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A B S T R A C T   

Blending data from thermal infrared (TIR) and passive microwave (PMW) measurements is a promising solution 
for generating the all-weather land surface temperature (LST). However, owing to swath gaps in PMW data and 
the resolution inconsistence between TIR and PWM data, spatial details are often incomplete or considerable 
losses are generated in the all-weather LST using traditional methods. This study was conducted to develop a 
two-step deep learning framework (TDLF) for mapping gapless all-weather LST over the China’s landmass using 
MODIS and AMSR-E LST data. In the TDLF, a multi-temporal feature connected convolutional neural network 
bidirectional reconstruction model was developed to obtain the spatially complete AMSR-E LST. A multi-scale 
multi-temporal feature connected generative adversarial network model was then designed to blend spatially 
complete AMSR-E LST and cloudy-sky MODIS LST, and generate gapless all-weather LST data. Gapless all- 
weather LST data were evaluated using six in-situ LST data from the Tibetan Plateau (TP) and the Heihe 
River Basin (HRB). The root mean squared errors (RMSEs) of the gapless all-weather LST were 1.71–2.0 K with 
determination coefficients (R2) of 0.94–0.98 under clear conditions, and RMSEs of 3.41–3.87 K and R2 of 
0.88–0.94 were obtained under cloudy conditions. Compared to the existing PMW-based all-weather LSTs, the 
validation accuracy and image quality (such as spatial detail) of the generated gapless all-weather LSTs were 
superior. The TDLF does not require the use of any additional data and can potentially be implemented with 
other satellite TIR and PWM sensors to produce long-term, gapless, all-weather MODIS LST records on a global 
scale. Such a capability is beneficial for generating further gapless all-weather soil moisture and evapotranspi
ration datasets that can all be applied in global climate change research.   

1. Introduction 

Land surface temperature (LST) is one of the most significant indexes 
to evaluate energy exchanges of land-atmosphere system and to reveal 
climate changes (Hansen et al., 2010; Tierney et al., 2008). Spaceborne 
remote sensing platforms provide a unique and efficient approach for 
acquiring multi-scale LST over large regions, particularly over inacces
sible areas or those with dangerous conditions, and their results have an 
acceptable accuracy (Li et al., 2013). As a result, satellite-derived LST 
products have been widely utilized across various scientific disciplines, 
including meteorology, climatology, hydrology, ecology, and 

epidemiology, both globally and in specific areas (Guillevic et al., 2017; 
Liu and Weng, 2012; Trigo et al., 2008). 

Satellite-based LST is mainly derived from two types of measure
ments: thermal infrared (TIR) measurements and passive microwave 
(PMW) measurements. TIR LST data has attracted significant attention 
due to its comparatively fine spatial resolution and retrieval accuracy (Li 
et al., 2013; Prata et al., 1995). Over the past two decades, various 
operational TIR LST products (e.g., TIRS, ASTER, MODIS, VIRR, GLASS, 
and SEVIRI LST) have been available free of charge and used extensively 
(Göttsche and Hulley, 2012; Guillevic et al., 2017; Ma et al., 2020a). 
However, owing to certain effects from the atmosphere and clouds, data 
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are missed in TIR LST products (Holmes et al., 2016; Mo et al., 2021; Wu 
et al., 2021). For instance, approximately 67% of MODIS LST products 
are covered by clouds, with higher percentages occurring in humid re
gions. PMW radiation can penetrate non-precipitating clouds and is 
influenced minimally by atmospheric water vapor absorption (Prigent 
et al., 2016); therefore, in the aspect of the spatial completeness, the 
derived PMW LST product is superior to TIR LST products (Huang et al., 
2019). However, compared to TIR measurements, PMW measurements 
are limited to a lower retrieval accuracy and spatial resolution. There
fore, the applications of PMW and TIR LST products are strongly limited 
in areas where all-weather LST products at a moderate/high spatial 
resolution are urgently needed (Duan et al., 2017). 

More and more kinds of methods have been proposed to reconstruct 
missing TIR LST data (Mo et al., 2021; Wu et al., 2021), which mainly 
include four categories: (1) spatial and/or temporal interpolation 
methods (Crosson et al., 2012; Kilibarda et al., 2014; Liu et al., 2019; 
Wang et al., 2019), (2) statistical regression methods (Li et al., 2021; 
Shwetha and Kumar, 2016; Zhang et al., 2020b; Zhao and Duan, 2020), 
(3) surface energy balance methods (Fu et al., 2019; Jia et al., 2021; Jin, 
2000; Martins et al., 2019; Zeng et al., 2018), and (4) passive microwave 
(PMW)-based LST methods (Kou et al., 2016; Sun et al., 2019; Xu and 
Cheng, 2021; Xu et al., 2019). The first three methods usually link cloud- 
free TIR LST with additional information (such as DEM, NDVI, down
ward shortwave radiation, and near-surface meteorological observa
tions) via empirical/semi-empirical functions or regression models, and 
these are subsequently applied to derive cloudy LST. However, when 
additional information can be used to discriminate between clear-sky 
and cloudy conditions, the estimation of LSTs under cloudy conditions 
is acceptable; if not, these methods only provide hypothetical LST values 
(Kang et al., 2018; Li et al., 2014; Li et al., 2018; Sun et al., 2017). In 
addition, although the additional information is usually widely avail
able, its supportive use is not always adequate, especially over large 
areas, those with heterogeneous surfaces, or when extensive amounts of 
data are missing (Yang et al., 2019; Yu et al., 2019). 

PMW LST data usually reflect the actual surface thermal statuses in 
cloudy sky circumstances and can be considered as a proxy for the actual 
LST under cloudy conditions (Xu and Cheng, 2021). The blending of TIR 
and PMW measurement data has thus became a potential direction for 
generating all-weather LST; in particular, the use of MODIS and AMSR-E 
aboard the Aqua satellite, as these have the same acquisition time. In 
recent years, several studies have blending MODIS and AMSR-E/AMSR- 
2 LST based on empirical and semi-empirical (Duan et al., 2017), 
physical decomposition (Zhang et al., 2019), nonlinear geostatistical 
(Kou et al., 2016; Xu and Cheng, 2021), and machine-learning models 
(Sun et al., 2019; Xu et al., 2021). However, although progress has been 
made, the PWM-based methods have three remaining issues that need to 
be resolved, and these are as follows: 1) the sensing depth mismatch 
between TIR and PMW measurement. As the PMW not only penetrates 
atmosphere but also the vegetation, the temperature difference between 
soil and vegetation vary over time (Zhao et al., 2020b). Subsurface 
temperatures retrieved from PMW differ from LST obtained from TIR 
sensors and requires conversion to surface temperature. This work is a 
very challenging problem to solve, and is beyond the scope of this 
article. 2) there is few special design method (to our knowledge) to fill 
swath gaps of PMW data observed from the middle and low latitude 
regions, and to thus provide gapless all-weather available LST (Duan 
et al., 2017; Wu et al., 2021). Previous studies have adopted the inverse 
distance weighted (IDW) (Duan et al., 2017) and the empirical orthog
onal function (DINEOF) (Xu and Cheng, 2021) methods, but the per
formance has been shown to degrade with large widths of swath gaps. 3) 
The spatial resolution inconsistence between TIR and PMW LST requires 
an effective downscaling method to enable the retention of greater 
textural details. In this respect, empirical models with various auxiliary 
parameters (e.g., DEM, NDVI, and surface albedo) have been used, and 
the downscaling effect is very sensitive to these parameters. However, it 
is acknowledged that the distribution of LSTs is spatially and temporally 

