOD17, and 
RTL-LUE), we also optimized these parameters based on the joint opti
mization methods using observations from all sites across each PFTs. 
Only the selected one site year data in each site (Table S1) are used for 
validation, and all the other data are used for parameterization, in order 
to obtain as reliable parameters as possible. The optimized parameters 
can be found in Table S3, and the comparison for the three models using 
these parameters is shown in Table S4. It can be observed that although 
the overall accuracy of GPP simulation can be slightly improved in all 
three models with optimized parameters, similar conclusions can still be 
drawn that RTL-LUE outperformed MOD17 and RMOD17. These results 
further supported the importance of the radiation scalar and the two-leaf 
strategy for LUE models. Whereas, the uncertainty of parameters from 
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calibration processes is not well addressed here, and deserves further 
exploration to enhance the reliability of the comparison of parameters 
among different models (Huang et al., 2021). 

Furthermore, the uncertainties induced by the remote sensing LAI 
data are ignored in this study, which may impact both the parameter 
calibration and model evaluation. The sensitivities of GPP performance 
to different LAI products should be further investigated among LUE 
models, and analysis using LAI products with high spatial resolutions 
and high accuracy in conjunction with flux footprints is also needed. 
Besides, the EC sites considered in this study are selected by low criteria 
in order to assess the model performance as broadly as possible. The 
neglect of heterogeneity in land cover may also induce uncertainties in 
model parameterization and validation, which needs further assess
ments only using the EC data from sites covered by pure vegetation 
(Dou et al., 2021; Zhou et al., 2016). Finally, both the RMOD17 and 
RTL-LUE models stem from the MOD17 model, which excludes the im
pacts of soil water content, CO2 fertilization, and nutrient conditions. 
Further efforts may be directed towards improving the environmental 
scalars to constrain LUE and differentiating them between sunlit and 
shaded leaves. 

5. Conclusion 

In this study, the performances of two big-leaf models (MOD17 and 
RMOD17) and a two-leaf model (RTL-LUE) in GPP simulations are 
compared. The accuracies of GPP simulations are assessed based on 
global 169 EC sites covering 12 vegetation types, and the differences 
between the optimized maximum LUE in the three models are also 
analyzed. The importance of the radiation scalar (differences between 
MOD17 and RMOD17) and the improvements of the two-leaf separation 
strategy (differences between RMDO17 and RTL-LUE) are both dis
cussed. The main conclusions can be drawn as follows:  

(1) An RMOD17 model simply modified with a radiation scalar can 
significantly improve the GPP simulation by the original MOD17 
model. RMOD17 (R2=0.72, RMSE=379.54 g C m − 2 year− 1) 
agrees much better with the EC data than MOD17 (R2=0.65, 
RMSE=462.05 g C m − 2 year− 1) both for all or individual vege
tation types, and the outliers can be widely corrected by the 
RMOD17 model to approach to the EC data. There are un
derestimations or overestimations in low or high photosyntheti
cally active radiation (PAR) ranges in the MOD17 model results 
caused by the radiation-independent LUE, which are well cor
rected by the radiation scalar in the RMOD17 model.  

(2) GPP simulations can be further improved by the two-leaf LUE 
model (RTL-LUE) (R2=0.74, RMSE=358.81 g C m − 2 year− 1) 
compared to the RMOD17 model, even though the radiation 
scalar has already been considered. After the separate treatment 
of sunlit and shaded leaves, the underestimation of the RMOD17 
model results in high productivity ranges can be well alleviated, 
allowing the simulated results to approach EC data. The two-leaf 
model is also a more robust strategy to simulate GPP with much 
lower sensitivity to the parameter a, which can minimize the 
errors caused by biomes-specific parameterization in large-scale 
applications.  

(3) The maximum LUE in the original MOD17 model is generally 
lower than that in the RMOD17 and RTL-LUE models, because it 
is not the actual maximum LUE but an average value constrained 
by radiation scalar at an intermediate radiation level. The diurnal 
variations of maximum LUE in the RMOD17 and RTL-LUE models 
are also significantly reduced compared to the original MOD17 
model. The radiation scalar is the main reason for this reduction, 
which further proves the importance of considering the radiation 
scalar on LUE. 
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