
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022 1506105

Cascaded Downscaling–Calibration Networks
for Satellite Precipitation Estimation

Yinghong Jing , Liupeng Lin , Xinghua Li , Senior Member, IEEE, Tongwen Li , Member, IEEE,

and Huanfeng Shen , Senior Member, IEEE

Abstract— Precipitation is a critical process in the terrestrial
hydrological circulation, affecting climate change, water resource
management, and agricultural production. Satellite-borne obser-
vations have prominent advantages in macro and mesoscopic
quantitative precipitation estimation. Nevertheless, they are sub-
ject to low spatial resolution and inherent biases. Therefore,
this study utilizes the surface–surface downscaling network
and point–surface fusion network for fine-resolution and high-
precision precipitation mapping over China. To deeply explore
the complicated relationships between various ancillary factors,
ground measurements, and satellite precipitation, an attention
mechanism-based convolutional network (AMCN) is used for
spatial downscaling and a geo-intelligent deep belief network
(Geoi-DBN) is used for ground–satellite fusion. Experimental
results indicate that cascaded networks toward two different
objectives are superior to baseline methods, achieving R2 and root
mean square error (RMSE) of about 0.84 and 27.23 mm/month,
respectively. Besides, the assistance of geo-intelligent items and
ancillary factors contributes to fusion accuracy. This study
provides an effective way for precipitation estimation over China.

Index Terms— Convolutional network, deep belief network,
ground–satellite fusion, precipitation, spatial downscaling.

I. INTRODUCTION

PRECIPITATION is a typical hydrometeorological para-
meter associated with hydrological circulation, climate

change, and socioeconomic development [1]. Ground mea-
surements can accurately reflect the distribution characteris-
tics of precipitation at the point scale. Nevertheless, their
applications are severely limited by meteorological stations
with the uneven and sparse distribution. Therefore, satellite
observations are extensively used for global and regional
quantitative precipitation estimation. However, satellite precip-
itation products are generally difficult to be used for refined
investigations due to their low spatial resolution and nonneg-
ligible biases [2]. Therefore, enhancing satellite precipitation
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with spatial downscaling and ground–satellite fusion is of
great significance for related hydrological and meteorological
researches.

Numerous algorithms were developed to downscale satellite
precipitation data, such as multiple linear regression [3],
random forest [4], Cubist [5], and convolutional neural
network [6]. In addition, various bias adjustment methods
were proposed to calibrate satellite precipitation data with
ground measurements, such as geographical difference analy-
sis (GDA) [7], geographically weighted regression [8], and
spatiotemporal disaggregation calibration algorithm [9]. For
the downscaling–calibration procedure, Ezzine et al. [10]
introduced the stepwise regression and GDA. Chen et al. [11]
utilized the same spatial random forest approach to downscale
and calibrate satellite precipitation. However, these studies
generally emphasized a single task, such as spatial down-
scaling or ground–satellite fusion. The final results were
still subject to low spatial resolution or inconsistent regional
accuracy.

Consequently, considering the data characteristics of spa-
tial downscaling and ground–satellite fusion, this study com-
bines the attention mechanism-based convolutional network
(AMCN) and geo-intelligent deep belief network (Geoi-DBN)
to estimate fine-resolution and high-precision precipitation
over China. Cascaded networks can fully exploit the latent
associations between precipitation and ancillary factors and
the geographical autocorrelation of ground measurements.

The remainder of this letter is arranged as follows. The
method is introduced in Section II. The experiments are
described in Section III, followed by conclusion in Section IV.

II. PROPOSED METHODOLOGY

A. Overall Framework

AMCN and Geoi-DBN are cascaded to downscale and
calibrate satellite precipitation, as shown in Fig. 1.

First, high-resolution precipitation data are estimated from
low-resolution satellite observations, which is a surface-to-
surface process. Convolutional neural networks capable of effi-
ciently extracting spatial information from high-dimensional
data are considered applicable to spatial downscaling. There-
fore, an AMCN proposed in our last research is used for
satellite precipitation downscaling, which models the rela-
tionship between precipitation and input data including low-
resolution precipitation and high-resolution ancillary data [6].
Specifically, AMCN-based downscaling can be formulated as

X = fu(Y ) + ξ(Y, FA) (1)
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Fig. 1. Proposed downscaling–calibration procedure. Note that LR and HR denote low resolution and high resolution, respectively.

where Y and X represent the low-resolution and high-
resolution precipitation, respectively. FA represents the various
ancillary factors, which contain longitude, latitude, elevation,
enhanced vegetation index, daytime/nighttime surface tem-
perature, temperature-vegetation dryness index, normalized
difference water index (NDWI), and land surface water index
(LSWI). In addition, fu(·) is the bilinear upsampling function.
ξ(·) denotes the residual convolutional network.