inhomogeneous and non-stationary owing to the land surface hetero
geneity and the surface type changes. Moreover, the scale relationship 
between TIR and PMW LST is also typically nonlinear and needs to be 
appropriately specified. Therefore, further research is necessary to 
provide an efficient framework that integrates the TIR and PMW LST to 
ensure the quality of all-weather LST. 

Inspired by the powerful ability of nonlinear representation of deep 
learning (DL) architectures, tremendous achievements have been made 
in conducting DL-based environmental remote sensing studies (Yuan 
et al., 2020), such as those relating to LST retrieval (Wang et al., 2021), 
LST reconstruction (Wu et al., 2019) and LST spatiotemporal fusion (Yin 
et al., 2021). For the generation of gapless all-weather LST, a DL-based 
framework with an enhanced nonlinear representation will be valuable. 
Therefore, this article proposes a two-step deep learning framework 
(TDLF) for mapping gapless all-weather LST data. Our key contributions 
are as follows: 1) we developed a multi-temporal feature connected 
convolutional neural network (MTFC-CNN) bidirectional reconstruction 
model with a sample enhancement strategy to obtain spatially complete 
AMSR-E LST, and 2) we designed a multi-scale multi-temporal feature 
connected generative adversarial network model (MSTFC-GAN) to blend 
spatially complete AMSR-E LST and cloudy-sky MODIS LST, with the 
aim of generating gapless all-weather LST data. 

The remainder of this article is arranged as follows. The study area 
and the data are given in Section 2, and Section 3 introduces the study’s 
methodology. Results are reported in Section 4 and followed by a dis
cussion in Section 5, and the conclusions are shown in Section 6. 

2. Study area and data 

2.1. Study area 

The China’s mainland was our study area. LST distribution of the 
study area is largely varied due to topographic and climatic differences 
(Zhao et al., 2020a, 2020b). To validate the method, sub-areas in two 
geographically different locations containing a total of six ground sites 
were selected. The first validation sub-area is within TP region (vali
dation range of 28.4◦–33.45◦N and 87.7◦–95.73◦E), which is sparsely 
covered with grassland. The second validation sub-area is located in 
HRB region at the border of Qinghai and Gansu provinces (validation 
range of 36.93◦–40.01◦N and 98.38◦–101.46◦E), where the land types 
are farmland, forest, and sparse grassland. The corresponding land cover 
type map and images of two validation sub-areas are shown in Fig. 1, 
and the site locations are marked with red triangles. 

2.2. Satellite data 

The daily MYD11A1 version 6 product with 1 km spatial resolution 
was regarded as the TIR LST, and this is available from the following 
website address of National Aeronautics and Space Administration 
(https://ladsweb.nascom.nasa.gov/search). The MYD11A1 product was 
derived from Aqua MODIS, which had approximate observation times of 
13:30 and 01:30 (local solar time) in the ascending and descending or
bits, respectively and was produced using the generalized split-window 
model (Wan, 2014; Wan and Dozier, 1996). The version 6 MODIS LST 
product had been validated in many published studies, and its quality is 
superior to other versions. In addition to the LST images, the product 
also include other important information layers, such as observation 
time layers, observation angles layers, emissivities layers, quality con
trol (QC) layer, and so on. The QC layer in the products was used to 
recognize LST pixels of high quality. 

The selected PMW LST was obtained from the AMSR-E sensor with 
25 km spatial resolution. The AMSR-E is also aboard on Aqua satellite, 
and therefore an excellent temporal collocation exists between AMSR-E 
PMW and the MODIS TIR. The AMSR-E LST data was retrieved from the 
AMSR-E BT data L3 product (NISDC-0302) using an empirical look-up 
table based method (Zhang and Cheng, 2020), and NISDC-0302 was 
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downloaded from the National Snow and Ice Data Center (http://nsidc. 
org). The retrieved AMSR-E LST in 2010 was fully validated with MODIS 
and ground measured data by Zhang and Cheng (2020). 

2.3. Ground measured data 

To assess the generated gapless all-weather LST data, six in-situ 
measurements were collected within the Tibetan Plateau (TP) and the 
Heihe River Basin (HRB) regions in 2010. The corresponding data were 
from the Watershed Allied Telemetry Experimental Research (Li et al., 
2009) and the Second Tibetan Plateau Scientific Expedition and 
Research (Ma et al., 2020b) programs at the National Tibet Plateau Data 
Center (http://www.tpdc.ac.cn/zh-hans/data). The Arou station (AR), 
Huazhaizi station (HZZ), and Yingke station (YK) in the HRB were 
selected, and the observation data were uniformly organized into 30- 
min sampling periods for storage. In the TP region, Naqu-BJ station 
(BJ), NAMORS station, and SETORS station were selected, and the 
observation data were uniformly organized into 60-min sampling pe
riods for storage. Details on the six sites is presented in Table 1. 

The in-situ LST (Ts) was calculated using the Stefan–Boltzmann law, 

Ts =

[
F↑ − (1 − εb)F↓

σεb

]1/4

(1)  

where F↑denotes the surface upwelling longwave radiation, and F↓ de
notes atmospheric downwelling longwave radiation; which are 
measured by the long-wave radiation meter of a four-component radi
ation sensor, respectively; σ is the Stefan-Boltzmann constant (5.67 ×
10− 8 W⋅m− 2 K− 4), and εb is surface emissivity, calculated with the 

following expression (Wang et al., 2005), 

εb = 0.2122ε29 + 0.3859ε31 + 0.4029ε32 (2)  

whereε29, ε31, and ε32 are surface emissivities of MODIS band29, 
band31, and band32, respectively. 

3. Methodology 

A flow chart of the proposed TDLF that includes the generation of the 
spatially complete PWM LST and the gapless all-weather TIR LST is 
shown in Fig. 2, specifically as follows: 1) For generating the spatially 
complete PWM LST, the MTFC-CNN model was first used to obtain 
spatially complete AMSR-E LST, and sample enhancement technology 

Fig. 1. (a) Land cover map of the China’s mainland, and images of the two validation sub-areas: (b) Heihe River Basin (HRB) and (c) Tibet Plateau (TP). The land 
cover map is generated from the MCD12Q1 product and includes 14 land cover types. The site locations are marked with red triangles. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Details on the six sites.  

Name Latitude 
(degree) 

Longitude 
(degree) 

Elevation 
(meter) 

Temporal 
Resolution 
(minute) 

Land 
Cover 

HZZ 38.77 100.32 1726 30 Desert 
steppe 

AR 38.05 100.46 3033 30 Alpine 
Meadow 

YK 38.85 100.41 1519 30 Cropland 
SETORS 29.76 94.73 3326 60 Grassland 
NAMORS 30.77 90.98 4730 60 Alpine 

meadow 
BJ 31.37 91.90 4450 60 Cropland  
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was then designed to solve sample shortages. A training dataset was 
subsequently employed to optimize parameters of the MTFC-CNN 
model. The test dataset was put into the well-trained MTFC-CNN 
model to generate spatially complete PWM LST. 2) To generate gapless 
all-weather TIR LST, the cloudy-sky MODIS LST with missing pixels and 
the corresponding AMSR-E LST at the target time, and MODIS LST 
without missing pixels and corresponding AMSR-E LST at the reference 
time were used to create the training and test datasets. The former was 
consequently employed to optimize parameters of the MSTFC-GAN 
model. The latter was subsequently put into the well-trained MSTFC- 
GAN model to obtain the gapless all-weather MODIS LST. Furthermore, 
in-situ LSTs were collected to validate the gapless all-weather LST. 

3.1. Spatially complete PWM LST generation 

Considering periodical changes in the orbit swath gap and the 
complementary spatial information obtained from adjacent AMSR-E 
data, we assumed that the variation in LST on two adjacent days in
side gaps would be similar to that outside gaps within a local area (Su 
et al., 2022). We also assumed that nonlinear variations could be learned 
if sufficient samples were employed. In this respect, a bidirectional 
reconstruction model based on MTFC-CNN with a sample enhancement 
strategy was designed to obtain the spatially complete AMSR-E LST. 

3.1.1. Sample preparation and enhancement 
The distribution of LST markedly varies in each season and diurnally 

over the China’s mainland. In this respect, the AMSR-E LST data ob
tained in 2010 were divided into eight data subsets (spring, summer, 

autumn, and winter; daytime and nighttime). In each subset, the AMSR- 
E LST of three consecutive days was selected as the data at times T1, T2, 
and T3, respectively, and uniformly cropped into 24 × 24 size patch 
pairs, with 12 overlapping. Patches without invalid values were selected 
as sample datasets; otherwise, they were treated as mask datasets. 
Sample datasets were normalized to a range of 0–1, which was conve
nient for training the MTFC-CNN network. Mask datasets were used to 
simulate swath gaps for a spatially complete image patch at time T2. On 
the consideration of convergence and generalization of the network, 
training and testing datasets were randomly selected from the sample 
datasets at a ratio of 7:1. 

As locations of swath gaps vary for AMSR-E LST data in a single time 
cycle, it was acknowledged that sequential cropping (i.e., from top left to 
bottom right) could result in unequal numbers of training samples for 
different patches. Therefore, when the number of training samples was 
insufficient for one image patch, a sample enhancement strategy was 
employed, and other cropping methods (e.g., from top right to bottom 
left) with the same size (i.e., 24 × 24) and overlapping (i.e., 12) were 
also implemented. 

3.1.2. Network structure of MTFC-CNN 
As shown in Fig. 3, the main structure of the MTFC-CNN has three 

components: combining multi-temporal data, and conducting down- 
sampling and up-sampling procedures. For the data combination part, 
the MTFC-CNN uses two kinds of inputs: the AMSR-E LST at time T2 with 
simulated missing pixels and auxiliary AMSR-E LSTs without missing 
pixels at times T1 and T3. To better utilize all inputs, auxiliary data (i.e. 
T1 and T3) and target data (i.e., T2) were first added. We then 

Fig. 2. Flow chart of the proposed two-step deep learning framework (TDLF) for mapping gapless all-weather LST, which is composed mainly of spatially complete 
PWM LST generation and gapless all-weather TIR LST generation. 
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composited the three inputs and the two added results. This enabled 
spatiotemporal information to be utilized simultaneously in MTFC-CNN. 

For the down-sampling part, a four-layer convolutional network was 
adopted to extract the feature information. A batch normalization (BN) 
layer is added between the convolutional layers to accelerate the 
convergence speed and parameter fitting of the model. The activation 
function was set as rectified linear unit (ReLU), which is used to ensure 
that the output of the convolutional layers is a nonlinear combination of 
the inputs. Additionally, to make the model suitable for filling large 
gaps, it is necessary to extend the perceptual field in the convolution 
process. The average pooling layer with a convolution kernel size of 2 ×
2 was used to enlarge the perceptual field of convolution kernel for 
enhancing the contextual information of feature maps. For the up- 
sampling part, a transposed convolution was selected to recover the 
feature map. As same as the down-sampling process, the BN and ReLU 
were also adopted in the convolutional layers. During the last convo
lution layer, preceding feature maps were combined, and the high-level 
information output was the same size as that input. 

It is noteworthy that spatial information of the AMSR-E LST is lost 
during the down-sampling process. To reuse the spatial information, the 
jump connection structure is generally used to directly connect low-level 
features to high-level features. However, overfitting occurs easily if very 
low-level features are involved. Therefore, a spatial attention mecha
nism was introduced to solve the problem. The weight of the low-level 
features was output by activating the valid information in high-level 
features. More important spatial information was extracted to gain the 
weighted low-level features. The different levels of features were then 
combined. 

3.1.3. Training process 
During the training, the image patches at time T1 and T3, and the 

simulated image patch at time T2, were used as the input, while the 
original spatially complete image patch at time T2 was treated as labels. 
A weight initialization method by He et al. (2015) was used to output 
random values from a truncated normal distribution (0, 1 × 10− 3). The 
initial learning rate and epoch were set to 1 × 10− 4 and 90, respectively, 
and after every 30 epochs, learning rate is multiplied by a decay factor of 
0.1 to reduce parameters’ ranges. 