Subsequently, ground measurements are incorporated into
downscaled satellite precipitation data by a Geoi-DBN
method. Geoi-DBN proposed by [12] is an advanced
point–surface fusion method. It has been successfully applied
to the inversion of multiple meteorological parameters, such as
PM2.5 and temperature. It is introduced and modified to fuse
ground and satellite precipitation, which can be expressed as

PF = f (PR, FA, PG−S, PG−T , D, T ) (2)

where PF and PR indicate the fused precipitation and down-
scaled remote-sensed precipitation (i.e., X), respectively. T =
{1, 2, . . . , total time} is a time parameter measuring temporal
heterogeneity. Moreover, three geo-intelligent items are intro-
duced to capture the geographical autocorrelation of ground
precipitation. PG−S and PG−T represent the spatially and
temporally autocorrelated precipitation factors, respectively. D
represents a distance parameter reflecting the uneven distrib-
ution of meteorological stations.

The fine-resolution and high-precision precipitation data can
be generated through cascaded networks. AMCN and Geoi-
DBN are detailed in subsequent sections.

B. AMCN

AMCN consists of a global cross-attention (GCA) module,
a multifactor cross-attention (MFCA) module, and a residual
densely connected module embedded with an attention mech-
anism (RDAM).

GCA and MFCA are two cross-attention modules to
enhance complementary information from low-resolution pre-
cipitation and high-resolution ancillary factors. In GCA, the
integrated ancillary factors provide detailed information and
low-resolution precipitation provides distribution information.
Moreover, considering the significant differences among ancil-
lary factors, MFCA consisting of multiple cross-attention
blocks for each ancillary factor and low-resolution precipi-
tation is used to enhance feature extraction.

Subsequently, an RDAM consisting of a densely connected
three-layer structure is used to extract deep features. Each
layer contains a residual dense block (RDB) and a residual
attention block (RAB). RDAM can simultaneously extract and
recalibrate deep characteristics of low-resolution precipitation
and high-resolution ancillary factors. Then, the fine-resolution
satellite precipitation can be obtained through global residual
learning. Last but not least, the Charbonnier loss and degrada-
tion loss are combined to constrain the network training. The
converged network is then utilized for testing. More details on
spatial downscaling can refer to our previous work [6].

C. Geoi-DBN

DBN is a typical deep learning model with the restricted
Boltzmann machine (RBM) as a basic unit [13]. The network
is composed of multiple RBMs and a back-propagation (BP)
layer. Each RBM consists of a visible layer and a hidden
layer. In this study, three RBMs, each with 15 neurons, are
cascaded for feature extraction, and then, a BP layer is used
for precipitation estimation.

In addition, as a typical hydrometeorological parameter, pre-
cipitation is strongly autocorrelated in time and space. There-
fore, three geo-intelligent items are designed in Geoi-DBN
to fully capture the geographical autocorrelation. They are
calculated as follows:

PG−S =
∑n

i=1 ws,i×Ps,i
∑n

i=1 ws,i
, ws,i = 1

d2
s,i

(3)

Authorized licensed use limited to: Wuhan University. Downloaded on November 15,2022 at 03:44:20 UTC from IEEE Xplore.  Restrictions apply. 



JING et al.: CASCADED DOWNSCALING–CALIBRATION NETWORKS FOR SATELLITE PRECIPITATION ESTIMATION 1506105

Fig. 2. Downscaled results of RF and AMCN and the calibrated results of GDA and Geoi-DBN for two downscaled groups in June 2020. (a) Ground
measurements. (b) Original GPM IMERG precipitation. (c) RF downscaled precipitation. (d) RF downscaled and GDA calibrated data. (e) RF downscaled
and Geoi-DBN calibrated data. (f) AMCN downscaled precipitation. (g) AMCN downscaled and GDA calibrated data. (h) AMCN downscaled and Geoi-DBN
calibrated data. (i) Difference after RF and AMCN. (j) Difference after RF–GDA and AMCN–GDA. (k) Difference after RF–Geoi-DBN and AMCN–Geoi-DBN.