As the LST values was the same of output image as that of input 
image outside the missing area, the residual learning strategy was used 
in the training process, and the backpropagation mechanism was 
applied to update training parameters and better determine the associ
ation between LSTs. The loss function of the MTFC-CNN can be 
expressed as Eq. (3), 

L ′ =
1

WH

∑W

x=1

∑H

y=1

(
(LT2)x,y − F(LT1,LT2 m,LT3)x,y

)2
(3)  

where L ′ is the loss function of training; Wand H represent dimensions 
of the images; LT1, LT2, and LT3 are the spatially complete LST image 
patches at T1, T2, and T3, respectively; and LT2_m, F(LT1,LT2_m,LT3)x, y are 
the simulated missing image patch with swath gaps and the recon
structed image patch at T2, respectively. 

3.2. Gapless all-weather TIR LST generation 

It is acknowledged that the image super-resolution (SR) can obtain a 
fine-resolution (FR) image from its corresponding coarse-resolution 
(CR) counterpart. Satisfactory results have been obtained for the SR 
using deep learning methods, particularly with the advent of generative 
adversarial networks, such as SR-GANs. The idea of SR-GAN provided 
the motivation for generating gapless all-weather LST. 

If we treat the spatially complete AMSR-E and MODIS LST as the CR 
image and its corresponding FR image, the relationship between the FR 
and CR images can be modeled with GAN from a large number of sample 
pairs. Based on this relationship, it should then be possible to estimate 
the cloudy-sky MODIS LST at the target time using the corresponding 
spatially complete AMSR-E LST. However, the obvious scale difference 
between MODIS and AMSR-E observations causes a considerable loss of 
spatial detail for the reconstructed MODIS LST. Fortunately, some 
widely used spatiotemporal LST fusion methods have enabled spatial 
details to be obtained from fine-resolution LSTs at a reference time (Wu 
et al., 2015; Wu et al., 2021). Inspired by spatiotemporal fusion, a new 
relationship can be modeled using a large number of sample pairs from 
both the target and reference times. Therefore, we developed and pro
posed the MSTFC-GAN to generate the gapless all-weather MODIS LST. 

3.2.1. Network structure of MSTFC-GAN 
As shown in Fig. 4, the main structure of the MSTFC-GAN includes a 

generative network and a discriminant network, and a detailed 
description of each network is provided below.  

1) Generative network: We designed a multi-scale multi-temporal 
feature-connected CNN as the generative network. As shown in Fig. 4 
(a), except for the inputs and the number of convolutional layers, the 
generator network is similar to the MTFC-CNN. For the inputs, the 
MODIS LST and spatially complete AMSRE LST data at reference 
time (T1) and target time (T0) were subtracted to obtain referenced 
cloudless data (SubT1) and targeted cloudless data (SubT0),as training 
labels, respectively. SubT0_Crepresents the simulated cloudy-sky data 

Fig. 3. Network architecture of multi-temporal feature connected convolutional neural network (MTFC-CNN) with kernel size (abbr. K), feature maps number (abbr. 
n), and stride of convolutional layer (abbr. s). 
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of SubT0. SubT1 and SubT0_C were consequently combined to obtain 
more dynamic relations from multi-scale multi-temporal LST data. In 
addition, a five-layer convolutional network was used to extract 
features of the combined multi-scale multi-temporal data, while a 
four-layer convolutional network was used in the MTFC-CNN.  

2) Discriminant network: A discriminant network was used to 
discriminate actual images (True) from reconstructed images (Fake). 
As the Fig. 4(b) shows, the discriminator involves eight convolu
tional layers where the filter kernels are gradually enlarged from 64 
to 512. These layers could extract the LST features, improved the 
discriminant accuracy, and generated reconstructed images with 
greater realism. The final feature images were followed by two dense 
layers to determine the probability of sample classification. Unlike 
the generator, a leaky rectified linear unit activation function is used 
in the discriminator, and the gradient during the back-propagation 
process was calculated when the input was less than zero. An 
instance normalization (IN) layer was selected to compute a single 
sample. The Wasserstein GAN (WGAN) was adopted to guide the 
training process with a loss value and get the optimum generator 
(Arjovsky et al., 2017). 

3.2.2. Dataset preparation and training process 
The spatially complete AMSR-E LST images were first resampled to 

match MODIS LST data. All resampled AMSR-E and MODIS LST data in 
2010 for MSTFC-GAN were also divided into eight data subsets. In each 
subset, the AMSR-E and the corresponding MODIS LST were uniformly 
cropped into 64 × 64 size patch pairs, with 32 overlapping. If the MODIS 
data were spatially complete in the data pairs, they were treated as 
sample datasets; otherwise, as mask datasets. Mask datasets were used to 
simulate cloudy-sky MODIS LST images. The training and testing data
sets were normalized, and randomly selected from the sample datasets at 
a ratio of 6:1. 

For optimization, the initial learning rate and epoch were set to 1 ×
10− 4 and 60, respectively. To reduce the search range of parameters, 

learning rate was multiplied by a decay factor of 0.1 after every 20 
epochs. To avoid network overfitting, L2 regularization with a weight 
decay of 1 × 10− 3 was applied. Although WGAN is able to progress the 
stable training of GANs, it still has difficulty in convergence (Gulrajani 
et al., 2017). Therefore, the WGAN with a gradient penalty term 
(WGAN-GP) was used as a more stable algorithm for training GANs. 

3.2.3. Loss function of MSTFC-GAN 
The loss function of MSTFC-GAN contains three aspects: mean square 

error (MSE) loss, visual geometry group (VGG) loss and critic loss. The 
MSE loss caWn be expressed as: 

L MSE =
1

WH
∑W

x=1

∑H

y=1

(
(SubT0)x,y − G(SubT0 C, SubT1)x,y

)2
(4)  

where and represent the dimensions of the actual and reconstructed 
images, respectively, and G(SubT0_C,SubT1) is the reconstructed result at 
T0 and can be calculated by a non-linear linkage between SubT0_C and 
SubT1. 

However, the MSE loss was inadequate for reconstructing texture 
details. Instead, the VGG loss was closer to perceptual similarity and 
provided solutions that had a higher structural similarity, and can be 
expressed as: 

L VGG/i,j =
1

Wi,jHi,j

∑Wi,j

x

∑Wi,j

y

(
φi,j(SubT0)x,y − φi,j(G(SubT0 C, SubT1) )x,y

)2
(5)  

where φi, j represents the feature map extracted from the jth convolution 
layer and the ith pooling layer, and is usually obtained from the 
encapsulated function within the well-trained VGG network; and Wi, j Hi, 

j are the dimensions of the corresponding feature maps φi, jThe content 
loss unites the advantages of MSE loss and VGG loss functions to recover 
both high-and low-frequency information, and it enables the better 
reconstruction of images. The critic loss is defined as:  

Fig. 4. Network architecture of MSTFC-GAN: (a) generator network, (b) discriminator network, with the kernel size (abbr. K), number of feature maps (abbr. n), and 
stride of convolutional layer (abbr. s). 
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ϕ̂ = ϵSubT0 +(1 − ϵ)G(SubT0 C, SubT1) (7)  

where N denotes the number of training samples; D is the output result of 
the discriminator; λ is set to 10; ϕ̂ is calculated in Eq. (7), which weighs 
the actual and generated samples; Δ

ϕ̂ 
is the gradient operator of ϕ̂, and 

is a random number ϵ~ U [0,1]. 
The generator (G) and discriminator (D) were trained for the min- 

max optimization problem, where G minimized the difference be
tween the generated images and actual images, and D maximized the 
probability of treating a fake result as an actual sample. The α and μ in 
Eq. (8) are balanced parameters that were empirically set to 2 × 10− 7 

and 1 × 10− 3, respectively, 

Min
G

Max
D

L = L MSE + αL VGG + μL Critic (8)  

4. Results 

4.1. Effectiveness of using the MTFC-CNN 

The effectiveness of the MTFC-CNN was validated by simulation and 
real experiments using AMSR-E LST data from 2010. The scatterplots of 
actual AMSR-E LST during daytime and nighttime against that recon
structed with MTFC-CNN in the simulation experiments are shown in 
Fig. 5. During the daytime, the averages of the bias, RMSE, and R2 were 
0.04 K, 1.21 K and 0.96, respectively; while those values during the 
nighttime were − 0.03 K, 0.99 K and 0.93, respectively. It is should be 
noted that these statistics are calculated by only the data points over the 
gaps. These results indicate the MTFC-CNN can effectively reconstruct 
the simulated swath gaps of AMSR-E LST data, although the RMSEs add 
additional uncertainty. 

A comparison between the spatial distribution patterns of original 
AMSR-E LST and reconstructed AMSR-E LST of real experiments during 
the daytime is shown in Fig. 6. Compared with the original AMSR-E LST, 
the reconstructed AMSR-E LST seems to reflect the natural 

spatiotemporal variations in LST, indicating that the MTFC-CNN method 
could be used to successfully reconstruct large swath gaps of AMSR-E 
LST in real experiments. 

In consideration of the coarse spatial resolution of AMSR-E LST, 
corresponding MYD11A1 images in 2010 were selected for evaluation 
during the daytime and nighttime in real experiments. MYD11A1 im
ages excluded low-quality pixels relating to the QC layer and the spatial 
resolution were resampled to 25 km. The processed MYD11A1 images 
were adopted to evaluate the reconstructed AMSR-E LST and the 
observed AMSR-E LST (outside the gaps), and the scatterplots of 
observed AMSR-E LST and reconstructed AMSR-E LST against MYD11A1 
during daytime and nighttime are presented in Fig. 7. Compared with 
the MYD11A1, the daytime (nighttime) average RMSE, R2 and Bias were 
3.44 K (2.70 K), 0.94 (0.92) and 0.21 K (0.10 K) for the observed AMSR- 
E LST, and the corresponding values were 4.39 K (3.24 K), 0.88 (0.90) 
and 0.29 K (0.26 K) for the reconstructed AMSR-E LST. The difference 
between the two RMSEs for the daytime and nighttime were all less than 
1 K, and the R2 was approximately 0.9, which again proved the effec
tiveness of using the MTFC-CNN method in real experiments. 

4.2. Simulation experiments of the MSTFC-GAN 

4.2.1. Visualization results of simulation experiments 
This section presents results of the simulation experiments using the 

aforementioned eight sample datasets, which were conducted to eval
uate the reliability of the MSTFC-GAN model. The sample images in each 
dataset were simulated as cloud-covered images with the mask datasets 
introduced in Section 3.2.2. To effectively set missing rates in the 
simulation experiments, the percentages of the different missing rate 
ranges in all MODIS LST over China’s mainland in 2010 were investi
gated, as shown in Fig. 8. Almost all of the MODIS LSTs had missing rates 
ranging between 20% and 80%, and most of the missing rates ranged 
from 50% to 60%. The percentages of high missing rates were greater 
during the daytime than those during nighttime, while those of low 
missing rates during the nighttime were less than those during the 
daytime. Therefore, the missing rates of masks in the simulation 

Fig. 5. Scatterplots of actual AMSR-E land surface temperature (LST) against AMSR-E LST reconstructed in simulation experiments with multi-temporal feature 
connected convolutional neural network (MTFC-CNN) during (a) daytime and (b) nighttime. 

L Critic =
1
N

∑N

x=1
D(G(SubT0 C, SubT1) ) −

1
N

∑N

x=1
D(SubT0)+ λ

1
N

∑N

x=1

((
‖Δ

ϕ̂
D(ϕ̂) ‖2 − 1

)2
)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟
Gradient penalty

(6)   
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Fig. 6. Comparison between the spatiotemporal distributions of daytime original and reconstructed AMSR-E LST on the 15th day of every month in 2010: (a) 
Original AMSR-E LST, (b) reconstructed AMSR-E LST. 
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experiments were set as 25%, 30%, 35%, 40%, 55%, 65%, and 75%, 
respectively. 

To investigate the efficacy of the MSTFC-GAN, the AMSR-E and the 
corresponding MODIS during daytime (Mar 17, June 18, September 7, 
and December 11, 2010) and nighttime (March 7, June 10, September 6, 
and December 1, 2010) were selected to conduct experiments from 
sample datasets. The simulated cloudy-sky MODIS LST images were 
generated using four missing rates (40%, 55%, 65%, and 75%) from the 
mask datasets. The proposed MSTFC-GAN was then used for the simu
lated cloudy-sky MODIS LST images. In addition, the proposed MSTFC- 
GAN without reference data was also used for simulated cloudy-sky 
MODIS LST, to provide a comparison with these results. Visualization 
results for AMSR-E LST, actual MODIS LST, simulated cloudy-sky MODIS 
LST using mask datasets, all-weather MODIS LST from MSFCR-GAN 
without reference data, and all-weather MODIS LST from MSTFC- 
GAN, are given in Fig. 9 for daytime and Fig. 10 for nighttime, respec
tively. Compared with spatial patterns of the all-weather MODIS LST 
from MSTFC-GAN without reference data (Fig. 9 (d) and Fig. 10 (d)), 
those of the all-weather MODIS LST from MSTFC-GAN (Fig. 9 (e) and 
Fig. 10 (e)) and the actual MODIS LST images were evidently more 
consistent. These results demonstrate that the spatial detail can be 

enhanced when using reference data and the spatiotemporal fusion 
concept, which suggests that the proposed MSTFC-GAN performs well in 
learning large-scale differences between the AMSR-E and MODIS LST. 