PG−T =
∑m

j=1 wt, j×Pt, j
∑m

j=1 wt, j
, wt, j = 1

d2
t, j

(4)

D = 1

min(ds,i)
, i = 1, 2, . . . , n (5)

where Ps,i and Pt, j are the precipitation of the i th station
in the spatial neighborhood and the j th prior reference in the
temporal neighborhood, respectively. ws and wt are the spatial
and temporal weights, respectively. ds and dt denote the spatial
and temporal distances, respectively. n and m denote the
numbers of spatially adjacent stations and temporally adjacent
grids, respectively, which are set to 10 and 1 in this study. The
combination of these factors can fully express the geographical
autocorrelation of precipitation.

III. EXPERIMENTS

To evaluate the effectiveness of cascaded networks, monthly
precipitation datasets from Integrated Multi-satellitE Retrievals

for Global Precipitation Mission (GPM Integrated Multi-
satellitE Retrievals for the GPM mission (IMERG) [14])
and ground measurements from 605 meteorological stations
over China were used as the primary study data. Multiple
ancillary factors were derived from moderate resolution imag-
ing spectroradiometer (MODIS) products and Shuttle Radar
Topography Mission (SRTM) digital elevation model (DEM)
dataset. It has been reported that IMERG-Final shows the
highest performance at the monthly resolution among multiple
precipitation products [15]. However, the original IMERG-
Final precipitation datasets also have some uncertainties, with
an average bias of 14.43 mm/month for the study data
(see Table I). Therefore, the following experiments were
designed to improve the resolution and accuracy of the original
datasets. Specifically, RF and GDA were introduced as the
baseline methods of downscaling and calibration, respectively.
GDA is a bias adjustment method based on inverse distance
weighting.
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Fig. 3. Spatial patterns of RMSEs of all downscaled and calibrated precipitation data compared with ground measurements. (a) RF downscaled precipitation.
(b) RF downscaled and GDA calibrated data. (c) RF downscaled and Geoi-DBN calibrated data. (d) AMCN downscaled precipitation. (e) AMCN downscaled
and GDA calibrated data. (f) AMCN downscaled and Geoi-DBN calibrated data.

TABLE I

QUANTITATIVE EVALUATION RESULTS (UNIT: MM/MONTH)

First, RF and AMCN were used to downscale original satel-
lite precipitation from 0.1◦ to 0.01◦. The models were trained
on low-resolution data from January 2018 to December 2018.
The inputs contained downsampled satellite precipitation at
a 1◦ resolution and ancillary factors at a 0.1◦ resolution. The
labels were original satellite precipitation at a 0.1◦ resolution.
Then, the models were tested on original satellite precipitation
from January 2019 to December 2020, assisted by ancillary
data at a 0.01◦ resolution. Subsequently, GDA and Geoi-DBN
were used to calibrate two downscaled precipitation datasets
by incorporating ground measurements. Finally, precipitation
datasets with fine resolution and high precision over China
can be generated. This section presents the cross-comparison
experiment and the ablation experiment.

A. Cross-Comparison Experiment

In terms of visual effects, the downscaled and calibrated
results in June 2020 are shown in Fig. 2. Compared with
ground measurements, the original GPM IMERG precipitation
data expand areas with high precipitation. RF downscaled
results significantly magnify this phenomenon, while AMCN
downscaled results superiorly preserve the original accuracy.
The spatial patterns of precipitation differences between these
datasets (rows 2 and 3) are shown in row 4. The difference map
reveals that RF significantly underestimates high precipitation

and overestimates low precipitation. Then, based on two
downscaled results, the effectiveness of Geoi-DBN for bias
adjustment by ground–satellite fusion is compared with GDA.
Both methods can prominently calibrate the overestimation
amplified by RF, especially in Northeast China. However,
GDA is difficult to improve regions with mixed positive and
negative biases because it only exploits spatial similarity and
ignores spatial variability. By contrast, Geoi-DBN ameliorates
more overestimated regions, especially in Southeast China.