4.2.2. Evaluation using different missing rates 
The aforementioned eight sample datasets were used to evaluate 

MSTFC-GAN for each of the seven percentage missing rates (i.e., 25%, 
30%, 35%, 40%, 55%, 65%, and 75%). The RMSE between the actual 
MODIS LST and the all-weather MODIS LST for the eight sample datasets 
were then calculated. The percentages of the average RMSE and its 
range distributions between all-weather MODIS LST and actual MODIS 
LST under different missing rates are shown in Fig. 11, where the four 
colors denote the RMSE ranges (from 0 to 4 K). Similarly, these values 
were calculated using only the data over the fake cloud mask gaps. With 
an increase in the missing rate, the average RMSE generally showed an 
upward trend, and a proportionate increase in the percentage of pixels 
with high RMSE values was observed. When the missing rates were 
lower than 40%, more than 60% of pixels had RMSE ranges of 0–1 K, and 
more than 95% of pixels had RMSE ranges of 0–2 K. RMSE ranges of 1–2 
K were dominant for high missing rates (for example, for 55% and 65%), 
while ranges of 2–3 K were dominant with the highest missing rate of 
75%. In summary, the results indicate that the MSTFC-GAN is able to 
reconstruct cloudy-sky MODIS LST for different missing rates when 
employing the corresponding AMSR-E LST data. 

4.2.3. Evaluation of different training sample sizes 
The training sample size (TSS) is an important factor that influences 

the outcomes of DL-based methods. To evaluate the influence of 
different training sample sizes on the efficacy of the MSTFC-GAN, 
sample training datasets during daytime and nighttime in spring were 
divided into different percentages of 20%, 40%, 60%, 80%, and 100%, 
respectively. The daytime and nighttime average RMSEs for the different 
percentages of sample training datasets under seven missing rates are 
shown in Fig. 12. The results show that when a lower percentage of 
training datasets was used, the RMSEs obtained were generally higher 
under the seven missing rates for both daytime and nighttime. However, 
the RMSEs did not always increase when the missing rate improved 
during low missing rate ranges (such as those less than 40%), particu
larly for daytime LST with a high dynamic variation. The missing rate 
distribution features (i.e., concentrated or scattered) also strongly 
influenced the RMSEs, which is in agreement with our previous study 
(Liu et al., 2017; Wu et al., 2019). In addition, the average RMSE for 
each missing rate during daytime was higher than that during nighttime. 

Fig. 7. Scatterplots of observed AMSR-E LST and reconstructed AMSR-E LST against MYD11A1 (MYD11A1): (a) Daytime, (b) Nighttime. Red samples are the 
observed results while blue samples are those reconstructed in this study. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. 8. Percentage of missing LST pixels during daytime and nighttime in 2010.  
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There were only slight differences between the RMSEs of different 
training dataset percentages under low missing rates, such as 25% and 
30%. When the missing rate was 35%, 20% of the training datasets 
resulted in a higher RMSE than with the other training dataset per
centages. With an increase in the missing rate, particularly for the 
missing rate of 65%, the daytime RMSEs of training dataset percentages 
lower than 60%, 80%, and 100% were approximately 3.5, 2.0 K, and 1.5 
K, respectively. Thus, the training sample size is an important factor for 
MSTFC-GAN, and sufficient training samples were required when the 
LST data contained high missing rates. 

4.3. Real experiments using the MSTFC-GAN 

4.3.1. Visualization results of real experiments 
To evaluate the visual effects of the MSTFC-GAN when conducting 

real experiments, LST data were investigated both before and after using 
the MSTFC-GAN. The spatial distribution pattern of the original actual 
MODIS LST during the daytime (a) and nighttime (b) from Jan. 15 to 
Dec. 15, 2010 is shown in Fig. 13. Because of the presence of clouds, 
many regions (particularly in Southern China) of missing data are 
evident during both the daytime and nighttime. Although the original 
MODIS LST values during the daytime are consistently higher than those 
during nighttime, reflecting the spatial variations in LST during both 

daytime and nighttime is difficult. 
All-weather LST can be generated using the proposed MSTFC-GAN 

and employing spatially complete AMSR-E LST (as described in Sec
tion 4.1) and original MODIS LST (see Fig. 13). The spatial distribution 
pattern of gapless all-weather LSTs during (a) daytime and (b) nighttime 
from Jan. 15 to Dec. 15, 2010, are shown in Fig. 14. Compared with the 
original MODIS LST, the all-weather LST more proficiently indicates the 
spatial variations of LST during both daytime and nighttime. Relatively 
evenly distributed LST occurs in winter, especially during nighttime, 
whereas LST varies greatly in space in summer, especially during the 
daytime. Relatively high LST value can be observed in northern China 
(particularly northwest region) during the daytime in summer, where 
arid and semi-arid regions are widespread. Furthermore, a greater 
number of clear-sky days can be found in northern China in summer 
than those in southern China. Conversely, the all-weather LSTs in 
southern China during nighttime are widely higher than those in 
northern China, owing to the greater amount of cloud covering in 
southern China, and the increased downward longwave radiation. The 
LSTs of Hainan Island show a smaller diurnal LST difference, mainly 
because the specific heat capacity of seawater is smaller than that of 
sand. When compared to the other regions at the same latitude, lower 
LSTs during both daytime and nighttime are found in the TP region, 
owing to its high altitude. These finds are generally in keeping with 

Fig. 9. Results of simulated experiment using LST data during daytime: (a) AMSR-E LST; (b) actual MODIS LST; (c) simulated cloudy-sky MODIS LST using mask 
datasets; (d) all-weather MODIS LST from multi-scale multi-temporal feature connected generative adversarial network model (MSTFC-GAN) without reference 
images; and (e) all-weather MODIS LST from MSTFC-GAN. 
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Fig. 10. Results of simulated experiment using LST data during nighttime. (a) AMSR-E LST; (b) actual MODIS LST; (c) simulated cloudy-sky MODIS LST using mask 
datasets; (d) all-weather MODIS LST from multi-scale multi-temporal feature connected generative adversarial network model (MSTFC-GAN) without reference 
image; and (e) all-weather MODIS LST from MSTFC-GAN. 

Fig. 11. Percentages of average RMSE and its range distributions between all-weather MODIS LST and actual MODIS LST under different missing rates.  
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those of previous studies of Duan et al. (2017) and Xu and Cheng (2021). 
Furthermore, compared with the reconstructed 25 km spatial resolution 
AMSR-E LSTs (Fig. 6), LST variation is enhanced by the all-weather LSTs 
on a 1-km scale, which makes this method more suitable for meeting the 
requirements of LST studies on a regional scale or a finer scale. 

4.3.2. Validation against in-situ measured LST 
LST of the six sites (AR, HZZ, and YK in the HRB region, and BJ, 

SETORS, and NAMORS in the TP region) were used to assess the gapless 
all-weather LST. Scatterplots of the generated all-weather LST against 
in-situ LST from the six sites under clear and cloudy skies are shown in 
Fig. 15. In general, remarkable fluctuation in the average bias at all sites 
under both clear and cloudy skies were observed, while the average 
RMSE was relatively stable at all sites under both clear and cloudy skies. 
Specifically, the average bias of the clear LST varied from − 0.88 K at the 
NAMORS site to 0.65 K at the AR site, and the average RMSEs of the 
clear LST were about 2 K at six sites. The accuracy of clear LST was much 
better than that of cloudy LST. The average bias of cloudy LST varied 
from − 1.64 K at the HZZ to 1.51 K at the NAMORS. Under cloudy skies, 
the lowest RMSE of 3.41 K was measured at the YK, whereas the highest 
RMSE of 3.87 K was measured at the NAMORS. 

To further evaluate the gapless all-weather LST, the average RMSE, 
bias, and R2 of the all-weather LST against the in-situ LST were calcu
lated during daytime and nighttime in different seasons, and the results 
are listed in Table 2. The performance of MSTFC-GAN was generally 
affected by seasons, and the influence during the nighttime was slightly 
greater than that during the daytime. During both daytime and night
time, the smallest RMSEs of 3.50 K and 2.95 K were obtained in the 
winter, whereas the largest RMSEs of 3.96 K and 3.83 K were obtained in 
summer. The smallest R2 of 0.74 was obtained during daytime in sum
mer, whereas the largest R2 of 0.84 was observed during nighttime in 
autumn. A negative bias occurred in winter during both daytime and 
nighttime, and also occurred in spring during nighttime, while a positive 
bias occurred at other times. 

5. Discussion 

5.1. Advantages and limitations of the TDLF 

In this study, the TDLF was proposed for mapping gapless all- 
weather LST with TIR and passive microwave observations, and the 
MTFC-CNN filled large swath gaps in AMSR-E LST data. The MSTFC- 
GAN was subsequently designed to blend the spatially complete 
AMSR-E LST and original MODIS LST. The effectiveness of MTFC-CNN 
was subsequently validated against ground measurements for different 
missing rates and sample sizes, and was also compared with other 

methods. 
As for the other methods, the enhanced performance of TDLF relates 

primarily to its ability to accommodate nonlinear relationships between 
the LST data with multi-temporal and multi-scale. Specifically, the three 
main advantages of developing the TDLF are as follows: first, although 
the IDW and DINEOF methods were adopted in previous studies (Duan 
et al., 2017; Xu and Cheng, 2021; Xu et al., 2021), their assumption of 
linear or orthogonal function relations between input and output LST 
data can result in uncertainty and noise pixels. Therefore, we designed 
the bidirectional reconstruction model based on the MTFC-CNN in 
consideration of the large and periodic orbit swath gap, the non
stationarity in AMSR-E LST data, and the ability to use complementary 
spatial information from adjacent data. Second, studies have shown that 
GANs have great potential for exploiting high-level information for 
multi-scale data (Ma et al., 2019; Zhang et al., 2020a), such as MODIS 
and AMSR-E. However, owing to the large scale inconsistence between 
MODIS and AMSR-E LST, direct learning of their relationship at a single 
observation time can result in the reconstructed MODIS LST losing a 
considerable amount of spatial detail, as shown in Fig. 9(d) and Fig. 10 
(d). A key component of the MSTFC-GAN is the incorporation of the 
spatiotemporal fusion concept. The basic premise behind spatiotem
poral LST fusion is to generate LST with high resolution at a predicted 
time while simultaneously using low resolution LST and a pair of 
spatially complete high and low resolution LSTs observed at a reference 
time (Wu et al., 2021). Based on this idea, the reconstructed LST value 
and its spatial detail can be learned from the reference pairs of MODIS 
and AMSR-E LST, as shown in Fig. 9(e) and Fig. 10(e). The third 
advantage of the TDLF is that it requires no other additional data, 
whereas additional data (such as NDVI and DEM) are essential in the 
methods presented in previous studies. However, it should be noted that 
these additional data may also be very useful for the TDLF. How to bring 
additional data into TDLF is interesting, and should be investigated 
further in the future. 

However, the TDLF has several potential limitations, which are as 
follows: (1) as LST varied strongly both spatially and temporally, a total 
of eight datasets obtained in 2010 were trained for the MTFC-CNN and 
MSTFC-GAN, respectively. In this respect, DL-based methods generally 
have higher time cost than traditional methods. (2) To enhance the 
spatial detail, the MSTFC-GAN required a spatially complete MODIS LST 
observed at the reference time. Experimental results showed no signif
icant effect on the time interval between the predicted and referenced 
MODIS LST during a season. However, the performance of MSTFC-GAN 
might degrade when the spatially complete MODIS LST was unavailable 
during a given period of time, which might limit the applicability of the 
model. It should be noted that the difference of view angles between the 
predicted and referenced MODIS LST may further increase the 

Fig. 12. Average RMSE for different sample training dataset percentages under seven missing rates: (a) daytime, (b) nighttime.  
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Fig. 13. Spatial distribution pattern of the original MODIS LST on the 15th day of every month in 2010: (a) daytime and (b) nighttime.  
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Fig. 14. Spatial distribution pattern of the gapless all-weather LST images on the 15th day of every month in 2010: (a) daytime and (b) nighttime.  
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uncertainty of the LST estimates. The thermal radiation directionality is 
a complicated process (Cao et al., 2019), and requires further compre
hensive study. (3) Considering the transit time of PWM, the proposed 
method was designed only for MYD11A1, but not for MOD11A1. Once 
temporal normalization methods are sufficiently mature, other LST data, 
such as reanalyzed LST products, may be promising alternatives for 
generating all-weather LST at a required time (Long et al., 2020; Zhang 
et al., 2021). 