For in-depth assessment, the experimental results are quan-
titatively evaluated by a tenfold cross-validation strategy, as
shown in Table I. AMCN is prominently superior to RF
in satellite precipitation downscaling, with R2 increased by
0.06 and the root mean square error (RMSE) decreased
by 18.19 mm/month. It can effectively extract details from
various ancillary factors, attributing to its feature richness.
Subsequently, the inherent biases of satellite precipitation data
are significantly decreased by incorporating ground measure-
ments. GDA can remove biases straightforwardly, thus widely
used in satellite precipitation researches. However, it has con-
siderable uncertainty due to its weak consideration of spatial
variability. Therefore, this method is not recommended in areas
with complex precipitation patterns and sparsely distributed
stations. Geoi-DBN obtains superior quantitative evaluation
metrics. On the one hand, it fully reflects the spatial variability
of biases by using ancillary factors. On the other hand, it fur-
ther enhances the effectiveness of calibration by considering
the geographical autocorrelation of ground precipitation. Com-
pared with RF and AMCN downscaled precipitation datasets,
the corresponding calibrated results are significantly improved,
with RMSEs decreased by 23.40 and 7.74 mm/month, respec-
tively. For the downscaling–calibration procedure, AMCN–
Geoi-DBN obtains optimal accuracy, with R2 and RMSE of
about 0.84 and 27.23 mm/month, respectively.

Moreover, the spatial RMSEs between these precipitation
datasets and gauge observations are shown in Fig. 3. RF down-
scaled results have high RMSEs in the northeastern and
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Fig. 4. Calibrated results of DBN and Geoi-DBN with ancillary factors
(AF+) and without ancillary factors (AF−), based on RF and AMCN
downscaled precipitation data.

southern regions. By contrast, the spatial RMSEs of AMCN
are generally lower than those of RF throughout the study
area. GDA significantly improves most of the overestimates
but overcalibrates some low-precipitation regions, such as
northwest China. However, Geoi-DBN obtains a balanced
calibration effect, since it extracts sufficient spatial variability
from ancillary factors and achieves optimal fusion with few
artifacts through the constraints of geo-intelligent items.

Overall, the advantage of cascaded networks is that special-
ized network structures can be designed for different objectives
to make full use of effective information from different data
sources.

B. Ablation Experiment

A comparative experiment of DBN and Geoi-DBN with and
without ancillary factors is performed to further discuss the
importance of geo-intelligent items and ancillary factors in the
calibration process, as shown in Fig. 4. Both RF and AMCN
groups show that the assistance of geo-intelligent items and
ancillary factors contributes to improve the calibrated results.
On the one hand, Geoi-DBN obtains lower RMSEs than
DBN, since it considers the geographical autocorrelation of
ground precipitation by using geo-intelligent items. On the
other hand, Geoi-DBN with ancillary factors further decreases
RMSEs. There are two reasons for this phenomenon. First,
various ancillary factors from MODIS are correlated with
precipitation, and DBN can capture their potential associations
to improve the fusion. Second, since satellite precipitation
downscaling partially relies on ancillary factors, the calibra-
tion takes them as inputs, considering the uncertainties of
downscaling. However, ancillary factors should be carefully
screened and preprocessed, as low-quality factors are likely to
introduce additional noise. In this study, multiple tests show
that the combination of nine ancillary factors obtains optimal
results. Among them, the two water indices (NDWI and LSWI)
have the least importance.

IV. CONCLUSION

In this study, a new downscaling–calibration procedure,
AMCN–Geoi-DBN, is designed for fine-resolution and high-
precision precipitation estimation, which combines the advan-
tages of the surface–surface downscaling network and
point–surface fusion network. Compared with RF, AMCN can

effectively incorporate ancillary factors through deep feature
extraction and thus obtain downscaled satellite precipita-
tion data with higher accuracy. In addition, Geoi-DBN can
comprehensively consider the geographical autocorrelation in
ground measurements and spatial variability in ancillary fac-
tors. Experiments reveal that AMCN–Geoi-DBN significantly
improves the accuracy of spatial downscaling and ground–
satellite fusion compared to all baseline methods. Conse-
quently, it is promising for refined and accurate precipitation
estimation. Furthermore, an improved downscaling–calibration
procedure for satellite precipitation with a higher temporal
resolution is a future direction.
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