5.2. Comparisons with previous all-weather LST 

Although a number of studies have produced all-weather LST, we 
compare the TDLF with the method by Duan et al. (2017) and the fusion 

Fig. 15. Scatterplots of all-weather LST against six in-situ LST at Arou station (AR), Huazhaizi station (HZZ), Yingke station (YK), Naqu-BJ station (BJ), SETORS, and 
NAMORS sites under clear and cloudy skies. 

Table 2 
Comparison between all-weather LST and in-situ LST in different seasons during 
daytime and nighttime, respectively.  

Time Season RMSE (K) Bias (K) R2 

Daytime spring 3.74 1.08 0.80 
summer 3.96 1.20 0.74 
autumn 3.94 1.54 0.81 
winter 3.50 − 1.55 0.72 

Nighttime spring 3.40 − 0.79 0.83 
summer 3.83 0.98 0.80 
autumn 3.15 0.82 0.84 
winter 2.95 − 0.08 0.78  
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strategy proposed by Xu and Cheng (2021). One of the main reasons for 
using these methods as comparisons was that MODIS and AMSR-E LST 
were adopted as the input data in both the TDLF and in the two other 
studies. It was also convenient to make such a comparison because the 
two methods were proposed to produce spatially complete all-weather 
LST products over the China’s mainland from 2002 to 2011 (referred 
to as Duan’s LST) and 2002 to 2020 (referred to as Xu’s LST), respec
tively. The products were released free of charge by the National Center 
for Earth System Science Data (http: //www. geodata. cn) and National 
Tibetan Plateau Data Center (http://data.tpdc.ac.cn/) (Cheng et al., 
2021), respectively. However, it should be noted that the AMSR-E LST 
products used in 2010 were provided by Zhang and Cheng (2020), based 
on their published work, and we thus also generated gapless all-weather 
LST in 2010 and compared it with the downloaded Duan’s LST and Xu’s 
LST products in 2010. A comparison between the gapless all-weather 
LST generated from the TDLF and the downloaded LST products 
(Duan’s LST and Xu’s LST) on August 15th is shown in Fig. 16 during 
daytime (a) and nighttime (b). On a national scale, comparing the 
quality of the three all-weather LST images over the Chinese mainland 

was difficult; therefore, certain detailed regions were selected to 
conduct a visual assessment, as shown by the red rectangles. It is evident 
that the Duan’s LST appear more ‘hazy’ than the two other LST images, 
and our LST enhanced the spatial details when compared with the Xu’s 
LST. 

To quantitatively compare the accuracy of the TDLF with the method 
of Duan et al. (2017), and the fusion strategy proposed by Xu and Cheng 
(2021), the in situ measurements of AR, HZZ, YK, BJ, SETORS, and 
NAMORS were used to validate the gapless all-weather LST generated 
from the two methods. Notably, the AR, HZZ, and YK sites were also 
utilized for the method of Duan et al. (2017) and the strategy of Xu and 
Cheng (2021). Fig. 17 gives the validation results of the six sites during 
daytime and nighttime under cloudy conditions. Although the bias of 
our all-weather LST was basically consistent with Duan’s and Xu’s LST 
for all six sites, the RMSEs of our all-weather LST were lower than those 
of both Duan’s and Xu’s LST for all six sites. Therefore, the proposed 
TDLF is generally superior to the method of Duan et al. (2017) and the 
strategy of Xu and Cheng (2021) in terms of the visual effect of the all- 
weather LST images and the results of the validation accuracy. 

Fig. 16. Detailed comparison between Duan’s LST (Duan et al., 2017), Xu’s LST (Xu and Cheng, 2021), and the gapless all-weather LST generated from the TDLF on 
August 15th during (a) daytime and (b) nighttime. 
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6. Conclusions 

Blending data from TIR and PMW measurements is a common so
lution for generating all-weather LSTs. This paper propose the TDLF for 
mapping gapless all-weather LST over the China’s landmass using 
MODIS LST and AMSR-E LST. A bidirectional reconstruction model 
based on MTFC-CNN was designed to obtain spatially complete AMSR-E 
LST. The MSFCR-GAN was subsequently designed using a spatiotem
poral fusion concept to blend the spatially complete AMSR-E LST and 
cloudy-sky MODIS LST and ultimately generate gapless all-weather LST 
data. 

The effectiveness of the MTFC-CNN was first evaluated by con
ducting simulations and real experiments. The average RMSEs between 
the reconstructed AMSR-E LST and the actual AMSR-E LST were 1.21 K 
for daytime and 0.99 K for nighttime, respectively. The performance of 
the MSTFC-GAN was also tested and evaluated using different missing 
rates, training sample sizes, and seasons. Experiments showed that the 
MSFCR-GAN provided satisfactory results, for example with an RMSE 
<2 K at a missing rate of 55%. The model had no significant effect for 
different percentages of training datasets when missing rates are less 
than 55%. When validated against six in-situ LSTs of HRB and TP re
gions, the generated gapless all-weather LSTs denoted an accuracy 
(average RMSE) of 1.71 K to 2.0 K in clear conditions and 3.41 K to 3.87 
K in cloudy conditions. Uncertainties of the generated gapless all- 
weather LSTs may come from the retrieval of AMSR-E and MODIS 
LST, the implementation of MTFC-CNN, inconsistencies in observation 
time between AMSR-E and MODIS data over the high latitude region, 
and the implementation of MSTFC-GAN. Although the accuracy was 
affected by the uncertainties and varied with seasons, the method still 
demonstrated a reliable performance under all-weather conditions. 
When compared with the existing published PMW-based all-weather 
LSTs, the generated gapless all-weather LSTs were more satisfying at the 
aspect of image quality (e.g., spatial detail) and validation accuracy. 

Overall, the TDLF fully utilizes the powerful nonlinear representa
tion ability of CNNs and GANs, and it can learn nonstationary and high 
dynamic variations in multiple spatiotemporal scale LSTs from a large 
number of training samples. Although the TDLF was tested with MODIS 
and AMSR-E LST in 2010 and validated on the China’s mainland, the 
capability of producing long-term, gapless, all-weather LST records on a 
global scale with other TIR LSTs (e.g., FY-3) and PWM LST (e.g., AMSR2 
and MWRI) has been advanced. Such a capability will be beneficial for 
generating further spatially complete soil moisture and evapotranspi
ration datasets, which can be used in global climate change research. 
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